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Abstract

We present a novel semi-autonomous clinician-inthe-loop strategy to perform the laparoscopic 

cryoablation of small kidney tumors. To this end, we introduce a model-independent bimanual 

tissue manipulation technique. In this method, instead of controlling the robot, which inserts and 

steers the needle in the deformable tissue (DT), the cryoprobe is introduced to the tissue after 

accurate manipulation of a target point on the DT to the desired predefined insertion location of 

the probe. This technique can potentially reduce the risk of kidney fracture, which occurs due to 

the incorrect insertion of the probe within the kidney. The main challenge of this technique, 

however, is the unknown deformation behavior of the tissue during its manipulation. To tackle this 

issue, we proposed a novel real-time deformation estimation method and a vision-based 

optimization framework, which do not require prior knowledge about the tissue deformation and 

the intrinsic/extrinsic parameters of the vision system. To evaluate the performance of the 

proposed method using the da Vinci Research Kit, we performed experiments on a deformable 

phantom and an ex vivo lamb kidney and evaluated our method using novel manipulability 

measures. Experiments demonstrated successful real-time estimation of the deformation behavior 

of these DTs while manipulating them to the desired insertion location(s).
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INTRODUCTION

Autonomous and semi-autonomous surgical systems can improve accuracy, dexterity, and 

repeatability of surgical interventions, and consequently reduce surgical errors, tissue 

damage, and operating time.16 These systems have already been used in various 

interventions including bony tissues (e.g. orthopedic7 and neurosurgery10), where hard tissue 

(bone) simplifies the preplanning and operation of robots when compared to deformable 

tissues (DTs). A DT usually provides a dynamic environment, which may exhibit unknown 

behavior during the operation and, therefore, its preoperative and real-time intraoperative 

images may differ. Hence, autonomous DT interventions are more challenging than 

interventions involving hard tissues.

Needle insertion is a type of DT intervention, which is used for tissue sampling through 

biopsy or treatment of tumors via drug injection or ablation. Examples include venipuncture,
6 cryoablation of renal tumors,8 and brachytherapy.13,14 The main challenges of this 

procedure are associated with the accurate placement and/or steering of the needle on the 

surface and/or through the DT. Several important factors make this placement very difficult. 

These factors include: unknown tissue deformation and heterogeneity, potential movement 

of the desired target on the surface or inside of the DT—which may result in incorrect 

insertion location and orientation, avoiding tissue damage, and patient’s movement.14,19

To overcome the difficulties of this procedure, researchers have implemented various 

autonomous or semi-autonomous control methods on robotic systems, which steer or insert 

the needle to the desired target.1 Performance of these procedures is very dependent on the 

considered models for the needle-DT interaction. To this end, usually mechanical or 

computational (e.g. Finite Element (FE)) methods are used to accurately model and simulate 

the dynamics of the DT and predict either behavior of the needle in the tissue or movement 

of the target. Examples of needle-DT interaction models include various types of 

nonholonomic kinematics-based15,19 and beam-theory-based11,15 approaches. In addition, a 

range of control methods have been implemented for the above-mentioned models to steer 

the needle to the desired target.13–15 The performance of these model-based control 

techniques, however, is often limited to and dependent on the accuracy of the selected 

needle-tissue interaction model.14 Further, although FE modelling approaches can be 

accurate, they cannot be efficiently implemented in real-time due to their long run-time 

caused by intensive computations.14

Laparoscopic cryoablation is a minimally invasive procedure for treatment of small 

peripheral kidney tumors in the range of 1–5 cm8. In this procedure, after creation of 

laparoscopic port sites and abdominal insufflation, a laparoscopic camera is inserted to view 

the area and help to adequately dissect kidney for better exposing the lesion. A laparoscopic 

ultrasound probe is then introduced to scan the entire kidney and define the exact diameter 

and location of the lesion. After localization of the tumor, target insertion location(s) on the 

kidney surface with appropriate insertion orientation(s) are determined. Of note, the number 

of these locations(i.e.utilizedcryoprobes)dependsonthesizeof the tumor.5 Then, a clinician 

accurately inserts cryoprobe(s) under direct vision of the camera and advances to an 

appropriate depth under guidance of ultrasound inside or in the boundary of the tumor. 
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Finally, a double freeze-thaw technique is used to ablate the tumor under real-time 

ultrasound monitoring.5,8

The success of this task is highly dependent on the clinician skill and requires great hand-

eye coordination and multiple trials, compromising the patient’s safety. Further, due to 

