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Bayesian Hyper-LASSO 
Classification for Feature Selection 
with Application to Endometrial 
Cancer RNA-seq Data
Lai Jiang   1,2 ✉, Celia M. T. Greenwood1,2,3, Weixin Yao4 & Longhai Li   5 ✉

Feature selection is demanded in many modern scientific research problems that use high-dimensional 
data. A typical example is to identify gene signatures that are related to a certain disease from high-
dimensional gene expression data. The expression of genes may have grouping structures, for example, 
a group of co-regulated genes that have similar biological functions tend to have similar expressions. 
Thus it is preferable to take the grouping structure into consideration to select features. In this paper, 
we propose a Bayesian Robit regression method with Hyper-LASSO priors (shortened by BayesHL) 
for feature selection in high dimensional genomic data with grouping structure. The main features 
of BayesHL include that it discards more aggressively unrelated features than LASSO, and it makes 
feature selection within groups automatically without a pre-specified grouping structure. We apply 
BayesHL in gene expression analysis to identify subsets of genes that contribute to the 5-year survival 
outcome of endometrial cancer (EC) patients. Results show that BayesHL outperforms alternative 
methods (including LASSO, group LASSO, supervised group LASSO, penalized logistic regression, 
random forest, neural network, XGBoost and knockoff) in terms of predictive power, sparsity and the 
ability to uncover grouping structure, and provides insight into the mechanisms of multiple genetic 
pathways leading to differentiated EC survival outcome.

The accelerated development of many high-throughput biotechnologies has made it affordable to collect complete 
sets of measurements of gene expressions. Scientists are often interested in selecting certain genes that are related 
to a categorical response variable, such as the onset or progression of cancer. These genes are known as signatures 
in the life sciences literature; for the purposes of our paper, we will call them features.

When finding features, we require an algorithm that can identify both sparse features and grouping struc-
tures. Sparsity is required because in the context of gene expression analysis, there are often only a few important 
features. Hence, the feature selection is expected to be sparse. Grouping structure is required because biological 
features often have an innate grouping structure. For example, there might be a high correlation between certain 
features; a group of genes might relate to the same molecular pathway, or be in close proximity in the genome 
sequence, or share a similar methylation profile1,2. To better understand disease etiology, therefore, one must 
understand the grouping structure of the genes associated with that disease.

At first, researchers concentrated on the sparsity problem in high dimensional feature spaces. They devel-
oped automatic sparse selection methods such as LASSO (Least Absolute Shrinkage and Selection Operator3) 
and knockoff variable selections4,5. In the Bayesian literature, LASSO is equivalent to a linear regression with 
(convex) Laplace penalty function on the coefficients. But for our purposes—namely, uncovering sparse features 
and grouping structure—the convex penalty functions have several problems. First, they are not sparse enough. 
Second, these functions are incapable of uncovering grouping structure. Indeed, the traditional convex sparse 
feature-selection algorithms are either unable to take grouping structure information into account, or else depend 
on prior knowledge of the specific grouping structure.
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Again, some researchers focused on the first problem: the need for greater sparsity. One potential way to over-
come this limitation is to amplify the signal. In recent years, researchers developed methods that are even more 
aggressive, and hence even more sparse, than LASSO. They proposed fitting classification or regression models 
with continuous non-convex penalty functions to discover features related to a response. Such non-convex pen-
alty functions include, but are not limited to, hyper-LASSO6, global-local penalties7, t with small degrees of free-
dom8,9, SCAD10, horseshoe11–15, MCP16, NEG17, adaptive LASSO18, Dirichlet-Laplace and Dirichlet-Gaussian19, 
and generalized double-pareto20 functions. Reviews of non-convex penalty functions have been provided by7,21,22 
and23. These non-convex penalties can shrink the coefficients of unrelated features (noise) to zero more aggres-
sively than LASSO, while enlarging the coefficients of related features (signal).

These non-convex functions work well for sparsity; however, their effectiveness regarding grouping structure 
has not yet been explored. In fact, non-convex penalty will make selection within a group of highly correlated fea-
tures: either splitting important features into different modes of penalized likelihood or suppressing less impor-
tant features in favour of more important features. The within-group selection is indeed a desired property if our 
goal is selecting a sparse subset of features. Note that the within-group selection does not mean that we will lose 
other features within a group that are also related to the response because other features can still be identified 
from the group representatives using the correlation structure. On the other hand, the within-group selection 
results in a huge number of modes in the posterior (for example, two groups of 100 features can make 1002 sub-
sets containing one from each group). Therefore, optimization algorithms encounter great difficulty in reaching a 
global or good mode because in non-convex regions, the solution paths are discontinuous and erratic.

The application of non-convex penalties in grouped feature selection remains limited by the computational 
difficulties, instead, researchers interested in grouping structure have tended to favor (convex) LASSO penalty. 
There have been three main approaches developed to consider directly the grouping structure in classification/
regression models based on LASSO penalties:

	 1.	 The first approach is to develop methods that directly consider the grouping structure or the correlation 
among features in classification and regression models. This involves fitting classification models on the 
“new features” constructed from the feature groups (e.g., centroids or means) of features within groups; 
see24–27 and28.

	 2.	 The second approach is to fit classification models with penalties that enforce similarity on the coefficients 
of features within groups, such as group or fused LASSO29,30. Group and fused LASSO functions are more 
predictive than plain LASSO because they consolidate the predictive power of all features within groups.

	 3.	 The third approach is known as two-stage selection, and it includes supervised group LASSO (SGL)31 and 
ProtoLASSO28. SGL works in two stages: 1. apply LASSO to each group, separately, to determine the fea-
tures of each group; and 2. apply LASSO to the selected features (from step one). ProtoLASSO, on the other 
hand, works as follows: 1. select prototype features within each group using marginal correlations; and 2. 
apply LASSO to the prototype features.

There are three more problems with all three of these approaches. First, the Lasso solution is subject to specific 
choices of regularization parameter λ and may not select the “correct” sparsity pattern in high dimensional data. 
For example, the solution may not be sparse enough when the signal to noise ratio is low. Second, these meth-
ods make selections separately in each group, so they cannot consider the joint effects of features from different 
groups. This is particularly limiting when analyzing biological interactions, because the individual associations 
of certain features (genes) with the outcome (disease) are low, but such features could still be useful when joined 
with other features (with a correlation structure). Third, in order to consider grouping structure, these methods 
require a pre-specified grouping index. This pre-specified grouping structure is often found via a clustering algo-
rithm. However, the statistical algorithm’s results might not be a perfect match with meaningful feature groups 
(e.g., with biologically accurate clusters of genes). In addition, such grouping is probably too simple to explain 
complicated biological activities. For example, an outcome may be related to correlations among multiple groups 
of features—that is, interactions may occur both within and between groups.

Due to the numerous problems with convex functions, we hypothesize that non-convex functions would 
better suit our needs regarding sparsity and grouping structure. Unlike convex functions, non-convex functions 
have at least the potential to find grouping structures without prior knowledge. However, limited work has been 
done to take into account of grouping structure with non-convex penalties32–34. Moreover, non-convex methods 
are usually computationally expensive, which has limited their application to high-throughput biomedical data 
despite the potential usefulness.

