Table 1. Characteristics of studies identified through systematic review.
Income level | Study | Country | Health sector | Facility location | Number of facilities involved | Data source | Age group | Denominator* |
---|---|---|---|---|---|---|---|---|
Low | Baltzell 2019 [68] | Malawi | Private | Rural | NA | Medical records | NA | 9,924 (P) |
Mukonzo 2013 [27] | Uganda | Both | Both | 1 | Medical records, prescription audit | All | 173 (P) | |
Nepal 2020 [73] | Nepal | Public | Urban | NA | Prescription audit | All | 950 (P) | |
Savadogo 2014 [28] | Burkina Faso | Public | Urban | 2 | Medical records | Children | 376 (P) | |
Worku 2018 [29] | Ethiopia | Public | Urban | 6 | Medical records, prescription audit | All | 898 (D) | |
Yebyo 2016 [30] | Ethiopia | Public | Rural | 4 | Medical records | Adults | 414 (P) | |
Lower-middle | Abdulah 2019 [31] | Indonesia | Public | NA | 25 | Prescription audit | Adults | 10,118 (D) |
Adisa 2015 [32] | Nigeria | Public | Urban | 8 | Prescription audit | Adults | 400 (P) | |
Ahiabu 2016 [33] | Ghana | Both | Both | 4 | Medical records | All | 1,600 (D) | |
Akl 2014 [34] | Egypt | Public | Urban | 10 | Medical records | NA | 1,000 (D) | |
Atif 2016 [35] | Pakistan | NA | Urban | 10 | Prescription audit | NA | 1,000 (D) | |
Beri 2013 [36] | India | Private | Urban | 20§ | Provider interview | All | 400 (P) | |
Chem 2018 [37] | Cameroon | Both | Both | 26 | Medical records | All | 30,096 (D) | |
El Mahalli 2011 [38] | Egypt | Public | Urban | 2 | Medical records | Children | 300 (P) | |
Graham 2016 [39] | Zambia | NA | NA | 90§ | Provider interview | Children | 537 (P) | |
Jose 2016 [40] | India | Public | Rural | 1 | Prescription audit | Children | 552 (D) | |
Kasabi 2015 [41] | India | Public | NA | 20 | Medical records | NA | 600 (P) | |
Mekuria 2019 [72] | Kenya | Private | Urban | 4 | Prescription audit | All | 17,382 (P) | |
Ndhlovu 2015 [42] | Zambia | Both | Both | 148 | Patient interview, medical records | All | 872 (P) | |
Omole 2018 [43] | Nigeria | Both | Rural | NA | Prescription audit | NA | 4,255 (D) | |
Oyeyemi 2013 [44] | Nigeria | Public | Urban | 4 | Medical records | All | 600 (D) | |
Raza 2014 [45] | Pakistan | Both | Urban | NA | Prescription audit | NA | 1,097 (D) | |
Sarwar 2018 [46] | Pakistan | Public | Both | 32 | Prescription audit | NA | 6,400 (D) | |
Saurabh 2011 [47] | India | NA | Rural | 4 | Prescription audit | NA | 600 (D) | |
Saweri 2017 [48] | PNG | Public | Both | 7 | Ad hoc form | All | 6,008 (P) | |
Sudarsan 2016 [49] | India | Public | Urban | 1 | Prescription audit | NA | 360 (D) | |
Yousif 2016 [50] | Sudan | Both | NA | 220§ | Prescription audit | NA | 19,690 (D) | |
Yuniar 2017 [51] | Indonesia | Both | NA | 56 | Prescription audit | NA | 1,657 (D) | |
Upper-middle | Ahmadi 2017 [52] | Iran | Public | Rural | 103 | Prescription audit | NA | 352,399 (D) |
Alabid 2014 [53] | Malaysia | Private | Urban | 70 | Patient interview | Adults | 140 (P) | |
Bielsa-Fernandez 2016 [54] | Mexico | NA | Urban | 109§ | Provider interview | All | 1,840 (P) | |
Gasson 2018 [55] | South Africa | Public | Urban | 8 | Medical records | All | 654 (P) | |
Greer 2018 [56] | Thailand | Public | Both | 32 | Medical records | All | 83,661 (P) | |
Lima 2017 [57] | Brazil | NA | NA | 20 | Prescription audit | NA | 399 (D) | |
Liu 2019 [71] | China | Public | Both | 65 | Prescription audit | All | 428,475 (D) | |
Mashalla 2017 [58] | Botswana | Public | Urban | 19 | Prescription audit | All | 550 (D) | |
Ab Rahman 2016 [59] | Malaysia | Both | Both | 545 | Medical records | All | 27,587 (P) | |
Sadeghian 2013 [60] | Iran | NA | NA | NA | Prescription audit | NA | 4,940,767 (D) | |
Safaeian 2015 [61] | Iran | NA | Both | 3,772§ | Prescription audit | NA | 7,439,709 (D) | |
Sánchez Choez 2018 [62] | Ecuador | Public | Both | 1 | Prescription audit | All | 1,393 (P) | |
Sun 2015 [63] | China | Public | Both | 24 | Prescription audit | All | 1,468 (D) | |
Wang 2014 [64] | China | Public | Both | 48 | Medical records | All | 7,311 (D) | |
Xue 2019 [65] | China | Public | Rural | NA | SP exit interview | All | 526 (P) | |
Yin 2015 [66] | China | Both | Urban | 2,501 | Prescription audit | NA | 42,200 (D) | |
Yin 2019 [74] | China | Public | Rural | 8 | Prescription audit | All | 14,526 (D) | |
Zhan 2019 [69] | China | Public | Rural | 17 | Prescription audit | All | 1,720 (D) | |
Zhang 2017 [67] | China | Public | Rural | 20 | Prescription audit | Children | 9,340 (D) | |
Multiple | Kjærgaard 2019 [70] | Kyrgyzstan, Uganda, Vietnam | NA | NA | NA | Medical records, provider interview | Children | 699 (P) |
*Denominator used to calculate the outcome (i.e., total number of patients evaluated [P] or total number of drug prescriptions [D]).
§Number of healthcare providers involved.
NA, not available; PNG, Papua New Guinea; SP, standardized patient.