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Abstract

Purpose—Machine learning-based approaches now outperform competing methods in most 

disciplines relevant to diagnostic radiology. Image-guided procedures, however, have not yet 

benefited substantially from the advent of deep learning, in particular because images for 

procedural guidance are not archived and thus unavailable for learning, and even if they were 

available, annotations would be a severe challenge due to the vast amounts of data. In silico 
simulation of X-ray images from 3D CT is an interesting alternative to using true clinical 

radiographs since labeling is comparably easy and potentially readily available.

Methods—We extend our framework for fast and realistic simulation of fluoroscopy from high-

resolution CT, called DeepDRR, with tool modeling capabilities. The framework is publicly 

available, open source, and tightly integrated with the software platforms native to deep learning, 

i.e., Python, PyTorch, and PyCuda. DeepDRR relies on machine learning for material 

decomposition and scatter estimation in 3D and 2D, respectively, but uses analytic forward 

projection and noise injection to ensure acceptable computation times. On two X-ray image 

analysis tasks, namely (1) anatomical landmark detection and (2) segmentation and localization of 

robot end-effectors, we demonstrate that convolutional neural networks (ConvNets) trained on 

DeepDRRs generalize well to real data without re-training or domain adaptation. To this end, we 

use the exact same training protocol to train ConvNets on naïve and DeepDRRs and compare their 

performance on data of cadaveric specimens acquired using a clinical C-arm X-ray system.
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Results—Our findings are consistent across both considered tasks. All ConvNets performed 

similarly well when evaluated on the respective synthetic testing set. However, when applied to 

real radiographs of cadaveric anatomy, ConvNets trained on DeepDRRs significantly 

outperformed ConvNets trained on naïve DRRs (p < 0.01).

Conclusion—Our findings for both tasks are positive and promising. Combined with 

complementary approaches, such as image style transfer, the proposed framework for fast and 

realistic simulation of fluoroscopy from CT contributes to promoting the implementation of 

machine learning in X-ray-guided procedures. This paradigm shift has the potential to 

revolutionize intra-operative image analysis to simplify surgical workflows.
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Introduction

Clinical context

Machine learning-based approaches, and in particular deep convolutional neural networks 

(ConvNets), now define the state of the art across a variety of well-studied problems in 

computer vision, and more recently, medical imaging. It is not surprising that the most 

impressive improvements until now were achieved in the sub-discipline of medical image 

computing [16,29]. This field is dominated by diagnostic imaging tasks where traditionally:

1. All imaging data are archived,

2. Expert annotations that define potential learning targets are well established (e.g., 

for mammographic lesion detection [13] or brain lesion segmentation [20]) or 

can be approximated efficiently in a self-supervisory manner (e.g., using 

automatic tools that yield either imperfect [24] or sparse [17] signals), and

3. Comparably simple augmentation strategies, such as rigid and non-rigid 

displacements [21,23], ease the limited data problem.

One may be tempted to conclude from the above reasoning that diagnostic image analysis 

provides a comfortable environment for machine learning, but this is not generally the case. 

This is because, compared to general computer vision, datasets in diagnostic image analysis 

are still small considering the dimensionality of the data and variability of its presentation. 

However, in interventional imaging, and particularly in X-ray-guided procedures, the 

situation is even more complicated. First, while hundreds of X-ray images are acquired for 

procedural guidance [4], only very few radiographs are archived suggesting a severe lack of 

meaningful data. Second, learning targets are not well established or defined. Third, 

interventional images are acquired from multiple view points onto the anatomy, the exact 

poses of which cannot accurately be reproduced during surgery [9,33]. Finally, the overall 

variability in the data is further amplified by surgical changes in anatomy and the presence 

of tools. Overall, the archived data are heavily unstructured and exhibit enormous variation, 

which challenges meaningful augmentation. As a consequence, in order to enable machine 
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learning for fluoroscopy-guided procedures the dataset curation and annotation problem 

must be addressed first. Successfully overcoming this hurdle seems challenging and is 

reflected in the observation that, despite clear opportunities, only very little work has 

considered learning in this context.