Another problem is that the algorithms to solve these non-convex functions could be unstable32. When it 
comes to solving these non-convex penalty functions, the algorithms that provide solutions traditionally involve 
the process of non-convex learning. Specifically, non-convex learning processes are optimization algorithms for 
learning the classification and/or regression likelihood penalized by non-convex functions. But thus far, limited 
research has been done to develop stable optimization algorithm for non-convex function to uncover both sparse 
features and grouping structure. A review of such algorithms can be found in32 and35.

In this paper, we develop an approach to non-convex penalty functions, which we call BayesHL (for Bayesian 
Hyper-LASSO). BayesHL is a fully Bayesian approach that uses the Markov chain Monte Carlo (MCMC) method 
to explore the multi-modal posterior. This is a promising alternative to non-convex learning methods, because 
unlike many non-convex learning methods32,36, a well-designed MCMC algorithm can explore many modes to 
find multiple desirable feature subsets. The development of MCMC methods for exploring regression posteriors 
based on heavy-tailed priors has emerged only recently; the relevant articles include9,37–41, among others.

https://doi.org/10.1038/s41598-020-66466-z


3Scientific Reports |         (2020) 10:9747  | https://doi.org/10.1038/s41598-020-66466-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

More specifically, we develop a sophisticated MCMC method to explore the posterior of a Robit model 
assigned with a class of heavy-tailed priors (i.e., Cauchy distribution with small scale). We employ the 
Hamiltonian Monte Carlo method42 to draw MCMC samples of the regression coefficients in a restricted Gibbs 
sampling framework. The framework’s computational complexity is more dependent on the number of signals 
than the number of features; this greatly accelerates the MCMC sampling efficiency for very high-dimensional 
problems. After MCMC sampling, we divide the samples into sub-pools according to the posterior modes to find 
a list of sparse feature subsets. This process is further aided by cross-validatory evaluation.

To the best of our knowledge, our work here is one of the few attempts to uncover grouping structure using 
MCMC in the context of a high-dimensional feature selection problem. The development of fully Bayesian 
(MCMC) methods for exploring regression posteriors based on heavy-tailed priors has emerged only recently; 
relevant articles include6,9,37,43.

Compared to other feature selection methods in the literature, BayesHL has two main benefits. First, BayesHL 
is more parsimonious than traditional convex (including LASSO) and non-convex learning methods. That is 
because BayesHL automatically makes selections within groups without a pre-specified grouping structure. 
Consequently, a single feature subset found by BayesHL is more parsimonious than the feature subsets selected 
by LASSO. It is also possible for BayesHL to consider the joint effects of features from different groups. Thus, 
the results always include representatives from different groups. Such succinct feature subsets are (compared to 
the results of traditional convex and non-convex methods) much easier to investigate and interpret according 
to existing biological knowledge. Second, BayesHL is immune to the problem of correlation bias. Other convex 
and non-convex methods may not be able to identify significant features when there is a high number of corre-
lated features, due to the problem of correlation bias2. But BayesHL will always be able to identify the significant 
features because it enforces within-group selection, so even as the number of correlated features increases, the 
magnitudes of coefficients will not decrease.

Our MCMC-based non-convex learning method can effectively identify sparse feature subsets with supe-
rior out-of-sample predictive performance. This statement is based on the results of our experiment on a real 
high-throughput dataset of endometrial cancer. Results show that the BayesHL-selected feature subsets have 
better predictive power than those selected by competitors. Indeed, after further investigation we found that the 
BayesHL-selected gene subsets correspond to interactions between gene networks with meaningful biological 
interpretations.

In brief, in this paper we present a Bayesian feature subset selection method (BayesHL), test it, and use it to 
uncover an interesting result regarding endometrial cancer. We test our method on simulated datasets with inde-
pendent or correlated groups of features, to demonstrate its feature subset selection and prediction performance 
with respect to grouping structures. We apply our method to a high-throughput dataset related to endometrial 
cancer, and present interesting findings of gene networks regarding the survival outcome of endometrial cancer.

Methodology
Model: heavy-tailed robit model.  The following is an introduction to the notation we use throughout this 
paper. Suppose we have collected measurements of p features (such as genes) and a binary response (such as a 
disease indicator) on n training cases. For a case with index i, we use yi, taking integers 0 or 1, to denote the 
response value and use a row vector xi to denote the p features, and the first element of xi is set to 1 for including 
intercept term in linear model. Throughout this paper, we will use bold-faced letters to denote vectors or matrices. 
We will write collectively = … ′y y y( , , )n1 , and = ′ … ′ ′X x x( , , )n1  in which rows stand for observations and 
columns stand for features. Note that, we use index 0 for the intercept term in this paper, ie., the values of the first 
column of X are all equal to 1, denoted by x,0. Using machine learning terminology, we call (y, X) training data, 
which are used to fit models; in contrast, the data used only in testing the predictive performance is called test 
data.

For the purposes of feature selection and binary classification, we are interested in modeling the conditional 
distribution of yi given xi. The traditional probit models use a normally distributed auxiliary variable zi to model 
yi given xi as follows:

β ε ε= > = + ~y I z z x N( 0), , (0, 1), (1)i i i i i i

where I(·) is the indicator function, and β is a column vector of coefficients with the first element being intercept, 
denoted by β0. With zi integrated out, the above model is equivalent to the following conditional distribution: 

β β β= Φ − Φ =−P y x x x y( , ) ( ) (1 ( )) , for 0,1,i i i
y

i
y

i
1i i  where Φ is the cumulative distribution function (CDF) of 

the standard normal distribution.
In high-throughput data, there are typically a large number of extreme outliers. Since probit models cannot 

accommodate some extreme outliers (due to the light tails of normal distributions), we will use a more robust 
model: the Robit model44. Robit replaces the normal distribution for εi with a t distribution, and is thus more 
robust to outliers than probit and logistic regression (see44,45 and the references therein).

The Robit model is as follows:

β ε ε α ω= > = + ~y I z z x T( 0) , ( , ), (2)i i i i i i 0 0

where T(α, ω) stands for scaled student’s t distribution with degrees of freedom α, scale parameter ω , and mean 

parameter 0, with a probability density function (PDF) as = +α ω
απ ωα ω

Γ

Γ

−α

α

α+ +

( )( )
( )t x( ) 1 x

,
1

1
2

2

2
1

2 , where Γ(⋅) is 

the Gamma function. As in probit models, with zi integrated out, the above model is equivalent to the following 
conditional distribution of yi given xi:
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where Tα,ω(x) represents the CDF of T(α,ω).
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 where 2F1 is the hypergeomet-

ric function, which is given as the sum of an infinite series46.
The α0 is fixed at α0 = 1, which is appropriate for modeling the possible range of outliers. In addition, from the 

CDF of the t distribution, we notice that only β ω/ 0  is identifiable in the likelihood of (ω0, β) given observation 
y1, …, yn. Therefore, we fix ω0 at some reasonable value. We choose to use ω0 = 0.5 such that the α ωT ,0 0

 is similar to 
the logistic distribution near origin zero, but has heavier tails (than the logistic distribution).

Coefficient prior (β): heavy-tailed cauchy prior.  Now that we have chosen a model for selecting features 
(Robit), the next step is to choose a framework for estimating β. The following subsections discuss why we chose 
to use a heavy-tailed (Cauchy) prior for estimating β, how we raised the sampling efficiency with restricted Gibbs 
sampling and Hamiltonian Monte Carlo, and why our MCMC algorithm is a good framework for obtaining an 
estimate of β.