(1)the deformable characteristics of the tissue, (2) patient’s movement, and (3) interaction 

between instruments and tissue, the probe(s) target location(s) and orientation(s) may vary 

significantly, which may result in kidney fracture during cryotreatment.5 Tremor and 

tiredness of the clinician’s hands during the relatively long ablation procedure (about 30 

min8) may also impede the success of this surgery. To prevent these complications, it is 

essential to insert the probe into the kidney with appropriate angles and firmly maintain its 

location and orientation during the procedure.5

To address the limitations of the model-based needle insertion approaches and mentioned 

difficulties in the laparoscopic cryoablation of kidney tumors, an alternative novel 

intermediate approach can be semi-autonomous model-independent needle insertion using 

the tissue manipulation technique. In this procedure, a clinician collaborates with a robotic 

system to ensure safe and accurate needle insertion in the desired lesion inside the DT, while 

the robotic system is in charge of manipulatingthetissueforaccurateplacementoftheneedleon 

the surface of DT. This model-independent tissue 

manipulationtechniquedoesnotneedapriormodeland estimates the deformation behavior of 

DT in real-time.

OBJECTIVE AND CONTRIBUTION

In this paper, we present a novel model-independent clinician-in-the-loop strategy to 

perform the laparoscopic cryoablation of small peripheral kidney tumors via an uncalibrated 

vision-based bimanual tissue manipulation technique. In this clinical procedure, one (or 

multiple) cryoprobe(s) is (are) inserted under direct vision of the laparoscope to the pre-

determined location(s) on the surface of kidney, while the tissue is safely manipulated using 

one or two laparoscopic forceps. A clinician then inserts the cryoprobe(s) into the kidney to 

an appropriate depth under the guidance of ultrasound.5,8 To guarantee the patient’s safety 

and complete cryoablation of the tumor, the clinician should be careful about appropriate 

placement of the probe(s) (i.e. both position and orientation) to avoid kidney fracture during 

cryotreatment and increased bleeding.5

To perform this minimally invasive procedure via a semi-autonomous robotic procedure, in 

this paper, we implemented our optimization-based method and carried out a set of 

experiments with the da Vinci Research Kit (dVRK).12 In the performed experiments, two 

manipulators of the dVRK autonomously collaborated to manipulate an unknown DT—to be 

cryoablated—in order to overlay one or two target points on the DT to their desired insertion 

locations. Then, the probe was manually introduced to the simulated soft tissue organ using 

another manipulator holding it. To ensure patient’s safety during manipulation of the DT, we 

also constrained movement of the robots and evaluated the performance of our method in 

this case as well.
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The unique features of this study include: (1) the novel model-independent bimanual tissue 

manipulation technique does not depend on a prior DT model and does not require a 

calibrated vision system; (2) the method allows defining constraints in either image plane or 

Cartesian space to enhance patients’ safety during the needle insertion procedure; (3) the 

proposed bimanual tissue manipulation technique, as experimentally demonstrated, can 

simultaneously manipulate more than one insertion locations; (4) the extension of 

Yoshikawa’s manipulability measure and the area of the manipulability ellipse were used for 

the analysis of the manipulation of deformable tissues.

MATERIALS AND METHODS

Semi-autinomous Laparoscopic Cryoablation of Small Kidney Tumors

We propose the following procedure to facilitate the laparoscopic cryoablation of peripheral 

kidney tumors using a semi-autonomous vision-guided robotic system. After scanning the 

kidney using an ultrasound probe, a clinician first assigns and fixes a feasible desired 

orientation(s) and insertion location(s) for the robot(s) holding the needle(s) as well as the 

desired target location(s) on the kidney surface. Next, a modelindependent control method is 

utilized to autonomously and safely manipulate the organ using robotic manipulator(s) to 

overlay target location(s) on the kidney on the assigned location(s) in the workspace—

without having prior knowledge about the deformation behavior and geometry of the kidney. 

Finally, a clinician carefully advances the probe(s) inside the DT under the guidance of 

ultrasound. Of note, during the insertion step, robot(s) maintain(s) the orientation and 

location of probes (Fig. 1). For the proposed method, the following assumptions have been 

made by the authors:

Assumption 1—The visual feedback is always available from a camera and we can 

measure the object’s deformation visually in real-time—although the location of the camera 

is not calibrated with respect to the robot(s) and this sensing can be noisy.

Assumption 2—The grasped location(s) of the DT have been chosen such that the 

probe(s) insertion location(s) can be indirectly manipulated.

In the following sections, the details of the proposed model-independent clinician-in-the-

loop tissue manipulation technique are presented. These include the derivation of the 

equations for the robot(s) kinematics, deformation Jacobian of the DT, our model-

independent control framework, and real-time estimation of the DT deformation Jacobian.