Contribution

In this manuscript, we describe a hybrid pipeline for fast, physics-based simulation of 

digitally reconstructed radiographs (DRRs) with corresponding annotations from labeled 3D 

CT volumes. We extend our DeepDRR framework introduced previously [34] with the 

capability of simulating tools made from arbitrary materials that may move relative to 

anatomy defined by the CT volume. The code will be integrated into our open-source 

repository1 upon publication of this manuscript. Compared to ConvNets trained on naïve 

DRRs and not considering re-training or domain adaptation, ConvNets trained on 

DeepDRRs generalize better to unseen clinical data. We demonstrate this on two use cases: 

(1) viewpoint-invariant detection of anatomical landmark of the pelvis and (2) concurrent 

segmentation and localization of dexterous robotic end-effectors. In both scenarios, we train 

the same ConvNet on naïve DRRs and DeepDRRs, respectively, to reveal performance 

changes resulting solely from realistic modeling of image formation.

Related work

Physics-based simulation of image formation from volumetric data is at the core of the 

proposed methodology. Traditionally, realistic simulation is achieved using Monte Carlo 

(MC) simulation during which photons emitted in a specified imaging geometry are traced 

as they propagate through the medium [2]. Consequently, the distribution of materials within 

the volume to be imaged must be precisely known, since photon–tissue interaction is highly 

material dependent. The concept of MC simulation is often used for radiation treatment 

planning since MC simulation not only yields an image, but also provides highly accurate 

estimates of tissue dose deposited upon irradiation [27,28]. In addition, it has recently 

regained some attention for generating medical images in the context of virtual clinical trials 

[3]. These two examples suggest that MC simulation is capable of producing highly realistic 

results, but comes at the cost of long computation times that are prohibitive when trying to 

generate training datasets with hundreds–thousands of images. Our own experiments 

revealed that accelerated MC simulation [2] on an NVIDIA Titan Xp takes ≈ 4hours for a 

single X-ray image with 1010 photons. The medical physics community provides strategies 

for acceleration if prior knowledge on the problem exists. A well-studied example is 

variance reduction for scatter correction in cone-beam CT, since scatter is of low frequency 

[30]. Due to these limitations, the use of MC simulation of X-ray images to train machine 

learning algorithms is not a particularly tractable solution and has, to the best of our 

knowledge, only been explored by highly specialized groups for scatter estimation [19,38], a 

task for which no other approach is possible.

The general idea of boosting dataset size by simulating digital radiographs from volumetric 

CT is fairly obvious and not new, but the challenge is achieving scenarios in which results 

1Available at https://github.com/mathiasunberath/DeepDRR.
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obtained on synthetic data generalize to clinical cases. Most of the previous works 

[1,14,15,32] use straightforward ray casting for image formation, which is very fast and 

allows for the generation of arbitrarily large datasets. Ray casting mimics mono-energetic X-

ray sources passing through objects that consist of a single material, an assumption that 

undoubtedly is violated in clinical X-ray imaging. As a consequence, the synthetic images 

do not exhibit the characteristic artifacts encountered in practice, such as beam hardening 

and complex noise characteristics. This shortcoming raises questions regarding performance 

on real data, with several manuscripts limiting evaluation to synthetic images generated 

using the same tools [14,32,37] or reporting poor generalizability when applied to clinical 

data [34,42].

In addressing this problem, unpaired conditional image-to-image style transfer networks 

[43] constitute the largest competitor to realistic simulation. For digital radiography-based 

procedures, Zhang et al. show that ConvNets trained on naïvely generated DRRs can be 

applied to clinical data if the clinically acquired image is first processed with such ConvNet 

to explicitly mimic the appearance of DRRs [42]. This approach is currently studied across 

various disciplines [18,25,35] with convincing results; however, it is unclear how well this 

approach handles new target image styles as this may require a large amount of new target 

images to retrain the style transfer network.

