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Abstract. The Régie du Logement du Québec (RDL) is a tribunal
with exclusive jurisdiction in matters regarding rental leases. Within the
framework of the ACT (Autonomy Through Cyberjustice Technologies)
project, we processed an original collection of court decisions in French
and performed a thorough analysis to reveal biases that may influence
prediction experiments. We studied a multilabel classification task that
consists in predicting the types of verdict in order to illustrate the impor-
tance of prior data analysis. Our best model, based on the FlauBERT
language model, achieves F1 score micro averages of 93.7% and 84.9%
in Landlord v. Tenant and Tenant v. Landlord cases respectively. How-
ever, with the support of our in-depth analysis, we emphasize that these
results should be kept in perspective and that some metrics may not be
suitable for evaluating systems in sensitive domains such as housing law.
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1 Context

Many works related to artificial intelligence and law focus on the creation of
tools intended for legal professionals to address, say, legal information retrieval
with Natural Language Processing (NLP) [10] or knowledge management [3].
In the context of the ACT project (Autonomy Through Cyberjustice Technolo-
gies, https://www.ajcact.org/en), methods are explored in order to facilitate and
automate access to justice for laymen unfamiliar with legal procedures. For the
purpose of evaluating how far machine learning can fulfill these goals, our work
focuses on lawsuits submitted to the Régie du Logement du Québec (RDL), a
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tribunal specialized in tenant-landlord disputes. To the best of our knowledge,
no work investigated this dataset apart from [15] which only studied a tiny frac-
tion of it. One long-term goal of the ACT project is to make a system that
allows tenants to gauge their chances of winning a case against their landlord
and what outcomes they could expect from it by combining personal situations
and relevant laws.

In [2], the authors describe a classification model that can simulate such legal
reasoning. We can distinguish a first group of classification works as in [1,11,14]
that rely on relatively small datasets (usually at most ten thousand samples)
but annotated by legal experts. A second group of more recent works such as
[5,12,13] apply text mining and NLP engineering on available metadata, thus
relaxing the constraint of scarce human annotation and allowing dramatically
larger datasets (at least a hundred thousand instances). Some preprocessing
work for extracting labels or categories is shown in [12,14], which emphasizes
the importance of performing that step with care in order to design sensible and
understandable prediction tasks.

In our work, we deepened that latter point by first conducting a thorough
analysis on RDL lawsuits and then presenting one multilabel classification task.
Then, we discuss the results obtained and reflect upon how to properly evaluate
legal prediction experiments.

2 Dataset Analysis

Understanding the data, especially in a specific domain such as housing law, is
paramount to conduct meaningful experiments. The RDL collection consists of
981,112 decisions in French issued from 2001 to early 2018 by 72 judges in 29
tribunals around Quebec. Some of these documents are provided as public data
by the SOQUIJ legal documents search engine (http://citoyens.soquij.qc.ca/);
however, we obtained access to the entire corpus. Each decision mainly consists
of a body of text with three parts that always appear in the following order, as
illustrated in Fig. 1:

– fact descriptions and evidence presented by each party (here, a proof of ten-
ant’s failure to comply with payment schedule; lines 1 to 3 in Fig. 1);

– a legal reasoning section in which the judge analyses the case in the light of
the applicable laws (lines 4 to 6);

– a verdict section with the judge final decisions (e.g. defendant ordered to pay
damages to the plaintiff, rejection of the claim; lines 7 to 11).

The decisions also contain metadata (top and bottom of Fig. 1). After clean-
ing up and removing all documents with missing information and duplicates, we
obtained a total of 667,305 texts with an average length of 363 tokens.

http://citoyens.soquij.qc.ca/
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Fig. 1. RDL sample decision from SOQUIJ (available at http://t.soquij.ca/p9TYc)

2.1 Analysis of the Plaintiffs and Defendants

We extracted from the metadata of each decision over a dozen of characteristics
using NLP-engineered methods. For instance, we managed to identify the type
of each party: legal persons (juridical entities like organizations) and natural
(human and physical) persons. The latter encompasses four sub-categories: suc-
cession (a liquidator acts on behalf of a deceased person), multiple persons, single
female and single male. Overall, 89% of all cases involve landlords suing tenants
(Landlord v. Tenant scenarios or LvT) while 11% involve tenants suing landlords
(Tenant v. Landlord scenarios or TvL). In the first scenario, plaintiffs are mostly
legal persons while defendants are an absolute majority of single males as shown
in Table 1. In the TvL setting, plaintiffs and defendants are predominantly single
males.

http://t.soquij.ca/p9TYc
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Table 1. Distribution of plaintiff and defendant types (in percent) by case types