Robot(s) Kinematics

The configuration-dependent robot manipulator Jacobian Jri θi(t)  maps the actuation input 

velocities θ̇i(t) ∈ ℝni to the vector of end effector velocities in the Cartesian space 

ṙi(t) ∈ ℝmi ni ≥ mi . Now, considering M kinematically controlled robots, we can write:

ṙi(t) = Jri θi(t) θ̇i(t) (1)

where i ∈ {1;…;M}.
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Considering (1), for an infinitesimal period Δt, the changes in the end effector position Δri(t) 
can be related to the joint angles changes Δθi(t) as:

Δri(t) = Jri θi(t) Δθi(t) (2)

The DT deformation Jacobian

Let’s consider a feature point pj(t) ∈ ℝ3 on the surface of the DT that represents the probe 

target location (in the Cartesian space) as shown in Fig. 1:

pj(t) = xj(t)   yj(t)   zj(t) (3)

Further, let’s denote the corresponding image coordinates of the feature point pj(t) in the 

image plane is qj(t) ∈ ℝ2:

qj(t) = μj(t)   vj(t) (4)

Considering Assumption 2, if we can indirectly manipulate the desired target location(s) on 

the surface of the DT using the grasping point(s), then we are able to locally model the 

interactive DT deformation in the image plane. To this end, we can relate the changes in the 

end effector(s) position Δr(t) to the displacement of the feature point(s) in the Cartesian 

space Δp(t) as well as the image plane Δq(t) as the following:

d
dtq(t) = ∂q

∂p (p(t))∂p
∂r (r(t))

Jd(r(t))

d
dtr(t)

(5)

where ∂q
∂p (p(t)) defines the unknown projection model of the feature point and Jd(r(t)) is a 

2N × ∑i = 1
M mi matrix. This matrix determines the deformation Jacobian matrix of an 

unknown DT relative to an uncalibrated vision system.

Substituting (1) in (5), we can relate the joint angle changes to the displacements of the 

feature point in the image plane:

d
dtq(t) = Jd(r(t))Jr(θ(t)) d

dtθ(t) (6)

where Jr(θ(t)) ∈ ℝ∑i = 1
M mi × ∑i = 1

M ni is a block diagonal matrix, whose blocks define the 

Jacobian of each robot Jri θi(t) , i ∈ 1, 2, …, M .

Therefore, for an infinitesimal time Δt, we can approximate (6) as:

Δq(t) = Jd(r(t))Jr(θ(t))Δθ(t) (7)
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Model-Independent Control Framework

Considering (7), one reasonable control strategy for indirect positioning of the desired target 

location(s) in the image plane (feature point q(t)) to the predefined location(s) of the 

cryoprobe(s) in the image plane qd is to find appropriate incremental robot(s) joint angles 

Δθ(t) that moves the feature point(s) to its desired location(s) in the image plane.

In this regard, we define Δη(t) as the error between the current target location of the feature 

point(s) (i.e. q(t)) with respect to the desired insertion location(s) in the workspace (i.e. qd):

Δη(t) = q(t) − qd (8)

Considering (7) and (8), we can define the following optimization problem—subject to 

various constraints—to successfully correspond these locations:

arg min
Δθ(t)

∥ Jd(r(t))Jr(θ(t))Δθ(t) − Δη(t) ∥2
2

s.t. A(t)Δθ(t) ≤ b(t),
Δθ(t) ≤ Δθmax,
Δθ(t) ≤ Δθmin .

(9)

where matrix A(t) ∈ ℝℎ × ∑i = 1
M ni and vector b(t) ∈ ℝℎ define h linear inequality constraints. 

Of note, these constraints can easily be defined in the task space and (or) image plane using 

the appropriate Jacobian matrix.

Real-Time Estimation of the Deformation Jacobian

In this study, we assume there is no prior knowledge (or model) of the deformation behavior 

of the DT as well as the camera parameters. As such, matrix Jd(r(t)) in (9) is considered as 

an unknown matrix, which needs to be estimated in real-time during manipulation. In fact, 

Eq. (9) is a system of 2N linear equations with 2N × ∑i = 1
M mi, i ∈ 1, 2, …, M  unknowns, 

where the unknowns contain the information of the DT deformation matrix. Therefore, this 

equation is under-determined and does not uniquely determine all the components of 

Jd(r(t)). To solve this equation and estimate the deformation Jacobian matrix, we implement 

a recursive first-rank update rule, called Broyden method, which is used for solving under-

determined nonlinear system of equations.4 It is proved that the estimated Jacobian by the 

Broyden method results in the smallest possible change in the Frobenius matrix norm with 

its last estimated value.20 This important feature prevents jerky motions during 

implementation of our model-independent approach.

In the Broyden estimation method, in each time instant t, the estimated Jacobian matrix 

Jd(t + Δt) is calculated based on the Jacobian estimation Jd(t), displacement of the robot(s) 

joint angles Δθ(t), and the resulted image change Δη(t) of the last step as the following:
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Jd(t + Δt) = Jd(t) + Γ Δη(t) − Jd(t)Jr(t)Δθ(t)
Jr(t)Δθ(t) Jr(t)Δθ(t) Jr(t)Δθ(t) (10)

where 0 ≤ Γ ≤ 1 is a constant parameter, controlling the rate of change of Jd(t).