Methodology

We describe a pipeline for realistic DRR generation from CT volumes that is implemented in 

Python, PyCUDA, and PyTorch to seamlessly integrate with the tools native to machine 

learning, and enables fast data generation due to its hybrid design that relies on analytic 

formulations of projection, attenuation, and noise injection while approximating statistic and 

heuristic processes via state-of-the-art ConvNets. The pipeline consists of four major 

modules: (1) decomposition of CT volumes into multiple materials using a deep 

segmentation ConvNet; (2) material and X-ray source spectrum-aware forward projection 

using GPU-parallelized ray casting; (3) neural network-based Rayleigh scatter estimation; 

and (4) quantum and electronic readout noise injection. A schematic overview of the 

pipeline is provided in Fig. 1 and explained in greater detail in the remainder of this section.

Physics-based simulation pipeline: DeepDRR

Material decomposition and tool integration—X-ray absorption heavily depends on 

material properties and photon energy, giving rise to several physical effects such as beam 

hardening that must be modeled accurately. To this end, we need to derive the 3D 

distribution of materials from the grayscale CT volume. Traditionally, the task of material 

decomposition is accomplished by simple thresholding of the CT intensity values. This 

becomes possible since CT intensities, measured in Hounsfield units (HU), are related to the 

average linear attenuation coefficient of a particular material and can thus be used to define 

material characteristic HU ranges [26]. Thresholding works reasonably well for large HU 

discrepancies, e.g., separating air ([−1000] HU) and bone ([200, 3000] HU), but is prone to 

failure otherwise, particularly between soft tissue ([−150, 300] HU) and bone in the presence 

of low mineral density. This is problematic since, despite similar HU, and thus, average 
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linear attenuation, the energy-resolved attenuation characteristic of bone is substantially 

different from soft tissue [11]. To overcome the limitations of thresholding-based material 

decomposition, we use a deep volumetric ConvNet adapted from [21] to automatically 

decompose air, soft tissue, and bone in CT volumes. The ConvNet is of encoder–decoder 

structure with skip-ahead connections to retain information of high spatial resolution while 

enabling large receptive fields. For the experiments described here, we use the ConvNet 

described in [34] that accepts patches with 1283 voxels with voxel sizes of 0.86 × 0.86 × 1.0 

mm3 yielding a material map M(x) that assigns a candidate material to each 3D point x. The 

material decomposition ConvNet was trained (validated) on 10 (2) whole-body CT data from 

the NIH Cancer Imaging Archive [8] that were manually annotated using ITK Snap [39] 

using the multi-class Dice loss [21,31] as optimization target for prediction of M = 3 

materials, i.e., air, soft tissue, and bone. The network achieved a mis-classification rate of 

(2.03 ± 3.63)%, a performance that is in agreement with previous studies using similar 

architectures [12,21,40]. During application, patches of 1283 voxels are fed-forward with 

stride of 64 since only labels for the central 643 voxels are accepted. After application of the 

ConvNet to a CT volume of size Nx, Ny, Nz voxels, we have the material map 

M x ∈ 0, 1 Nx × Ny × Nz × M and corresponding material density ρ x ∈ ℝNx × Ny × Nz.

In order to enable the integration of tools, a second volume is defined that fully contains the 

tool model, e.g., by voxelizing CAD surface models, yielding a map of materials MM(x) 

with associated material densities ρM(x). The spatial relation of the tool to anatomy is 

defined by a rigid body transform VTM. When the tool is positioned within anatomy as 

defined by the CT volume V, CT densities in the overlapping area must be omitted. 

However, this cannot be achieved by simply setting ρ(x) to zero at appropriate positions, 

since Mm, ρm can be of different resolutions than the CT volume ρ(x) and arbitrarily 

oriented relative to the CT coordinate system. Rather, we allocate a third volume MO with 

densities ρO that is defined by

ρO(x) = ρ TV
Mx and MO(x)

= M TV
Mx ∀ x ∈ ρM, ρM(x) > 0 .

(1)

This will allow compensating for the excess contributions of the overlapping area in 

projection domain described as follows.