Case type Landlord v. Tenant Tenant v. Landlord

Party Plaintiff Defendant Plaintiff Defendant

Legal person 41.3 0.2 0.3 33.0

N
a
tu

r.
p
e
rs
. Single male 36.8 60.1 54.0 40.0

Single female 11.0 39.5 45.5 14.0

Multiple (any genders) 10.7 0.0 0.0 12.6

Succession 0.2 0.2 0.2 0.3

Total 100 100 100 100

Number of decisions 595,808 71,497

2.2 Analysis of the Verdicts

Extracting consistent outcomes from the judgments (i.e. lines 7 to 11 in Fig. 1)
is crucial for the feasibility and interpretability of prediction tasks. Difficulties
in making a simple representation encompassing a wide variety of rulings were
shown in [14]. One possible solution consists in identifying a “winner” between
the plaintiff and the defendant, but this binary approach is not always suitable
(e.g. the plaintiff’s claims are partly accepted and rejected by the judge). An
opposite approach consists in making labels that cover all possible outcomes,
implying a high annotation cost partly illustrated in [15], plus the risk of numer-
ous overly specific labels applicable to very few instances as in [5]. We chose an
intermediate solution by narrowing all outcomes to three binary labels:

– penalty: the defendant receives penalties (e.g. an order for the landlord to
pay damages, an eviction from the accommodation for a tenant);

– agreement: the judge enforces an agreement between both parties;
– rejection: the judge fully or partially rejects the plaintiff’s claims.

These three outcomes are not mutually exclusive and can be applied to any
case regardless of whether the plaintiff is the landlord or the tenant. We used
an approach similar to [8] for determining the labels of each case by relying on
key verbs in capital letters that happen to be good proxies of the verdict. In
the example of Fig. 1, penalty and rejection labels apply due to the verbs CON-
DAMNE and REJETTE on lines 9 and 11. Major trends are shown in Table 2
for each case type: a landlord-plaintiff succeeds in winning over the tenant in
89% of lawsuits while tenant-plaintiffs’ demands are totally or partially rejected
by the judge in 69% of lawsuits. Such biases must be considered carefully. It
might suffice to know whether the plaintiff is a landlord to get a good approx-
imation of the outcome of a lawsuit. So far, all figures found in our analysis
reveal that some care is required when developing machine learning applications
as such biases and imbalance in the dataset might be the cause of deceptively
good results in classification tasks.



Classification of Decisions from Housing Control Tribunals in Quebec 139

Table 2. Distribution of labels (in percent) by case types

Scenario type Landlord v. Tenant Tenant v. Landlord

Cases with agreement label 2.0% 5.4%

Cases with penalty label 89.0% 23.6%

Cases with rejection label 38.3% 68.8%

Total number of cases 595,808 71,497

3 Prediction Task and Results

3.1 Models and Features

As seen in the previous section, claims made by landlords are much more suc-
cessful than those made by tenants. Because of these biases, we decided to make
two subtasks for LvT and TvL scenarios. For each of these subtasks, we made a
60:20:20 train-validation-test split for the corresponding datasets. Our baseline
is a dummy classifier that returns a label if it occurs in more than half of the
training samples. Thus, it will always and only predict the penalty and rejection
labels in LvT and TvL respectively. Among the models used, we present the
results for logistic regression implemented through a One-versus-Rest approach
(OvR, one classifier per label). Three sets of features are used:

– the metadata alone (court location and judge in charge of the audience, pres-
ences and types of plaintiff and defendant);

– the metadata plus TF-IDF vectors (2–8-g at character level) fitted on the
first line of the decision (line 1 on Fig. 1). These vectors are later replaced by
a mean vector of FastText embeddings [4] of all words contained in the first
line. These FastText representations are trained beforehand on the first line
(window and vector sizes of 5 and 300, 10 training epochs);

– the metadata plus TF-IDF or FastText vectors (same settings as above) fitted
this time on all the text before the verdict (lines 1 to 6 on Fig. 1).

The rationale behind using different lengths of the decision is to check
whether models can predict the outcome of a case by solely using the factual
elements of a case without relying on the legal analysis, as in [16]. As stressed
in [13], elements from the legal analysis section may reveal the verdict. In the
absence of efficient means to properly isolate the fact descriptions from the legal
analysis, we used the first line of each decision as a proxy for factual elements.

For the latter two settings with different input text lengths, we also applied
the FlauBERT base cased language model [7], a variant of BERT (Bidirectional
Encoder Representations from Transformers [6]) pretrained on French corpora
that we finetuned to our input text (metadata were not used). We set the batch
size, maximum sequence length and learning rate to 32, 256 and 1e−5 respec-
tively. Training was set to 10 epochs and stopped whenever a lower loss on the
evaluation set was not achieved after 10,000 consecutive optimization steps. Our
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metrics are accuracy (the predicted labels must exactly match the true ones for
a sample to be considered as correctly classified) and micro, macro and weighted
F1 score averages. Results are shown in Table 3.