Of note, Eq. (10) also satisfies the following equation—called Secant condition, which 

guarantees the estimated Jacobian has theoretically similar behavior with the true 

deformation Jacobian of the DT20:

Δη(t) = Jd(t + Δt)Jr(t)Δθ(t) (11)

Control Algorithm

Considering (9) and (10), we can summarize the proposed control algorithm for semi-

autonomous target manipulation as the following: In each time instant (t + Δt), given the 

estimated deformation Jacobian matrix Jd(t) and actuation control input calculated from (9) 

(i.e. Δθ(t)), the robot(s) are moved. Then, the corrected DT Jacobian Jd(t + Δt) is calculated 

using the actual displacement of the feature point qj(t)—caused by Eq. (6) and the 

displacements of the end effector(s) in the image plane, which will result in reduced error 

compared to the time instant t. This algorithm iterates while a predefined error threshold e is 

satisfied (as shown in Algorithm 1).

Experimental Setup

We used the dVRK system to conduct all the validation experiments (Fig. 2). This system 

consists of mechanical parts from da Vinci Classic Surgical System donated by Intuitive 

Surgical Inc., and open source electronics and software (cisst/SAW libraries) developed by 

researchers at Johns Hopkins University.12 This surgical robot has three Patient Side 

Manipulators (PSMs), one Endoscopic Camera Manipulator (ECM), and two Master Tool 

Manipulators (MTMs). In the following evaluation experiments, we used two PSMs holding 

the ProGrasp Forceps (Intuitive surgical, Inc., California, USA) for active manipulation of 

the DT, one PSM holding a Large Needle Driver (Intuitive surgical, Inc., California, USA) to 
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manipulate an 18 Gauge needle (simulating the cryoprobe), and an endoscope mounted on 

the ECM for obtaining the image feedback (Fig. 2).

For measuring the deformation of the DT (i.e., image displacements of the feature points), 

we implemented a visual tracker algorithm with the Optical Flow package of the OpenCV 

library,3 which uses Lucas-Kanade algorithm.2 We developed our control algorithm using 

the cisst/SAW libraries in C++ and Matlab (MathWorks, Inc.) and used Matlab-ROS 

bridge17 to communicate between these environments in real-time.

The Deformable Phantoms

As shown in Fig. 2, for the experiments, we used a soft, tear-resistant silicon rubber phantom 

(Ecoflex 00–50, Smooth-On, Inc.). The dimension of the sample phantom used in the 

experiments was 100 mm × 70 mm × 10 mm. We also performed a validation experiment on 

an ex vivo lamb kidney. The 120 mm × 60 mm × 300 mm ex vivo phantom had 150 g weight 

(Fig. 2).

Experiments Procedure

In the following experiments, we first fixed the location of the camera to provide sufficient 

field of view during the experiment. We then used the ProGrasp Forceps and grasped the 

corners of the phantoms (Fig. 2). We assumed that before each experiment, the target 

location(s) on the DT (feature point(s) qj), the desired cryoprobe(s) insertion location(s) 

(qd), and the fixed orientation of the PSM holding the probe are well defined. In these 

experiments, the location of the vision system was arbitrarily chosen such that it could 

provide sufficient field of view during the procedure. The goal was to indirectly manipulate 

the target location(s) on the surface of DT to their desired insertion location(s) in the 

workspace—using two PSMs—without having prior knowledge about the tissue 

deformation model. Once the feature points coincided with the desired insertion points, the 

needle was inserted manually to the DT phantom using the third PSM. Of note, during 

insertion, the other PSMs held the tissue firmly in the desired location. In addition, in the 

following experiments, we mainly focused on the indirect autonomous manipulation tasks 

and assumed the needle insertion, using the third PSM, is only limited to a simple insertion 

motion by the clinician.

As mentioned in Assumption 1, the visual feedback provided by the vision system can be 

noisy. To mitigate this issue, we implemented the following first-order low-pass filter and 

used the filtered measurements in (9) and (10):

x. f = − Λ xf − x (12)

where x and xf represent the original and filtered signals, respectively. The diagonal matrix 

Λ = diag(λ1; λ2;…; λk) allows us to adjust the dissipative properties of the filtered signal. 

Further, to solve (9), we used the active-set algorithm9—i.e. the lsqlin function in MATLAB, 

which is used for solving constrained linear least-squares problems.
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Performance Evaluation Measures

For each feature point on the DT, we can define a deformation Jacobian matrix. This matrix 

defines the relation between the movements of the end effectors Δri (as the input) and the 

resulted displacement of each feature point Δqj (as the output). Notably, considering the 

number of robotic arms grasping the DT, we can have more degrees of freedom (DoF) than 

what we need for manipulation of the feature point(s) (i.e. a redundancy in the DoF).