Primary computation via ray casting—Once material maps of the considered 

materials in CT {air, soft tissue, bone} and materials of tools, e.g., {Nitinol, steel}, are 

available, the contribution of each material to the total attenuation density at detector 

position u can be computed. We project in predetermined cone-beam geometry (pin-hole 

camera model) described by projection matrix P ∈ ℝ3 × 4, that is defined by a rigid 

transformation XTV that maps CT volume coordinates to the X-ray source coordinate frame 

followed by projection onto a detector described by intrinsic parameter matrix K:

P = K 130 XTV (2)
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Then, using the X-ray spectral density p0(E), the total attenuation is obtained by ray-tracing 

as

p u = ∫ p E, u dE

= ∫ p0 E exp − ∑
m ∈ M

μ
ρ m

E L u, m, M, ρ dE
(3)

= ∫ p0 E exp − ∑
m ∈ M

μ
ρ m

E ∫ δ m, M x ρ x dlu dE, (4)

where δ (·, ·) is the Kronecker delta, lu is the 3D ray connecting the source position and 3D 

location of detector pixel u determined by P, μ
ρ m E  is the material- and energy-dependent 

linear attenuation coefficient [11], and ρ(x) is the material density at position x that can 

either be derived from HU values or defined explicitly (e.g., for tools). For a single volume, 

Eq. 4 can be evaluated in a straightforward manner. For multiple volumes as considered 

here, however, it is beneficial to first compute the line integral L(u, m, M, ρ) of every 

volume and material first in order to merge the volumes of different sizes and resolutions in 

projection domain as discussed above. Then and using the total set of materials 

M = M ∪ MM  and line-integral images of every material m ∈ M, we compute the total 

contribution per material as

L u, m = L u, m, M, ρ − L u, m, M0, ρ0
Adjustment for overlap

+ L u, m, MM, ρM
Toolcontribution

. (5)

Then, Eq. 3 is evaluated using the overlap-adjusted line integrals

p u = ∫ p0 E exp − ∑
m ∈ M

μ
ρ

m
E L u, m dE . (6)

The projection domain image p(u) s then used as basis for scatter prediction.

Learning-based scatter estimation—Traditional scatter estimation relies on variance-

reduced MC simulations [30], which requires a complete MC setup. In clinical applications, 

kernel-based methods are widely used due to their simplicity and have proven to work 

reasonably well since scatter is of low frequency. Recent approaches to scatter estimation via 

ConvNets outperform these methods [19] while retaining a low computational demand. In 

addition, they inherently integrate with deep learning software environments. Unfortunately, 

our task fundamentally differs from most previous scatter estimation scenarios: In clinical 

applications, we are interested in separating signal from scatter in an already acquired 

image. This is in contrast to our image synthesis pipeline that must only rely on clean, high-

frequency data to estimate scatter. Considering the very low frequency nature of the scatter 

signal, kernel-based methods are well justified, as they basically perform low-pass filtering 
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of the joint signal and thus result in a well-separated scatter signal. Solely relying on kernel-

based methods in our case would impute that the scatter signal not only is of low frequency, 

but linearly depends on the frequency content of anatomy, as this corresponds to the 

information that is extracted via kernel-based low-pass filtering. The success of MC 

simulations from uncorrected 3D reconstructions [30] affirms that the above does not hold, 

rendering the direct utilization of kernel-based methods unsuitable in our application.

Nevertheless, the ten-layer ConvNet architecture as presented in [34] is heavily inspired by 

kernel-based methods but introduces modeling of a nonlinear relationship between the 

anatomy and scatter signal. The first six layers consist of 11 × 11 kernels arranged in 

multiple channels to extract basic image features, required for the generation of Rayleigh 

scatter estimates and the last four layers, with 31×31 kernels and a single channel, ensure 

smoothness. The network was trained on 330 images generated via MC simulation [2] from 

whole-body CT volumes, and then augmented by random rotations and reflections. As per 

[34], the trained scatter estimation network achieved a normalized mean squared error of 

9.96%.

Noise injection—After adding scatter, p(u) expresses the energy deposited by a photon in 

detector pixel u. The number of photons is estimated as:

N u = ∑
E

p E, u
E N0, (7)

to obtain the number of registered photons N(u) and perform realistic noise injection. In Eq. 