In many problems of linking high-dimensional features to a response variable, it is believed that the non-zero 
regression coefficients are very sparse—that is, very few features are related to the response y. In the past decade, 
non-convex penalties have drawn the attention of many researchers because they can shrink the coefficients of 
unrelated features (noise) more aggressively to zero than the convex L1 penalty. In other words, non-convex pen-
alties provide a sharper separation of signal and noise than L1.

In Bayesian methodologies, a non-convex penalty often corresponds to a prior distribution with a heavier 
tail than the Laplace distribution (which corresponds to L1). So in the Bayesian interpretation, a typical sample 
of β from a heavy-tailed prior has a few extraordinarily large values representing related features, and many small 
values representing unrelated features. Therefore, heavy-tailed priors are a better match for our expectations about 
β than the Laplace prior.

Of the suitable heavy-tailed priors, we have many choices, including Cauchy8, horseshoe7,12–14,22,23, and 
normal-exponential-gamma (NEG)17, all of which have been proven superior to L1 in detecting very sparse 
signals.

However, there are three reasons why we prefer Cauchy to horseshoe and NEG priors:

	 1.	 Although although the horseshoe and NEG priors have the same tail heaviness as Cauchy (converging to 
zero in the rate of 1/β2), they also have a non-differentiable log PDF at 0; therefore, if penalties are applied, 
small signals can be shrunken to exactly 0.

	 2.	 In our empirical comparison of the predictive performance of classification models using t priors with 
various tail heaviness (including NEG and horseshoe priors), we found that Cauchy had the optimal 
performance6.

	 3.	 Horseshoe and NEG priors demand additional computation in sampling the hyperparameters (the local 
variances for each βj, i.e., λj below). Indeed, in our aforementioned paper, the additional computation 
accounted for half of the whole sampling time, even after we used a restricted Gibbs sampling scheme to 
greatly shorten the sampling time for regression coefficients.

Therefore, we chose to use the plain Cauchy prior in this paper: t with degree of freedom α1 = 1, denoted by 
β α ω = …~ T j p( , ), for 1, ,j 1 1 .

For the purposes of MCMC sampling, we express the t prior for β as a scale-mixture normal by introducing a 
latent variance λj for each βj, as follows:

β λ λ~ )N(0, , (4)j j j

λ
α α ω

−






.~ Inverse Gamma

2
,

2 (5)j
1 1 1

Hereafter, we will refer to this vector as λ = (λ1, …, λp).
In order to shrink small coefficients toward zero, we must choose a very small-scale parameter ω1  for 

Cauchy. In Bayesian methodologies, a typical way to avoid assigning a fixed value to a parameter is to treat it as a 
hyperparameter such that it will be chosen automatically during MCMC sampling according to marginalized 
likelihood. However, we have found that this approach does not choose at a sufficiently small scale to yield a very 
sparse β, because a classification model with p features can easily overfit a dataset with sample size n p. In 
order to enforce sparsity in β and to improve the efficiency of MCMC sampling, we choose to fix ω1  at a small 
value e−5 ≈ 0.01. Table 1 shows a number of upper-tailed quantiles of |βj| where ~ eCauchy(0, )j

5β − .
From Table 1, we see that this choice of value of ω1 postulates that 2 of the 1000 features have coefficients 

with magnitude ≥2.228. We believe that this is an appropriate level of sparsity for many high-dimensional 
feature-selection problems.

Another important reason to fix ω1  is the “flatness” (heaviness) of a Cauchy tail. Due to this flatness, very 
small shrinkage is applied to large coefficients. Since the shrinkage is small, the estimates of large coefficients are 
robust to ω1  6,13. This is a distinctive property of priors with tails as heavy as Cauchy. (In other priors with similar 
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tail heaviness, like Gaussian, Laplace priors, a careful choice of scale must be made because the shrinkage of large 
coefficients is large and sensitive to the scale.) Therefore, although ω1  is fixed at a very small value around 0.01, 
the prior does not over-shrink large signals, and can accommodate a wide range of signals.

Implementation: Estimating β using Restricted Gibbs Sampling with Hamiltonian Monte 
Carlo.  There is great difficulty in maximizing the penalized likelihood function using heavy-tailed and 
small-scaled priors. For example, using a small scale for ω1  such as e−5, the R function bayesglm in R package 
ARM (which implements penalized logistic regression with Cauchy priors) will converge to a mode where almost 
all coefficients are shrunken to very small values, even when the number of features (p) is small. On the other 
hand, using the default 2.5 value, bayesglm does not provide a sparse solution (to be presented in this article). The 
difficulty in optimization is further intensified by the severe multi-modality in the posterior because heavy-tailed 
and small-scaled priors can split coefficients of a group of correlated features into different modes rather than 
shrinking them simultaneously as Gaussian priors do. Therefore, although good theoretical properties of 
non-convex penalties have been proved in statistics literature (e.g.16), many researchers and practitioners have 
been reluctant to embrace these methods because optimization algorithms often produce unstable solutions32. 
This motivated us to develop MCMC algorithms for exploring the posterior with many modes due to the use of 
heavy-tailed priors.

Our MCMC algorithm will sample from the joint posterior, f(β, λ| y, X), which is based on the hierarchical 
models given by Eqs. (3–5) with α0, ω0, α1, ω1 fixed (so omitted in the following model descriptions). The log 
posterior can be written as follows:

∑ ∑

∑

β λ β β λ

λ

= | + |

+ +

= =

=

f y X P y x f

f C

log( ( , , )) log( ( , )) log( ( ))

log( ( )) ,
(6)

i

n

i i
j

p

j j

j

p

j

1 0

1

where the first three terms come from the models defined by (3), (4), (5) respectively, and C is the log of the nor-
malization constant unrelated to β and λ. The first three terms in (6) are given as follows:

β β β

β

| = + − −

≡ |
α ω α ωP y x y T x y T x

lp y x

log( ( , )) log( ( )) (1 )log( ( ))
( ), (7)

i i i i i i

i i

, ,0 0 0 0

β λ λ
β

λ
| = − − + = …f C j plog( ( )) 1

2
log( )

2
, for 0, ,

(8)
j j j

j

j

2

1

λ
α

λ
α ω

λ
= −



 +



 − + = … .f C j plog( ( ))

2
1 log( )

2
, for 1, ,

(9)
j j

j

1 1 1
2

where C1, C2 are two constants unrelated to (β, λ); the function lp(yi| xiβ) is introduced to indicate that the prob-
ability of yi given xi is a function of xiβ. An ordinary Gibbs sampling procedure to draw samples from (6) is to 
alternatively draw samples from the conditional posterior of λ given β with a log density equal to the sum of the 
last two terms of (6), and draw samples from the conditional posterior of β given λ with a log density equal to the 
sum of the first two terms of (6).