To analyze the results of each experiment as well as the performance of the proposed model-

independent method in estimating the phantom deformation Jacobian, we used various 

measures. We plotted the trajectory of the end effector(s) in the Cartesian space and the 

trajectory of the feature point(s) in the image plane. Further, the Euclidean distance between 

the desired insertion location(s) and the feature point location(s) was calculated at each time 

step and plotted to monitor the convergence of the proposed algorithm.

We also implemented the Yoshikawa’s manipulability measure w21:

w = det JdJd
T

(13)

where det(.) denotes determinant of a matrix. This quantitative measure is usually used for 

conventional redundant manipulators with rigid links and quantifies the difficulty of moving 

the robot end effector in a certain direction.21 With the same analogy, we extended the 

application of this measure as a criterion for indirect collaborative manipulation of 

deformable tissues. Of note, the difficulty of moving these points in a certain direction (i.e. 

small values) convey the deterioration of the manipulability in that direction and vice versa. 

This situation may happen due to inaccurate estimation of the deformation behavior or 

sudden change in the experimental conditions.

In addition, we utilized the singular value decomposition representation of the estimated 

Jacobian to calculate the manipulability ellipse. For conventional robots with rigid links, the 

volume and principal axes of this ellipse is used to determine the direction of end-effector 

movements with maximum and minimum manipulability.21 We used this ellipse as a 

graphical means to represent the manipulability of the feature point(s).

RESULTS

Constraint-Free Manipulation Experiment with Single Insertion Point

We first examined our indirect manipulation approach in a probe insertion task with one 

feature point (i.e. cryotreatment with one probe) and no constraints defined either in the 

image or joint space. For this type of experiments, we performed several preliminary 

experiments to obtain the optimal values of the following parameters: Γ = 0:7, Λ1 = diag 

(2;2;2;2) for filtering the PSMs signals provided by the dVRK system, Λ2 = diag(2;2) for the 

visual feedbacks of the image feature point provided by the ECM, and ε = 1 pixel as the 

error threshold. Further, for simplicity, we constrained movement of the end effector(s) to be 

in an X–Y plane relative to the PSM’s base frame. Therefore, considering (5) with a single 

insertion point in the image space and two grasping points with two PSMs, dimension of the 
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deformation Jacobian matrix is Jd ∈ ℝ2 × 4, which demonstrates a redundancy in the required 

DoF. For this experiment, we arbitrarily initialized the deformation Jacobian matrix with 

diagonal entries of all ones corresponding to each PSM. The computation time for each 

iteration was measured as 3 ms.

Of note, although in this paper, we are constraining the end effector movements to be planar, 

the presented method in (9) is a general procedure. Therefore, based on the physical 

constraints and objectives of the problem, this deformation matrix can be extended to a 

Jd ∈ ℝ2N × ∑i = 1
M si, where i ∈ {1;…;M} is the number of robots involved in the 

manipulation, and s ∈ {2N;…;6M} is the number of the overall controlled DoF of all robots 

in the Cartesian space.

We repeated this set of experiments three times with identical experimental conditions (i.e. 

initial experimental setup, grasping location, and target point(s)). As the representative of 

these similar trials, Fig. 3a shows the sequence of snapshots related to one of these 

experiments. As shown, the target point on the tissue reached the desired insertion point 

within 66 seconds. Figures 3b and 3c show how two PSMs successfully manipulated the 

single feature point to the desired location with the predefined error threshold (i.e. ε = 1 

pixel). These demonstrate the corresponding trajectories of the end-effectors in the Cartesian 

space (in mm) as well as image space (in pixel). Also, Fig. 3d shows the Euclidean distance 

error between the target point and its desired location in each time instant. The other 

Jacobian-related measures were calculated in Figs. 3e, 3f, and 3g, i.e. manipulability ellipses 

and their corresponding areas as well as the Yoshikawa’s manipulability measure of the 

estimated Jacobian along the trajectory.

Investigation of Figs. 3b, 3c, 3d, 3e, 3f, and 3g demonstrate that how the target point is 

indirectly manipulated to the desired location in two main phases. Each phase includes a few 

steps, which the number of these steps depends on the experimental conditions as well as the 

location of the target point(s). The first three steps of Figs. 3b, 3c, 3d, 3e, 3f, and 3g 

demonstrate the learning and identification phase of the proposed algorithm while the last 

two are the converging phase of the method. During the learning and identification phase, 

we see a continuous increase in the Yoshikawa’s manipulability measure, which demonstrate 

convergence of the estimated Jacobian to the actual value.