7, N0 (potentially location dependent N0(u), e.g., due to bow-tie filters) is the emitted 

number of photons per pixel. Noise in X-ray images is a composite of multiple sources, 

mainly uncorrelated quantum noise due to photon statistics that becomes correlated due to 

pixel crosstalk, and correlated readout noise [41]. Due to beam hardening, the spectrum 

arriving at any detector pixel differs. This effect is most prominent at locations with highly 

attenuating objects in the beam path. To account for this fact in the Poisson noise model, we 

compute a mean photon energy for each pixel by E u  and estimate quantum noise as 
E

N0
pPoisson N − N , where pPoisson is the Poisson generating function. Since real flat panel 

detectors suffer from pixel crosstalk, we correlate the quantum noise of neighboring pixels 

by convolving the noise signal with a blurring kernel [41]. The second major noise 

component is electronic readout noise. While the magnitude of crosstalk-correlated quantum 

noise depends on the signal, i.e., the number of photons incident on the detector pixel, 

electronic noise is signal independent and can be modeled as additive Gaussian noise is 

correlated along the rows due to the sequential readout of current detectors [41]. After noise 

injection, we obtain a realistically simulated DRR that we refer to as DeepDRR.

Experimental setup, results, and discussion

Since the DeepDRR pipeline as such was previously evaluated in [34], here we focus on 

task-based evaluation of the proposed realistic simulation pipeline. To this end, we consider 

two applications in X-ray-guided surgery: Anatomical landmark detection and concurrent 
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segmentation and localization of snake-like robots that will be described in greater detail in 

Sects. 3.1 and 3.2, respectively. For both applications, we train ConvNets on synthetic data 

and then investigate how well the learned models generalize to unseen clinical data without 
any re-training or domain adaptation. The synthetic data we train on will be generated (1) 

using DeepDRR the physics-driven approach described here, or (2) using the naïve approach 

to DRR generation:

p u = p0exp − μ
ρ E ∑

m ∈ M
L u, m , (8)

a special case of Eq. 6, where p0 represents the total spectral density and μ
ρ E  is the mean 

linear attenuation coefficient averaged over all materials and energies. In other words, naïve 

DRR generation considers a mono-energetic source, objects made from a single material, 

and neglects image corruption, e.g., due to noise. In addition to these extremal cases, we 

perform an ablation study for the application of anatomical landmark detection to determine 

the contributions of ConvNet-based material decomposition and scatter estimation, 

respectively. For DeepDRR simulation, we used the spectrum of a tungsten anode operated 

at 120 kV with 4.3 mm aluminum filtration and assumed a high-dose acquisition with N0 = 5 

· 105 photons per pixel. While our simulation yields intensity domain images, all ConvNets 

are trained on line-integral domain data, i.e., after logarithmic transform, to decrease the 

dynamic range. For images acquired with a real C-arm X-ray system, N0 is not known, and 

therefore, approximated by the highest intensity value in that image. All real X-ray images 

of cadaveric specimens used in the experiments were acquired in the International Center of 
Orthopedic Advancement at Johns Hopkins Bayview Medical Center using a Siemens Cios 

Fusion C-arm X-ray system (Siemens Healthineers, Forchheim, Germany) equipped with a 

flat panel detector.

Anatomical landmark detection

Experimental setup—This experiment focuses on detecting anatomical landmarks of the 

pelvis in radiographs from arbitrary views [6]. In 20 CT scans of the pelvis (split 18-1-1 into 

training, validation, and testing), we annotate 23 anatomical landmarks (Fig. 2, last column 

contains all landmarks) and generate naïve and DeepDRRs with corresponding annotations 

on a spherical segment centered on the anterior–posterior pelvis covering 120° and 90° in 

RAO/LAO and CRAN/CAUD, respectively. A total of 20,000 DRRs were generated per 

method, i.e., 1000 per CT volume. Then, a sequential prediction framework [6,36] is trained 

and, upon convergence, used to predict the 23 anatomical landmarks in the respective testing 

set and in unseen, real X-ray images of cadaveric lower torso specimens. We trained the 

network using Adam over 30 epochs with a learning rate of 10−6. We then evaluate the 

ConvNet on the respective synthetic test set, where exact landmark locations are known, and 

on 78 real X-ray images of two cadaveric lower torso specimens. To establish reference 

anatomical landmark positions in real radiographs, we rely on metal beads (BBs) injected 

into the pelvis prior to CT and radiographic imaging. The BBs were annotated and matched 

semi-automatically, so that correspondences between BB locations in 3D CT and all X-rays 

were known. Using this information and for every X-ray image i, we recover projection 
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matrices Pi that map 3D CT points onto the detector. Finally, we manually annotate the 23 

target landmarks in the CT scans of both cadaveric specimens and project them via Pi to 

establish our X-ray image-domain reference for quantitative evaluation on real data. For 

synthetic data generation, we consider the following ablations:

• Ablation 1 DRRs generated as per Eq. 8: Mono-energetic, single material, no 

noise, no scatter.