The challenge in sampling from the (6) comes from two aspects of high-dimensional features. One is the high 
dimension p of β (or X); the other is the high correlation among features X, which results in the high correlation 
in the conditional posterior of β given λ, and correspondingly the multi-modality in the marginal posterior of 
β (with λ integrated out). To combat these two difficulties, we propose an MCMC sampling algorithm that uses 
Gibbs sampling with Hamiltonian Monte Carlo (HMC) for sampling β in a restricted way. Our MCMC algorithm 
is sketched below and followed with explanations:

Starting from a previous state for (β, λ), a new state denoted by (β, λ) is obtained with these steps:

	 1.	 For each j, draw a new λ̂ j from the conditional distribution f(λj|βj) with log PDF equal to the sum of (8) 
and (9). It is well-known that λj given βj has an Inverse-Gamma distribution given as follows:

~λ β
α α ω β

| −






+ + 




.GammaInverse 1

2
,

2 (10)
j j

j1 1 1
2

Upper probability 0.200 0.100 0.020 0.010 0.002 0.001 0.0001

Quantile of |βj| 0.022 0.044 0.223 0.446 2.228 4.456 42.895

Table 1.  Upper-tailed quantiles of absolute Cauchy with scale e−5.
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	 2.	 With the new values of λ̂ j drawn in step 1, determine a subset, βU, of β to update in step 3 below. We update 
βj if λ̂ j is large enough. That is, given a pre-scribed threshold value η, the subset is defined as 

λ̂ η= | >U j{ }j . The βU is defined as {βj|j ∈ U}. The subset of βF = {βj|j ∈ F = {0, …, p}\U} will be kept 
unchanged in step 3.

	 3.	 Update the set of βj with j ∈ U, denoted by βU, by applying HMC to the conditional distribution of βU given 
as follows:

β β λf X ylog( ( , , , ))U F

ˆlp y x x f C( ) log( ( )) ,
(11)i

n

i i U U i F F
j U

j j
1

, , 3∑ ∑β β β λ= | + + | +
= ∈

where the function lp for computing log likelihood is defined in (7), and xi,U is the subset of xi with feature 
index in U. After updating βU, the new value of β is denoted by β in which βF does not change. Note that, 
because HMC is a Metropolis algorithm, the new β may be equal to β if a rejection occurs.

	 4.	 Set (β, λ) = (β, λ), and go back to step 1 for the next iteration.

A typical sampling method for classification models is to augment a latent continuous value zi for each cate-
gorical variable yi

47, and sample from the joint distribution of z1:n along with β and λ (e.g.38) with Gibbs sampling; 
we then can borrow algorithms developed for regression models with heavy-tailed priors37,43. Given λj, the prior 
for βj is a normal distribution. It is well-known that the posterior of β for normal regression given normal priors is 
a multivariate normal distribution with a covariance matrix involving X′ X. Note that this multivariate normal has 
a dimension p. When p is very large (e.g. thousands), drawing independent samples from a multivariate normal is 
extremely inefficient, because the required computation time for decomposing the covariance matrix will increase 
in the order of p3. Therefore, for drawing samples from f(β| λ, X, y), we choose to use Hamiltonian Monte Carlo 
(HMC), a special case of Metropolis-Hasting (M-H) algorithms, which explore the posterior in a local fashion 
without the need to decompose a high-dimensional matrix. HMC requires computing the log-posterior and its 
gradient. The gradient of log(f(β| λ, X, y)) given by the following expression:
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where U is the function defined in (11). We can see that once the linear combination Xβ has been computed, the 
log posterior and its gradient can be obtained with very little computation. Computing Xβ is significantly cheaper 
than decomposing a matrix of dimension p. However, the random-walk behaviour of ordinary M-H algorithms 
limits the sampling efficiency of M-H algorithms. In HMC, the gradient of log posterior is used to construct a 
trajectory along the least constraint direction, therefore, the end point of the trajectory is distant from the starting 
point, but has high probability to be accepted; for more discussions of HMC, one is referred to a review paper 
by42.

From the above discussion, we see that obtaining the value of Xβ is the primary computation in implementing 
HMC. To further accelerate the computation for very large p, we introduce a trick called restricted Gibbs sam-
pling; this is inspired by the fact that updating the coefficients with small λj (small prior variance in the condi-
tional posterior of βj given λ) in HMC does not change the likelihood as much as updating the coefficients with 
large λj but updating βj with small or large λj consumes the same time. Therefore, we use λ in step 2 to select only 
a subset of β, denoted by βU, those have large prior variance λj, to update in step 3 (HMC updating). We can save a 
great deal of time for computing Xβ in step 3 by caching values of XFβF from the previous iteration because it does 
not change in the whole step 3; this greatly accelerates the construction of HMC trajectory. We typically choose η 
in step 2 so that only 10% of β are updated in step 3.

We clarify that although βF (sometimes the whole β) are kept the same in an iteration, the choice of U in step 2 
for the next iteration will be updated because λ will be updated in step 1. Thus, βj will not get stuck to a very small 
absolute value, unlike that in optimization algorithms this typically occurs.

The above restricted Gibbs sampling is a valid Markov chain transition for the joint posterior (6). To under-
stand this, let us recall that, in Gibbs sampling we can arbitrarily choose any variables to update with a Markov 
chain transition that leaves the conditional distribution of chosen variables invariant, provided that the choice of 
variables to be updated does not depend on the values of the chosen variables in the previous iteration. For exam-
ple, it is not a valid Markov chain transition if we choose βj with large |βj| in the previous iterations; by contrast, it 
is a valid Markov chain transition if we choose βj to update by referring to variances of β. In step 3, the choice of 
βU does not depend on the values of β in the previous step. Instead, the choice only depends on the value of λj in 
the previous step, which partially determines the variances of β in β λ̂f X y( , , ). Therefore, the updates of βU in 
step 3 is reversible with respect to β λ̂f X y( , , ).

The advantage of HMC is that it can explore highly correlated posterior quickly with a long leapfrog trajectory 
without suffering from the random-walk problem. This ability of HMC also plays an important role in travelling 
quickly between multiple modes of the posterior. This is explained as follows. When λ̂ j and λ̂k for two correlated 
features j and k are large after a draw in step 1, the joint conditional posterior of (βj, βk) given λ λˆ ˆ( ),j k  are highly 
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negatively-correlated. For such distributions, HMC can move more quickly than random-walk algorithms along 
the least constrained direction, and this move will lead to the change of modes in joint distribution of (βj, βk) with 
λ integrated out.

There are a huge number of modes in the posterior even when p is moderate when there are a large number 
of correlated features. In the empirical studies reported in this paper, we use a two-stage procedure. In Stage 1, 
we run the restricted Gibbs sampling with HMC using the dataset containing all p features. Then we calculate 
MCMC means of all coefficients β and choose only the top p* = 100 features with largest absolute values of 
MCMC means. The stage 1 is very time consuming. In Stage 2 we re-run the MCMC sampling with only the 
selected features once again. Our feature selection will be based on the MCMC samples obtained from Stage 
2. A list of setting parameters with recommended values for ease in reference are given in the Supplementary 
Information.

Feature subset selection: MCMC sample subdivision.  We run the MCMC sampling to obtain samples 
from the posterior of β. With the intercept β0 removed, this sample is denoted by a matrix B = (βj,i)p×R, in which 
βj,i represents the value of βj in the i th sample and R is the number of MCMC samples. The posteriors of β for 
Robit models with heavy-tailed priors are severely multi-modal. For a demonstration, one can look at Fig. 1, 
which shows a scatterplot of MCMC samples of two βj’s for two correlated features. Therefore, we should divide 
the whole Markov Chain samples B into sub-pools according to the mode that each sample represent. However, 
the number of such feature subsets may be huge even the number of features p is small. Therefore, we only con-
sider dividing Markov Chain samples according to the multiple modes for the Markov Chain samples obtained 
in Stage 2 in which a large number of weakly related features have been omitted. In this article, we use a scheme 
that looks at the relative magnitude of βj to the largest value in all features. The scheme is rather ad-hoc. However, 
it is very fast and works well in problems of moderate dimension, such as p = 100. More advanced methods 
for collecting feature subsets from MCMC is our priority for future research. The scheme used in this article is 
described as follows:

	 1.	 We set Ij,i = 1 if |βj,i| > 0.1 × max{|β1,i|, …, |βp,i|}, and Ij,i = 0 otherwise. By this way, we obtain a boolean 
matrix (Ij,i)p×R with its entry Ij,i denotes whether the j th feature is selected or not in i th sample.