In the first step (iterations 0–27), the estimated deformation Jacobian is almost singular, 

since according to Figs. 3e, 3f, and 3g, the Yoshikawa’s manipulability measure is a small 

value. Similarly, calculated area of the manipulability ellipses in this period confirms this 

claim. Additionally, as we can see in Fig. 3d, the Euclidean distance error does not decrease 

very much (~ 2 pixel). The second (iterations 27–81) and third steps (iterations 81–190) 

demonstrate a fast decrease in the Euclidean distance error (~ 19 pixel), which means a good 

approximation of the deformation Jacobian in this period. This claim is also well 

understandable from a sharp increase in the Yoshikawa’s manipulability measure as well as 

the area of the ellipses demonstrated in Fig. 3f. The fourth step (iterations 190–540) shows a 

stable estimated Jacobian (Fig. 3d), which resulted in a decrease in the error (~ 12 pixel) 

with constant slope (Fig. 3d). In the last step, both manipulators collaborate to slowly move 
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the target point to the desired location. Furthermore, Fig. 3 shows that the beginning of each 

step corresponds to a change in the feature point trajectory direction. A sharp change in the 

direction of the movement is also followed by a sharp change in the estimated Jacobian to 

usually increase the manipulability and overlay the target point on its desired location. For 

instance, in step 5, the observed pick in the Yoshikawa’s measure is due to the change in the 

configuration of the robots (Fig. 3a), which resulted in a better manipulability followed by a 

reduction in the Euclidean distance errors. It is worth noting that flat manipulability ellipses 

(Fig. 3e) demonstrate that indirect manipulation of the insertion point along one of the 

principal axis of the ellipses is much easier than the other one.

Constrained Manipulation Experiment with Two Insertion Points

In this experiment, we simulated a constrained cryotreatment scheme with two probes and 

two feature points on the DT. This additional constraint helps to avoid tissue damage by 

limiting undesirable tissue stretching during the manipulation task. In this regard, we 

constrained the movement of end-effectors in rectangular boxes defined in the Cartesian 

space (shown in Fig. 5). Of note, in this collaborative task movement of each robot affects 

the local deformation of both feature points. For this experiment, we considered both robots 

and the grasped DT as one system and defined one deformation Jacobian and one Euclidean 

error vector for both target points. A square Jacobin matrix Jd ∈ ℝ4 × 4 is, therefore, created 

for this task. To formulate the constraints, considering (9) and the lsqlin function, we used 

the stack of the PSMs’ Jacobians Jr(t) ∈ ℝ4 × 7, and defined matrix A(t) ∈ ℝ8 × 14 and vector 

b(t) ∈ ℝ8 as A(t) = [Jr(t) −Jr(t)]T and b(t) = [bmax −r(t) r(t) −bmin]T, where bmin and bmax 

define the boundaries of the two rectangular spaces (shown in Fig. 4) using 8 linear 

inequality constraints. Considering these constraints by solving the optimization problem in 

(9), we attempted to simultaneously move both target points to their desired locations.

We repeated this set of experiments three times with identical experimental parameters and 

computational time as the previous experiment. The representative results are shown in Figs. 

4a, 4b, 4c, 4d, 4e, and 4f. Further, Figs. 4c and 4e show the rectangular constraints regions in 

the Cartesian space. Investigation of these figures show that the learning and identification 
phase included 390 iterations, which can be divided to four steps. The first step, similar to 

the other experiments, was the singular step (iterations 0–45) followed by a sharp increase in 

the manipulability of the estimated Jacobian in the second step (iterations 46–95), which 

resulted in about 12 pixels decrease in the error. In steps three and four of this phase 

(iteration 96–390) the estimated Jacobians were very close to their actual value since the 

Euclidean distance significantly dropped (~ 35 pixel). Other iterations were related to the 

converging phase where the defined constraints in the Cartesian space caused sharp changes 

in the estimated Jacobians. According to Figs. 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, and 4j, whenever 

the end effectors reached to the border of the constraint regions, a drastic change in the 

manipulability measures was observed. However, due to the accurate estimation of the 

Jacobian in the identification phase, the feature points converged to their desired locations. 

Similar to the previous experiment, flat manipulability ellipses (Figs. 4g and 4h) 

demonstrate that indirect manipulation of the insertion points along one of the principal axis 

of the ellipses is much easier than the other one.
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Comparison between the constraint-free and constrained case showed the effect of the 

introduced constraints in the convergence time (Fig. 4f). As shown in Fig. 4f, the 

convergence time of the constrained case (i.e. 110 s) was almost half of the constraint-free 

case (~ 220 s). In fact, the introduced constraints served as virtual guides for the indirect 

manipulation and helped the algorithm converge faster to the desired locations.