• Ablation 2 DRRs generated as per Eq. 6: Poly-chromatic, multi-material, noise 

injection, no scatter. Material decomposition via thresholding (air < −700 HU, 

soft tissue ∈ [−700, 250]HU, bone > 250 HU [26])

• Ablation 3 DRRs generated as per Eq. 6: Poly-chromatic, multi-material, noise 

injection, no scatter. Material decomposition via ConvNet (Sect. 2.1)

• Ablation 4 DRRs generated as per Eq. 6: Poly-chromatic, multi-material, noise 

injection, scatter. Material decomposition and scatter estimation via ConvNets 

(Sect. 2.1)

Results and discussion—The quantitative results of the ablation study are summarized 

in Table 1. In every ablation, ConvNets perform similarly well when applied to the 

respective synthetic test sets. However, when applied to real data we observe substantial 

improvements in landmark detection accuracy as the DRR simulation pipeline more 

accurately models X-ray image formation. From Table 1, it becomes apparent that the 

improvement is most notable when transitioning from Ablation 1 to Ablation 2, i.e., when 

considering the material dependence and energy dependence of photon attenuation. This is 

likely due to the fact that Ablation 2 introduces beam hardening, which increases bone to 

soft tissue contrast, substantially altering image appearance. Accuracy is further improved 

slightly as threshold-based material decomposition is replaced by the proposed ConvNet-

based decomposition (Ablation 3). This improvement can partially be attributed to the 

capability of the ConvNet to use structural information to disambiguate soft tissue in the 

[−150, 300] HU interval and trabecular bone > 200 HU, thus yielding more realistic X-ray 

image appearance. However, we noticed that the poor performance in Ablation 2 is affected 

by catastrophic failure cases in 8 of the 78 real X-ray images. Omitting these from analysis 

would reduce this error to 27.3±27.0 mm. However, while the addition of scatter (Ablation 

4, the full DeepDRR pipeline) further improves detection accuracy, this improvement is not 

significant. This observation is further discussed in Sect. 3.3. Our analysis suggests that, 

while learning-based material decomposition and scatter estimation can further improve 

detection accuracy, the significant boost in performance (p < 0.01) is to be attributed to poly-

energetic and multi-material-based modeling of image formation, and is less sensitive to the 

method used for material decomposition. In light of the results of our ablation study, we 

limit all subsequent analysis to the two extreme cases Ablation 1 and Ablation 4, i.e., naïe 

DRRs and DeepDRRs, respectively. A qualitative analysis of landmark predictions versus 

true reference locations is presented in Fig. 2. For landmark prediction on real data, we 

observe both, compromised performance and a very high standard deviation that is partly 

due to outliers. Considering this decrease in performance, it is unclear whether directly 

interpreting the detected landmarks is clinically practical. However, the amount of outliers 
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can, in principle, be reduced substantially by only considering landmarks that are detected 

with a certain belief [5,6], yielding landmark detection accuracy that is appropriate for 

initializing 2D/3D registration. While this approach proved feasible for the DeepDRR-based 

ConvNet, using a threshold above 20% would reduce the accepted detections in the naïve 

DRR-based ConvNet close to zero, impeding meaningful validation. It is worth mentioning 

that reference targets used for quantitative assessment are likely imperfect since (1) 

anatomical landmarks in 3D CT are defined manually, and (2) Pi are estimated from data. 

While this observation challenges the overall magnitude of error reported on real data, 

comparisons remain valid since both methods are affected in the same way.