	 2.	 Discard the features with overall low frequency in step 1. We calculate = ∑ =f Ij R i
R

j i
1

1 , . We will discard a 
feature j if fj is smaller than a pre-defined threshold, which is set to be 5% as an ad-hoc choice in this article. 
Let D = {j|fj < 5%}. For each j ∈ D, we set Ij,i = 0 for all i = 1, ..., R. This step is to remove the features that 
come into selection in step 1 due to MCMC randomness.

	 3.	 Find a list of feature subset by looking at the column vectors of I. Each unique column in I represents a 
different feature subset.

The above algorithm is not the best for dividing the MCMC samples according to the posterior modes of β. 
The reason is that the MCMC simulation introduces small jitters into the βj’s of the features not selected in the 
mode. The above algorithm aims to get rid of the jitters by using thresholding in step 1 and step 2. However, they 
may not eliminate some jitters. This will result in some feature subsets with very small frequency. The optimal 
algorithm may be to find the posterior modes starting from each MCMC sample using a certain optimization 
algorithm. However, finding the posterior modes for a large number of MCMC samples is time-consuming. In 
this paper, we present the results based on the above fast algorithm for simplicity. From our informal compari-
sons, the results are fairly close to the feature subsets found by hunting the mode from each MCMC sample.

Figure 1.  Demonstration of within-group selection with two correlated features for binary response. Color 
denotes the response value for each case. Note that the two features together do not provide significantly more 
information than only one for classifying the response.
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Predictive performance metrics.  The frequencies of feature subsets in MCMC samples may not exactly 
reflect their predictive power. In this paper, we evaluate the predictive power of each feature subset using 
leave-one-out cross-validation (LOOCV) using the same training cases for simulating MCMC. Specifically, for 
each collected feature subset, we apply logistic regression model with t penalty8 and evaluate its predictive perfor-
mance using 4 criteria: error rate, average of minus log predictive probabilities (AMLP), the area under ROC 
(receiver operating characteristic) curve (AUROC) and the area under precision-Recall curve (AUPRC). AMLP 
is calculated at each actually observed yi: Ő∑ −= P ylog( ( ))

n i
n

i i
1

1 , and it punishes heavily the small predictive prob-
abilities at the true class labels. We use an R-package pROC48 to compute AUROC and AUPRC. We propose three 
prediction methods based on BayesHL MCMC sampling results. The prediction methods based on the top feature 
subset with the highest posterior frequency, and the optimal feature subset (with the smallest cross-validated 
AMLP) are referred, respectively, as BayesHLtop and BayesHLopt. We will refer to the result by averaging the 
predictive likelihood over MCMC samples as the default BayesHL method.

We prefer AMLP and AUPRC as better metrics (than AUROC and error rate) for evaluating model perfor-
mance in our study. In fact, AUROC values are not informative when (i) data is imbalanced with few cases of the 
minority class49 (e.g. high risk patients) or (ii) the cost of misclassifying the minor class (high risk patients) is 
more of concern50. Under scenario (i), AUPRC is usually preferred over AUROC because the latter can be mis-
leading in such cases and provide deceptively optimistic results51. AMLP (i.e. estimate of entropy52,53) is a better 
choice than AUROC under both scenarios (i) and (ii), since the former incorporates “certainty” of classification 
directly in the calculation. In general, AMLP is a more scalable metric than AUROC and AUPRC. It also penalizes 
severely misclassifications and thus favors more robust methods. In contrast, these misclassifications have less 
influence on AUROC and AUPRC, but may carry significant costs in applications.

Overview: BayesHL.  In summary, we proposed a heavy-tailed Robit model with heavy-tailed Cauchy pri-
ors for coefficients β to explore the potential useful posterior modes. The model (β) is then estimated using our 
adapted restricted Gibbs sampling method with Hamiltonian Monte Carlo technique. Finally, multiple feature 
subsets, corresponding to multiple posterior modes, were collected from the MCMC samples and used to per-
form classification problems. This method is referred to as the Bayes Hyper Lasso method BayesHL. The predic-
tion performance of BayesHL will be tested and compared to other methods in simulation analysis and a gene 
expression data analysis.

Simulation Studies
An example with independent groups of features.  In this section, we compare BayesHL with other 
existing feature selection methods on simulated datasets with independent groups of features. Each dataset has p 
= 2000 features and n = 1200 cases, 200 of which are used as training cases and the other 1000 cases are used as 
test cases. With zij, εij, ei generated from N(0, 1), we generate the feature values xij for i = 1, ..., n, j = 1, ..., p in four 
groups and the class label yi as follows:

ε= + . = ... = ...x z i n l Group 10 5 , 1, , , 1, , 50, ( ) (13)il i il1

ε= + . = ... = ...x z i n m Group 20 5 , 1, , , 51, , 100, ( ) (14)im i im2

ε= + . = ... = ...x z i n k Group 30 5 , 1, , , 101, , 150, ( ) (15)ik i ik3

= ... = ...~ ( )x N i n j Group 4(0,1), 1, , , 151, , 2000, (16)ij

= + + + . > = .y z z z e1 if ( )/ 3 0 1 0; 0otherwise (17)i i i i i1 2 3

The zi1, zi2 and zi3 are common factors for features in respective group. Since the features within each of Group 
1–3 are related to a common factor, they are highly correlated. However, the features across groups are independ-
ent. The response yi is generated with the values of the common factors zi1, zi2, zi3. Therefore, yi is related to all the 
features in Group 1–3. The yi is unrelated to all the features in Group 4. The true model of yi given xij has non-zero 
coefficients for all features in Group 1–3.

We apply BayesHL and other methods including LASSO, Group LASSO (GL), supervised Group LASSO 
(SGL), Random Forest (RF), Penalized Logistic Regression (PLR) with hyper-LASSO penalty, neural network 
(NN54), eXtreme Gradient Boosting (XGBoost55), and knockoff variable selection method (Knockoff4) to fit the 
training cases and then test their performance with the 1000 test cases. The implementation details of all the 
competitors can be found in the supplement. BayesHL is conducted with the default parameter settings as listed 
in supplement. We run BayesHL first with all 2000 features in stage 1, and then rerun with p* = 100 top features 
selected with posterior means, both with the aforementioned settings. The feature selection and prediction use the 
MCMC samples in the stage 2 with the top 100 features. Because of the large p in stage 1, we ran BayesHL hours 
to ensure convergence. We allowed BayesHL to run about 30 minutes to obtain the results reported throughout 
this article.