Constraint-Free Manipulation Experiment on an Ex Vivo Lamb Kidney with Two Insertion 
Points

In this experiment, in order to simulate a cryotreatment scheme with two probes on a more 

realistic 3D phantom and to evaluate performance of our algorithm for real-time deformation 

estimation of a different unknown DT, we defined two feature points on a lamb kidney. We 

used identical experimental parameters to the previous section and constrained movement of 

the end effectors in the X–Y plane. As the representative of the performed trials, Figs. 5a, 

5b, 5c, 5d, 5e, and 5f demonstrate the snapshots and resulted trajectories during the indirect 

manipulation of the two feature points. For this experiment, the target points overlayed on 

the insertion points in 47 s with identical computation time to previous experiments. Figure 

5f shows how two PSMs successfully manipulated both target points to the desired locations 

satisfying the predefined error threshold (i.e. ε = 1 pixel). Figure 5g, 5h, 5i, and 5j show the 

manipulability measure defined in (13) and manipulability ellipses along the trajectory of 

each feature point as well as their corresponding area. Comparison of these figures with the 

results of the previous experiments demonstrates a different deformation behavior for the 3D 

kidney when compared to the 2D silicon rubber phantom. Nevertheless, similar to the 

previous experiments, we can identify the learning and identification (iterations 0–150) as 

well as the converging (151–261) phases for each feature point (Figs. 5b, 5c, 5d, 5e, 5f, 5g, 

5h, 5i, and 5j).

For this ex vivo experiment, in contrast to other experiments, the Euclidean distance error 

during the first 50 iterations increases for both feature points. This increase is due to 

inaccurate initialization of the Jacobian matrix (i.e. singular step). After this step, the 

manipulability of the estimated Jacobian increases (iterations 51–75), resulting in a 

decreased Euclidean distance for the left feature point. From iterations 74–150, the 

estimated Jacobians for both feature points are very close to their actual values leading to a 

decrease in the Euclidean distance. Investigation of the feature points’ trajectories in this 

step demonstrates how the change in the estimated Jacobians has been reflected in the 

change in the movement of the feature points. After this step, both feature points traverse a 

smooth trajectory toward the desired points—due to the accurate estimation of the kidney’s 

deformation behavior (i.e. converging phase). Further, similar to the previous experiments, 

flat manipulability ellipses (Figs. 5g and 5h) can be justified.

DISCUSSION

We presented a novel vision-based semi-autonomous collaborative bimanual procedure for 

laparoscopic cryoablation of small peripheral kidney tumors using the dVRKsystem. Instead 

of directing the cryoprobe(s) tip(s) to the desired target location(s) on the soft tissue, we 

used this robotic system to manipulate the target location(s) on theDT tothe pre-
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defineddesired insertion location(s) of the probe(s). Our proposed tissue manipulation 

technique does not require any prior knowledge of tissue property and geometry and can 

estimate the tissue deformation model in real-time. To estimate the deformation behavior of 

the tissue, we implemented a firstrank update rule for solving under-determined nonlinear 

system of equations. We evaluated our method on a deformable silicon phantom and an ex 
vivo lamb kidney with unknown properties. Of note, the main focus of the performed 

experiments was on the tissue manipulation control strategy, while the insertion step 

assumed to be performed manually by a clinician under guidance of the ultrasound. As 

mentioned, the main step in cryotreatment of kidney tumorsisaccurateinsertion of the probes 

in the target locations on the kidney with an appropriate orientation. Further, maintaining 

this pose during the treatmentisessentialtoavoidkidneyfracture.Withthese goals, we designed 

three experiments to simulate three cryoprobe insertion situations.

In the performed experiments we used a fixed camera to measure the object’s deformation 

visually in real-time. This simplification was considered in order to mainly focus on the 

feasibility of the proposed technique for estimation of the change in the DT deformation 

behavior and subsequently model-independent DT manipulation. It is notable that the 

proposed method, in theory, can also estimate the change in the location of the camera.

The experimental results demonstrated that our proposed method can successfully estimate 

the unknown deformation properties of the DT in real-time and indirectly manipulate the 

tissue to overlay one or two target location(s) simultaneously on their desired predefined 

location(s) with the predefined error threshold of 1 pixel. These results also showed that the 

performance of the estimation method is robust against uncertainty in the initial value of the 

deformation Jacobian matrix. Furthermore, the capability of the proposed technique in a 

constrained manipulation was successfully tested. We showed that the defined constraints 

not only increase the success rate of the procedure in reducing the risk of false cryoablation 

and tissue damage, it also may reduce the time of the procedure, which makes the presented 

method clinically viable. Experiments on both 2D silicon phantom and 3D ex vivo kidney 

showed that the proposed technique can successfully estimate the deformation of DTs in 

real-time without prior knowledge of their geometry and physical properties. We extended 

the application of conventional manipulability measures (i.e. Yoshikawa’s manipulability 

measures and the area of the manipulability ellipses), and used them as means for evaluation 

of our vision-based method.

It is worth noting that in our clinician-in-the-loop approach, the robots only manipulate the 

tissue to overlay the target points on to the planned insertion points. Thus, the clinician has 

direct control on the insertion velocity of the probe, while having direct haptic feedback 

during insertion. Moreover, since the clinician uses ultrasound for monitoring the tumor 

boundary and assigning the trajectory of the probe, any potential motion of the tumor due to 

the tissue manipulation can be detected and subsequently compensated by assigning new 

target points on the surface.