Robotic end-effector localization

Experimental setup—This experiment builds upon our previous work on detecting 

continuous dexterous manipulators in radiographs [10]. An encoder–decoder-like 

architecture with skip connections is trained to concurrently segment and localize a snake-

like robot end-effector in X-ray images. Localization in this context refers to predicting the 

location of two keypoints on the end-effector, namely the start and end point of its 

centerline. In the decoding stage, the final feature layer is shared across the segmentation 

and localization branch, and the final segmentation mask is backward concatenated to this 

shared feature to boost keypoint detection. The robot end-effector consists of body and base 

made from Nitinol, and a shaft and inserted drilling tool made from stainless steel. In our 

simulation, the shape of the snake-like body is controlled by adjusting the control points of a 

cubic spline that describes the snake’s centerline. Once a body shape is defined, the tool 

model is voxelized with high resolution to preserve details. We use a total of 5 CT volumes 

(4 training, 1 test) and, for each of the 10 femurs, manually define VTM such that the robot is 

enclosed in bone. Then, fluoroscopic images are generated by randomly sampling the snake 

shape by adjusting the control point angles ∈ [−7.9°, 7.9°], and the C-arm pose relative to 

scene by adjusting the source-to-isocenter distance ∈ [400 mm, 500 mm], the source rotation 

(LAO/RAO ∈ [0°, 360°] and CRAN/CAUD ∈ [75°, 105°]), and translation along all three 

axes ∈ [−20, 20]mm. For every femur, 1000 configurations were sampled randomly and for 

each configuration a DeepDRR, a naïve DRR, and the corresponding segmentation mask 

and keypoint locations were generated. The ConvNet was then trained using Dice loss for 

the segmentation task and the standard L2 loss for the localization task. Learning rate started 

at 10−3 and decayed by 10−1 every 10 epochs. For quantitative evaluation on real data, we 

manually annotated 87 X-ray images of a dexterous robot [22] drilling in femoral bone 

specimens.

Results and discussion—The results are summarized in Table 2. ConvNets trained on 

naïve and DeepDRRs performed similarly well on their respective synthetic testing data. 

However, when considering cadaveric data from a real C-arm system, the ConvNet trained 

on DeepDRRs substantially outperformed the network trained on naïve DRRs in the 

segmentation task (p < 0.01) and, particularly, in the keypoint detection task (p ≪ 0.01). 

Representative results on synthetic and real data are shown in Figs. 3 and 4, respectively. 

While the naïve DRR ConvNet performed comparably on some real images (cf. Fig. 4, 

bottom row), it was prone to over-segmentation reducing the overall Dice score (cf. Fig. 4, 

middle row). In addition, we observed that, when applied to real data, the network would 
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often detect the same landmark twice giving rise to the large L2 error for this task (cf. Fig. 4, 

top row). The cadaveric dataset contains scenarios not observed during training, e.g., the 

end-effector being fully in air before insertion into femoral bone, causing deteriorated 

performance which is reflected in the high standard deviation for both, ConvNets trained on 

naïve and DeepDRRs.

Challenges and limitations

While DeepDRR-based ConvNets significantly outperformed their counterpart trained on 

naïve DRRs in all studied cases, we observed compromised performance on real data 

compared to the synthetic testing data. This degradation results from multiple factors: (1) 

The reference annotations for evaluation on real data are obtained using semi-automatic 

techniques, suggesting that the targets used for quantitative assessment may not be the true 

targets. While this shortcoming slightly compromises synthetic–real comparisons, they do 

not affect comparisons of real data performance between naïve- and DeepDRR-based 

ConvNets since for such comparison the above error is systematic. (2) The images provided 

by the clinical C-arm X-ray system are not, in fact, raw images but are pre-processed by a 

vendor-specific, proprietary filtering pipeline (including but not limited to noise reduction 

and scatter correction) that can substantially alter image characteristics. As a consequence, 

the DeepDRR framework cannot accurately mimic image formation since part of the process 

is unknown. (3) DRRs are generated from 3D CT volumes that exhibit finite resolution. This 

shortcoming is emphasized during DRR generation due to magnification in cone-beam 

geometry and detectors with very high spatial resolution down to < 0.2 mm
px . An interesting 

next step would be to investigate whether super-resolution strategies, as they have become 

popular in MRI [7], could mitigate this problem. It is worth mentioning that the proposed 

DeepDRR pipeline could be formulated as an end-to-end neural network, since forward 

projection can be easily incorporated as a layer [37]. This is appealing, since it would allow 

incorporation of all ConvNet-based processing, e.g., for 3D segmentation and super-

resolution, or 2D pre-processing, and enable end-to-end training of these networks by 

maximizing the resulting DRRs’ similarity with real X-ray images of the target application 

via adversarial training.