Table 2 shows the top (by frequency) five feature subsets selected by BayesHL. According to the AMLP, the 
top feature subset (1,57,140) is identified as the optimal feature subset too. We see that the top 4 feature subsets 
selected by BayesHL contain exactly one feature from each of Group 1–3 (each with 50 features) and none from 
Group 4 (noise).
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We also compare the out-of-sample predictive power of the top and optimal feature subset found by BayesHL 
with the “complete” feature subsets selected by other methods. We compare 4 predictive measures (ER, AMLP, 
AUROC, AUPRC) against the number of features used in making predictions, as shown in Table 3. The numbers 
of features used in BayesHLtop and BayesHLopt are the number of features in the top and optimal subsets. To 
count the number of features selected by the methods other than BayesHL, if automatic sparse selection is not 
available, we threshold their absolute coefficients by 0.1 of the maximum to decide whether or not they are used in 
predictions. We choose 0.1 as a threshold because we use the same thresholding to obtain the top and and optimal 
feature subsets of BayesHL.

Table 3, demonstrates that the BayesHL has the best predictive performance, which is better than the best per-
former in non-BayesHL methods—Group LASSO with more than 490 features. Specifically, BayesHL achieved 
the lowest ER (0.06), lowest AMLP (0.15), highest AUROC (0.99) and AUPRC (0.99) among all methods. The 
values of ER, AUPRC and AUROC stay at fairly similar levels for all methods except XGBoost. Only AMLP 
values (i.e. cross-entropy estimates52,53) are substantially different across methods and BayesHL outperforms oth-
ers on this metric. BayesHLtop and BayesHLopt have slightly worse predictive performance than non-BayesHL 
methods, however, they use only 3 features, one from each signal group. In terms of efficiency in selecting useful 
features, BayesHLtop and BayesHLopt do the best jobs if we look at the ratio of predictive measure to number of 
used features. In comparison, other methods are all less sparse and select much larger subsets from noise group 
(Group 4). Particularly, Group LASSO enforces the similarity of coefficients in each group, therefore, all the fea-
tures in signal groups along with a large number (341) of noise features are selected.

An example with correlated weakly differentiated features.  In this section we will compare the per-
formance of BayesHL in a simulated scenario such that two groups of features are weakly differentiated but have 
a strong joint effect on the response. Specifically, a dataset with n = 1200 cases and p = 2000 features is generated 
as follows:

= = =P y c c( ) 1
2
, for 1,2, (18)i

fsubsets freqs AMLP ER AUROC AUPRC

1 1,57,140 0.22 0.13 0.09 0.99 0.99

2 1,51,140 0.11 0.13 0.08 0.99 0.99

3 16,57,140 0.10 0.14 0.08 0.99 0.99

4 1,51,101 0.09 0.14 0.08 0.99 0.99

5 12,57 0.04 0.41 0.39 0.89 0.90

Table 2.  Top 5 feature subsets selected by BayesHL, and their within-sample leave-one-out cross-validatory 
predictive power. “fsubsets” gives I.D. of features in each subset, “coefs” is the vector of regression coefficients 
found with the posterior means, “AMLP” - “AUPRC” are cross-validatory predictive power measures of each 
feature subset.

(a) Numbers of selected features in respective group

BayesHLtop BayesHLopt BayesHL LASSO GL SGL RF PLR NN XGBoost Knockoff

Group 1 1 1 4 6 49 7 49 50 50 32 49

Group 2 1 1 4 5 50 10 49 50 50 0 50

Group 3 1 1 3 6 50 6 48 50 50 0 50

Group 4 0 0 0 13 341 12 14 1305 1252 0 16

Total 3 3 11 30 490 35 160 1455 1402 32 165

(b) Out-of-sample predictive performance

ER 0.10 0.10 0.06 0.09 0.07 0.10 0.08 0.08 0.10 0.34 0.10

AMLP 0.22 0.22 0.15 0.21 0.22 0.24 0.38 0.18 0.20 0.63 0.31

AUROC 0.97 0.97 0.99 0.97 0.99 0.97 0.98 0.98 0.98 0.75 0.97

AUPRC 0.97 0.98 0.99 0.96 0.98 0.98 0.98 0.97 0.98 0.75 0.97

Table 3.  Comparison of feature selection and out-of-sample prediction performance of different methods on a 
dataset with independent group of features. The number of features used by the others other than BayesHL are 
counted after thresholding the absolute coefficients by 0.1 times the maximum. BayesHLopt: optimal feature 
subset from BayesHL. BayesHLtop: top feature subset from BayesHL. BayesHL: average prediction probability 
across feature subsets identified by BayesHL. RF: random forest. NN: neural network. XGboost: eXtreme 
Gradient Boosting. Knockoff: knock off variable selection followed with logistic regression. AMLP: average 
minus log-probabilities. AUROC: area under ROC. AUPRC: area under precision-recall curve.
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µ ε= + + . = ...x z j Group 10 5 , for 1, , 200, ( ) (19)ij y i ij,1 1
i

µ ε= + . + . + . = ...x z z j Group 20 8 0 6 0 5 , for 201, , 400, ( ) (20)ij y i i ij,2 1 2
i

µ ε= + + . = ...x z j Group 30 5 , for 401, , 600, ( ) (21)ij y i ij,3 3
i

= ...~x N j Group 4(0,1), for 601, , 2000, ( ) (22)ij

where zij and εij are from N(0, 1), and the means of features in Group 1–3 in two classes are given by the following 
matrix μc,1:3, where μ1,1:3 = (−0.3,0.3,1) and μ2,1:3 = (0.3, −0.3, −1).

A dataset generated as above has 200 features in each of Group 1–3 related to the response and the remaining 
1400 are completely noisy. Each feature in Group 1 and Group 2 is weakly differentiated due to the small differ-
ence in class means (0.3 vs −0.3). The features within each group are positively correlated with correlation 0.8. 
Additionally, a feature from Group 1 and a feature from Group 2 has a correlation coefficient 0.64 because they 
share a common factor zi1. Therefore, a combination of two features from Group 1 and 2 respectively has clear 
joint effect for yi.

We run BayesHL and other methods to a dataset generated as above and use 1000 test cases to compare 
the out-of-sample predictive power of the top and also optimal feature subset with the “complete” feature sub-
sets found by other methods using the same procedure for obtaining Table 4. Table 4 shows BayesHL methods 
have slightly worse predictive performance than Group LASSO and PLR, which successfully combine the power 
of all signal features from Group 1–3 to make better predictions. However, the ROC curves of Group LASSO 
(AUROC = 0.97) and BayesHL (AUROC = 0.95) are not significantly different under Delong’s two-sided test56 
(p-value = 0.47). Moreover, the feature subsets selected by Group LASSO and PLR are significantly less sparse 
and include many noise features in Group 4, while BayesHL, LASSO, SGL and RF have more sparse results. 
Particularly, BayesHL selected 6, 8, and 6 features respectively from each of the three signal groups, which demon-
strated the clear strength of our method in sparsity and interpretability. In conclusion, BayesHL delivered simi-
larly good prediction performance as its competitors, while using much more sparse feature subsets.

Endometrial Cancer RNA-Seq Data Analysis
Endometrial cancer (EC) starts in the cells of the inner lining (endometrium) of the uterus. It is one of the most 
common cancers of the female reproductive system and is particularly common in women over age 60.

We chose to analyze the endometrial cancers from The Cancer Genome Atlas (TCGA) Research Network 
(http://cancergenome.nih.gov/) since there is a large number of tumour samples with matched gene expres-
sion profiles and clinical information. The original TCGA-EC dataset contains around 500 samples of EC with 
matched gene expression profiles and clinical information. This is one of the largest samples in TCGA’s database.