Some of the limitations of the current work are as follows. Current implementation uses one 

camera (2D) view of the DT. The future work will include the extension of the algorithm for 

3D deformable tissue manipulation. Laparoscope occlusion may also pose limitations to the 
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performance of our vision-based algorithm. To address this issue, the future work may 

consider implementing and testing other real-time imaging modalities (e.g. a near-infrared 

fluorescent imaging system18). Excessive grasping force may damage the tissue while 

inadequate force may cause tissue slippage, which may result in a failure in our tissue 

manipulation technique. The effect of tissue grasping/slippage on the performance of the 

algorithm requires further investigation. We presented a preliminary ex vivo experiment 

demonstrating the feasibility of our method on a DT with similar geometry and properties of 

a human kidney. The transition to the clinical practice, however, will require comprehensive 

evaluation of the clinician/robot interaction to investigate the safety and the optimal 

workflow for the proposed method.
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FIGURE 1. 
(a) Conceptual illustration of the current procedure for laparoscopic cryoablation of small 

peripheral kidney tumors; (b) Conceptual illustration of the semiautonomous laparoscopic 

cryoablation of small peripheral kidney tumors using the collaborative tissue manipulation 

technique. In this technique, Robots i – M autonomously and safely manipulate the organ to 

overlay target locations (pj) on the kidney on the assigned insertion location(s) in the 

workspace (pd)—without having prior knowledge about the deformation behavior and 

geometry of the kidney. Finally, the clinician carefully advances the cryoprobe with fixed 

orientation inside the DT under the guidance of ultrasound. The green rectangles in the 

camera projection view demonstrates the defined constraints in the task space of each robot, 

the red region illustrates the kidney tumor, and Oc denotes the camera optical center.
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FIGURE 2. 
The setup used for the semi-autonomous laparoscopic cryoablation of small kidney tumors 

using the dVRK system on the considered deformable tissues.
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FIGURE 3. 
(a) Sequence of snapshots with their corresponding time in second and iteration number 

during the constraint-free manipulation experiment with single insertion point. The green 

and red points represent the target point on the tissue and the desired probe insertion 

locations in the workspace, respectively; (b) the feature point (target location) trajectory in 

the image plane; (c) the robots end effectors trajectories in the robot’s frame; (d) the 

Euclidean distance error between the target location and the desired needle insertion 

location; (e) the manipulability ellipses along the target location trajectory in the image 

plane; (f) the areas of the manipulability ellipses in each iteration, and (g) the Yoshikawa’s 

manipulability measure in each iteration. Shaded regions represent the learning and 

identification (red) as well as the converging (blue) phases, respectively.
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FIGURE 4. 
(a) Sequence of snapshots with their corresponding time in second and iteration number 

during the constrained manipulation experiment with two target points. The green and red 

points represent the target points on the tissue and the desired probe insertion locations in 

the workspace, respectively; the left (b) and right (d) feature points (target locations) 

trajectories in the image plane, the left (c) and right (e) robots end effectors trajectories in 

the robot’s frame; (f) the Euclidean distance errors between the target locations and their 

corresponding desired cryoprobes insertion locations. The black dashed lines demonstrate 

the trajectories and error of the corresponding constraint free experiment; the manipulability 

ellipses along the left (g) and right (h) target locations trajectories in the image plane, (i) the 

areas of the manipulability ellipses for the left (blue) and right (red) target locations in each 

iteration, and (j) the Yoshikawa’s manipulability measure for the left (blue) and right (red) 

target locations in each iteration. Shaded regions represent the defined constraints (green) 

learning and identification (red) as well as the converging phases (blue), respectively.
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FIGURE 5. 
(a) Sequence of snapshots with their corresponding time in second and iteration number 

during the constraint-free manipulation experiment with an ex vivo lamb kidney with two 

insertion points. The green and red points represent the target points on the tissue and the 

desired probe insertion locations in the workspace, respectively; the left (b) and right (d) 

feature points (target locations) trajectories in the image plane, the left (c) and right (e) 

robots end effectors trajectories in the robot’s frame; (f) the Euclidean distance errors 

between the target locations and their corresponding desired cryoprobes insertion locations. 

The black dashed lines demonstrate the trajectories and error of the corresponding constraint 

free experiment; the manipulability ellipses along the left (g) and right (h) target locations 

trajectories in the image plane, (i) the areas of the manipulability ellipses for the left (blue) 

and right (red) target locations in each iteration, and (j) the Yoshikawa’s manipulability 

measure for the left (blue) and right (red) target locations in each iteration. Shaded regions 

represent the learning and identification (red) as well as the converging phases (blue), 

respectively.
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