Skip to main content
. 2020 Jun 10;11:832. doi: 10.3389/fpls.2020.00832

Figure 1.

Figure 1

Supposed molecular events occurred in nanoprimed seed compartments. Internalization of nanoparticles from seed coat into nanoprimed seeds. (A) Undetermined involvement of GA and IAA in internalization as well as transport from seed coat to endosperm is highlighted by dashed lines. (B) Unidentified antioxidant scavengers triggering transduction events in ROS signaling on seed germination (C) Unknown downstream regulators of ROS transcription factors in turning on phytohormones is shown.(D) Factors involved in sugar signaling responses after nanoparticle adhesion to radicle emergence is indicated. (E, F) Phytohormone crosstalk between aquaporin genes and nanoparticles beyond ABA/GA are highlighted which includes the both upregulated and downregulated aquaporin mediated gene transcription. (G) Involvement of phytohormones and factors controlling the breakdown of starch granules in to α-amylase after nanoparticle internalization. (H) Undetermined downstream regulators of GA signaling pathway in promoting seed germination after priming is denoted. (I) Role of phytohormones in high uptake of water in nanoprimed seeds after imbibition is currently unknown and are presented. NP, Nanoparticles; AQP, Aquaporin's; GA, Gibberellic acid; ABA, Abscisic acid. Dashed lines indicate unknown factors involved.