We obtained TCGA data from the Broad GDAC Firehose (using bioconductor Rpackages TCGAbiolinks 
and TCGA2STAT), which includes N = 269 samples with matched RNASeq profile and clinical information, 
after filtering steps such as restricting to primary solid tumor as sample type and endometrioid endometrial 
adenocarcinoma as histological type. We further filtered 3 patients with missing radiation information. The N = 
266 matched RNASeq profiles were downloaded in RPKM (Reads Per Kilobase Million)-normalized format and 
log2-transformed. We then performed univariate feature selection and retained P = 7298 (out of 20502) genes 
with high values of coefficient of variation (≥5), or high values of mean expression of log2 RPKM (≥3).

(a) Numbers of selected features in respective group

BayesHLtop BayesHLopt BayesHL LASSO GL SGL RF PLR NN XGboost Knockoff

Group 1 1 1 6 3 155 4 3 172 200 136 36

Group 2 1 1 8 3 123 5 5 177 200 0 9

Group 3 1 1 6 7 176 12 102 192 200 0 170

Group 4 0 0 1 10 215 22 3 1020 1259 0 17

Total 4 3 21 23 669 43 113 1561 1859 136 232

(b) Out-of-sample predictive performance

ER 0.18 0.17 0.12 0.14 0.10 0.16 0.15 0.10 0.10 0.14 0.43

AMLP 0.47 0.48 0.33 0.34 0.25 0.46 0.37 0.26 0.31 0.35 16.88

AUROC 0.90 0.91 0.95 0.93 0.97 0.92 0.93 0.95 0.92 0.92 0.55

AUPRC 0.91 0.92 0.94 0.93 0.96 0.95 0.93 0.96 0.92 0.92 0.55

Table 4.  Comparison of feature selection and out-of-sample prediction performance of different methods on 
a simulated dataset with correlated weakly differentiated features. BayesHLopt: optimal feature subset from 
BayesHL. BayesHLtop: top feature subset from BayesHL. BayesHL: average prediction probability across feature 
subsets identified by BayesHL. RF: random forest. NN: neural network. XGboost: eXtreme Gradient Boosting. 
Knockoff: knock off variable selection followed with logistic regression. AMLP: average minus log-probabilities. 
AUROC: area under ROC. AUPRC: area under precision-recall curve.
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The rest of this section is organized as follows: we first compare the predictive performance of our algorithm 
vs. the competitors with a classification analysis on 5-year EC survival outcome, then introduce and discuss the 
results of survival analysis and pathway analysis. Finally, we discuss possible biological explanations for the results 
of these analyses.

Comparison of the algorithms’ results via classification analysis.  We applied all methods to the 
dataset (n = 266 samples, p = 7298 features), with leave-one-out cross-validation, to perform binary classifi-
cation for 5-year overall survival (OS) outcome of patients (Y). Specifically, classification methods were trained 
on each leave-one-out training set (265 samples) and then used to predict on the leave-out test case. Covariates 
such as age, diagnosis year and radiation therapy are also included in the model. The cross-validated prediction 
probabilities across folds were then collected to evaluate the overall performance for all methods. For the purpose 
of comparison, we performed the same steps detailed above with all algorithms: LASSO, Group LASSO (GL), 
supervised Group LASSO (SGL), Random Forest (RF), Penalized Logistic Regression (PLR) with a hyper-LASSO 
penalty, neural network (NN), eXtreme Gradient Boosting (XGBoost), knockoff (knockoff) variable selection, 
and BayesHL. Note that we report the prediction probabilities from BayesHL as explained in the method section. 
The implementation details of other methods can be found in the supplement.

Table 5 presents the results of our analysis. As can be seen, BayesHL had the best performance out of all the 
classifiers with respect to three of the four measures (false predictions, AMLP, and area under precision-recall 
curve (AUPRC)). GL demonstrated slightly better predictive performance than BayesHL with respect to area 
under ROC (AUROC). However, the differences of ROC curves from BayesHL and Group LASSO are not statis-
tically significant under Delong’s two-sided test56 (p-value = 0.79). The AUPRC values are substantially different 
across methods and BayesHL provide the optimal result. BayesHL also have the optimal AMLP values. Note that 
the infinite AMLP values from the Random Forest and Neural Network methods imply that there exist extreme 
misclassifications. Finally, both Group LASSO and SGL performed relatively better than the rest of methods 
(except BayesHL), suggesting potential existence of grouping structures among genes. In conclusion, we prefer 
AMLP and AUPRC (over AUROC and ER) to evaluate the performance of all methods for this imbalanced clas-
sification problem (12.8% high risk patients), and under both metrics our BayesHL method clearly demonstrated 
better prediction power by using more succinct feature subset selections.

Comparison via survival analysis.  Next, we compared the algorithms’ results by performing a 
Kaplan-Meier correlation. The 5-year OS for each patient was calculated using leave-one-out cross-validation. 
Patients were classified as either high-risk or low-risk according to the minimum survival probability, with 0.5 as 
the cutoff threshold. The Kaplan-Meier curve in Fig. 2 shows that patients in the high-risk group had significantly 
lower 5-year OS than those in the low-risk group (log-rank test p = 3.73e−14) based on the BayesHL predictions. 
By comparison, Group LASSO did not achieve statistical significance p = 0.012 in the same Kaplan-Meier test. 
Note that we only compare the results of BayesHL with Group LASSO here because of their superior classification 
performance in Table 5.

Comparison via IPA pathway analysis.  Finally, we conducted a pathway analysis of the identified gene 
signatures using the Ingenuity Pathways Analysis (IPA) system57. The resulting network is derived from the 
Ingenuity Knowledge Base and indicates which roles the input genes play in a global molecular network. The 
purpose of the IPA analysis is to see whether the genes output by our method and the competitors are related to 
potentially cancer-linked subnetworks. Figure 3a shows the results of our IPA analysis for the BayesHL-selected 
features on the whole dataset. As can be seen, the BayesHL-selected features are related to eight subnetworks, 
one of which is clearly linked to a cancer outcome (“Cancer, organismal injury and abnormalities, and tumor 
morphology”).

Explanation of the results.  In this section, we examine the genes selected by BayesHL and explore why 
some of these genes might be linked to EC survival outcomes. Table 6 provides a list of the BayesHL-selected 
feature subsets, along with measures of their leave-one-out cross-validated predictive performance on the whole 
dataset.

We observe that genes HOXB3 and SH3BP2 both appear twice in Table 6. This is supporting evidence for 
our claim of BayesHL’s effectiveness, because these genes are known to be prognostic markers for endometrial 
cancer. HOXB3 can induce the transformation and proliferation of tumor cells in breast cancer58 and ovarian 
cancer59. It has recently been tested as a regulation target to control endometrial cancer60. The protein encoded by 
SH3BP2 functions in the cell that signals various immune response pathways61. This information, combined with 

BayesHL LASSO GL SGL RF PLR NN XGBoost knockoff

False Predictions 29 35 33 32 34 49 55 37 39

AMLP 0.30 0.34 0.31 0.32 Inf 0.98 Inf 0.34 0.60

AUROC 0.78 0.72 0.80 0.79 0.73 0.65 0.70 0.77 0.70

AUPRC 0.54 0.31 0.41 0.42 0.36 0.25 0.29 0.35 0.32

Table 5.  Comparison of cross-validated predictive performance on endometrial cancer data (N = 266) using 
all methods. AMLP: average minus log probabilities. AUROC: area under ROC, AUPRC: area under precision-
recall curve. GL: Group LASSO, SGL: supervised Group LASSO, RF: Random Forest, PLR: Penalized Logistic 
Regression with a hyper-LASSO penalty, NN: neural network, XGBoost: eXtreme Gradient Boosting, knockoff: 
knockoff variable selection followed with logistic regression.
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our finding (that SH3BP2 might be a survival-related gene for EC patients) suggest that EC cells may induce an 
abnormal immune system response that leads to a worse survival outcome. For example, we know that SH3BP2 
protein helps to regulate signaling pathways that activate B cells and macrophages, whose infiltration in necrosis 
in the tumor center (hot-spot tumor associated macrophages) is a hazard factor to relapse-free survival of endo-
metrial cancer patients62.