It is interesting to see that the degradation observed here occurs to a similar extent in the 

most similar work to ours that uses unpaired image-to-image style transfer to convert real X-

ray images to a DRR-like counterpart [42]. On the example of anatomical landmark 

detection, where we now have a solid basis for evaluation, we plan on investigating how the 

approaches compare and whether combining both strategies can yield real data performance 

that is on a par with the performance on synthetic data. Doing so will require us to collect a 

sufficiently large database of clinical pelvic X-ray images, ideally acquired without tools in 

the image. While these images would not need to be annotated for style transfer, the dataset 

must still be representative with respect to anatomy and views thereof for style transfer to 

succeed. Since intra-operative X-rays are not commonly archived in pelvis surgery, curating 

this database requires a prospective study design which we will implement in future work.
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Currently, simulation using DeepDRR is limited to flat panel detectors. Supporting image 

intensifiers is possible but would require adjustment of noise model and incorporation of 

distortions that occur in this detector technology.

In contrast to MC simulation where the rendering time is dependent on the number of 

photons injected, simulation using DeepDRR requires the same computation time 

irrespective of the required imaging parameters. It is worth mentioning, however, that 

material decomposition using the 3D ConvNet is comparably slow and is performed before 

every rendering. For practical application of the DeepDRR pipeline, this suggests that a 

large set of projections should be defined first and then submitted for rendering to reduce the 

per-image computation time. As an example, for 1000 images with 620 × 480 px, the 

simulation per image took 0.56s on an Nvidia Quadro P6000.

Conclusion

We proposed a fast and realistic framework for simulating intra-operative X-ray images with 

corresponding annotations from 3D CT volumes. The framework supports modeling of tools 

or surgical implants and is publicly available and open source. We evaluated our framework 

on two complementary tasks in X-ray-guided interventions, namely detecting anatomical 

landmark on the pelvis and segmenting and localizing robotic end-effectors during drilling 

in the femur. ConvNets trained on DeepDRRs, generated with our physics-based framework, 

significantly outperformed networks trained on naïve DRRs on real X-ray images, 

suggesting that realistic generation of X-ray image formation is a practicable way to 

establishing machine learning in fluoroscopic image analysis. While our results are 

promising, in future work we will investigate strategies to further improve the real data 

performance of ConvNets trained on synthetic data, e.g., via image style transfer for domain 

adaptation. Once introduced into clinical practice, learning-based algorithms that analyze 

intra-operative images to automatically extract semantic or contextual information, e.g., by 

measuring objects of interest, have the potential to radically improve the state-of-care by 

simplifying surgical workflows.
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Fig. 1. 
Schematic overview of our realistic simulation pipeline
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Fig. 2. 
Anatomical landmark predictions on real X-ray images of cadaveric specimen. Reference 

landmark positions are shown in blue, while ConvNet predictions are shown in red. We 

highlight a representative outlier using a red arrow that connects a target landmark with the 

corresponding prediction
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Fig. 3. 
Representative results of concurrent segmentation and keypoint detection [10] on synthetic 

X-ray images generated by the same method the ConvNets were trained on. Segmentations 

are shown in green, keypoints as red heatmaps, and magnifications of the region of interest 

are shown in the top right corner of each image, delimited by an orange border
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Fig. 4. 
Representative results of concurrent segmentation and keypoint detection [10] on real X-ray 

images of cadaveric anatomy of ConvNets trained on naïe DRRs and DeepDRRs, 

respectively. We also show the input X-ray image after logarithm transform and reference 

annotations is obtained manually. Segmentation results are shown as green overlay, while 

keypoint predictions are shown as red heatmaps. Magnifications of a region of interest 

around the snake end-effector are provided in the top right corner of every image, marked-

off by an orange border
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