From Table 6, we also observe that the gene TAF8 appears numerous times. Moreover, TAF8 plays a central 
role in the cancer-related subnetwork we found during our IPA analysis (see Fig. 3b below for a detailed view of 
how BHTF-selected genes fit into the cancer and morphology subnetwork). Specifically, BayesHL assigns gene 
TAF8 the highest coefficient value, and the IPA analysis located TAF8 in one of the central positions in the cancer 
and morphology subnetwork (highlighted in red in Fig. 3b). It is known that TAFs contribute to the differentia-
tion and proliferation of cells, and several TAFs (including TAF2, TAF4B, TAF9) have been identified as tumor 
promoters or suppressors in ovarian cancer63,64. However, more research must be done before we can establish a 
link between TAF8 and EC; and as of yet, no study exists on that topic.

Figure 2.  Kaplan-Meier estimates of the 5-year OS for all (266) EC patients, according to the cross-validated 
prediction probabilities from BayesHL and Group LASSO.

Figure 3.  Molecular network information of the genes selected by BayesHL from the IPA knowledgebase. (a) 
All networks identified for genes selected by BayesHL. (b) Subnetwork corresponding to cancer, organismal 
injury and abnormalities, and tumor morphology. Arrows with solid lines represent direct interactions and 
arrows with broken lines represent indirect interactions. Direction of the arrows represents causal effects from 
upstream to downstream or protein self-bindings. The shapes of blocks correspond to different classes of general 
molecular functions in IPA knowledgebase. The color inside each block reflects the (averaged) gene coefficients 
from BayesHL model. Red indicates that the expression of the gene has negative impact on survival outcome 
and cyan indicates positive impact. White denotes no impact. The blocks with blue circle and green edges 
denote genes that occur in the selected 19 feature subsets from BayesHL. Both figures were generated through 
the use of IPA57 software (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-
analysis).
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In conclusion, these results suggest a potential central role of TAF8, VWA1 and THEM6 in the endometrial 
cancer development and survival outcome, by their repeated occurrence in most of feature subsets identified 
by FBRHT. Another interesting network identified by IPA is the one associated with cellular development and 
growth, proliferation and embryonic development, which includes C21orf57, CBLC, HOXB3, and HOXB6. Our 
finding that the representatives from these two sub-networks are repeatedly selected by FBRHT may suggest that 
the development of endometrial cancer, as well as the corresponding survival outcome, could be influenced by 
the regulation factors of cell proliferation and pathways of protein binding process. In conclusion, this study iden-
tified several candidate genes and sub-networks that may play an important role in key aspects of endometrial 
cancer development, and eventually lead to different survival outcome.

Discussion
In this paper, we proposed a feature selection method, Bayesian Robit regression with Hyper-LASSO priors 
(BayesHL), that employs MCMC to explore the posteriors of Robit classification models with heavy-tailed priors. 
We conducted experiments— with real data— that demonstrate BayesHL’s ability to find sparse feature subsets 
with good predictive power, and to automatically make selections within groups of correlated features (without 
a pre-specified grouping structure). In future work, we would like to improve the accuracy of our feature subset 
selection method, and apply our Bayesian Inference framework to other models and non-convex penalties.

Regarding the first goal, we hope to optimize the selection of feature subsets. Currently, MCMC introduces 
small random jitters into the sample values of a βj, which inadvertently lead to the selection of certain undesirable 
features. To address this problem, we use a large arbitrary threshold of 0.1 (on the relative magnitudes of coeffi-
cients) to eliminate such undesirable features. But this results in overly sparse feature subsets and risks omitting 
features with small coefficients. Future work should aim to resolve this optimization problem without introduc-
ing over-sparsity. There are three general approaches we could take. First, we could consider a fast optimization 
algorithm, which can take the sparsity in coefficients into consideration, to find the exact modes from the MCMC 
samples. Second, we could use mixture modeling or clustering methods to divide MCMC samples according to 
their modes, and third, we could use a “reference approach” to find the feature subset (from among the MCMC 
samples) that gives similar predictions as the global mode of all the MCMC samples (not the best within-sample 
predictive power)65.

Finally, another possible direction for future work is to apply the Bayesian inference we developed in this 
paper to many other models (e.g., linear, graphical) and non-convex penalties to address feature selection prob-
lems in different application domains.

In conclusion, we would like to highlight two interesting findings from this study. First, our experiments with 
high-dimensional data— show that BayesHL results are comparable, in terms of their predictive power, to those 
of competitors (including LASSO, group LASSO, supervised group LASSO, random forest, penalized logistic 
regression, neural network, XGBoost and Knockoff) using far more sparse feature subsets. Secondly, in verify-
ing the efficacy of BayesHL, we not only uncovered sparse feature subsets; we also identified genes that may be 
biologically meaningful in determining the survival outcome of endometrial cancer patients. Although we know 
that much work remains to be done, our results demonstrate that BayesHL has enormous potential for use in gene 
expression analysis.

frequency Genes False Prediction AMLP AUROC AUPRC

1 0.1 FADS1, TAF8 28 0.33 0.73 0.45

2 0.08 HOXB6, TAF8 29 0.32 0.75 0.44

3 0.07 CBLC, TAF8 31 0.34 0.72 0.42

4 0.07 SH3BP2, TAF8 32 0.33 0.75 0.45

5 0.07 C4orf3, TAF8 28 0.30 0.78 0.51

6 0.06 BID, TAF8 31 0.33 0.76 0.42

7 0.06 C21orf57, TAF8 30 0.32 0.76 0.43

8 0.06 FADS1 34 0.39 1.00 0.07

9 0.05 SH3BP2 35 0.37 0.66 0.28

10 0.05 C8orf55, ENC1 34 0.37 0.63 0.24

11 0.05 IFT46, TAF8 33 0.31 0.81 0.45

12 0.04 HOXB3, TAF8 28 0.32 0.75 0.48

13 0.04 C8orf55 34 0.37 0.64 0.17

14 0.04 RNASEH2C, TAF8 30 0.34 0.72 0.43

15 0.04 LAMA5 33 0.36 0.65 0.25

16 0.04 C4orf3, HOXB3, TAF8 25 0.29 0.81 0.56

17 0.03 TAF8, VWA1 32 0.32 0.75 0.45

18 0.03 C21orf57 33 0.36 0.67 0.29

19 0.03 C4orf3, FADS1, TAF8 27 0.31 0.77 0.51

Table 6.  BayesHL-selected feature subsets and the corresponding cross-validated prediction performance on 
the endometrial cancer dataset (N = 266). AMLP: average minus log probabilities. AUROC: area under ROC, 
AUPRC: area under precision-recall curve.
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