3.2 Discussion of the Results

With the mere use of metadata as features, we managed to beat the baseline
model in the LvT scenario for almost all metrics, but got little to no improvement
in TvL cases. This may be due to the fact that TvL labels distribution is less
imbalanced compared to LvT (see Table 2). When given access to the first line of
each document, all models outperform the baseline and the TF-IDF method per-
forms slightly better compared to FastText and FlauBERT across all metrics and
scenarios. One possible explanation is that the TF-IDF representation partially
preserves characters order while FastText and FlauBERT expressiveness suffer
from the shortness of the first line. When the input contains all the text before
the verdict, the performances obtained with TF-IDF vectors either stagnate or
slightly degrade. The FastText method, on the contrary, significantly improves
across all metrics, beating TF-IDF. FlauBERT outperforms FastText with dra-
matic improvements across all metrics. The fact that FastText and FlauBERT
achieve better performance across all metrics with respect to TF-IDF can also
be explained by longer text inputs that lead to richer embeddings. On the other
hand, the stagnation of TF-IDF may be due to a dramatically larger number of
n-grams as the text inputs become longer, leading to longer and sparser TF-IDF
vectors that could not be leveraged by our models. FastText and FlauBERT
performances also need to be kept in perspective as the paragraphs at the end
of the longer text input may reveal information about the verdict as mentioned
earlier from [13]. All in all, in both scenarios and with all text before verdict as
input, our best model is the FlauBERT one that achieves 93.7% and 85.2% on
micro average F1 score and accuracy in the LvT scenario, and 84.9% and 74.6%
for the TvL cases.

We must emphasize that regardless of the models and input used, because of
the labels imbalance shown in Table 2, one can easily maximize the individual F1
score of the most frequent label in each subtask (individual F1 score exceeds 94%
for penalty label in LvT and 81% for rejection label in TvL cases for any model).
As a consequence, one can achieve a relatively high micro-average F1 score that
is based on recall and precision of all labels altogether: almost all models score
above 80% and 70% in LvT and TvL scenarios, even in the first-line setting. The
same phenomenon applies to the weighted F1 score average that is also influenced
by the most frequent label (provided it can be easily predicted). As the task of a
judge consists in applying general legal rules to individual cases with their own
particularities, evaluating a classifier for legal outcomes with micro or weighted
F1 score averages may convey deceptively good results as these metrics can be
influenced by ubiquitous patterns in the data. On the other hand, accuracy and
macro F1 score seem to be less sensitive to data imbalance and may be preferred
for getting a more rigorous evaluation of predictive systems in sensitive domains
such as housing law, though accuracy may also be considered as a metric biased
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Table 3. Multilabel classification results for Landlord v. Tenant and Tenant v. Land-
lord scenarios in percent (for the last two features sets, the highest value of each column
is bold)

Landlord v. Tenant Tenant v. Landlord

F1 micr. F1 macr. F1 weig. Accu. F1 micr. F1 macr. F1 weig. Accu.

Dummy 77.5 31.4 64.7 56.9 69.8 27.2 57.6 58.3

Metadata only

OvR Log. reg. 84.3 50.7 82.4 65.4 69.8 35.5 63.4 57.7

Metadata (except FlauBERT) + the first line

TFIDF representation (2-8 grams at character level)

OvR Log. reg. 87.0 66.7 85.9 70.3 78.1 65.4 77.4 65.4

Mean vector of FastText embeddings (vector size 300 and window size 5)

OvR Log. reg. 85.1 54.6 83.6 66.6 72.7 48.3 69.9 59.3

FlauBERT (batch size 32, max seq length 256, learning rate 1e-5)

Transformers 83.4 60.9 80.2 64.0 74.0 58.7 73.0 60.1

Metadata (except FlauBERT) + all text before verdict

TFIDF representation (2-8 grams at character level)

OvR Log. reg. 86.9 66.8 85.9 70.3 78.1 65.1 77.3 65.2

Mean vector of FastText embeddings (vector size 300 and window size 5)

OvR Log. reg. 88.7 81.0 88.2 73.7 80.1 77.1 79.7 66.6

FlauBERT (batch size 32, max seq length 256, learning rate 1e-5)

Transformers 93.7 90.8 93.7 85.2 84.9 84.7 85.1 74.6

against the majority class when applied to an imbalanced dataset. We would not
have been aware of all these fine details without a prior thorough examination
of the dataset itself.

4 Conclusion

In this work, we built and analyzed thoroughly an original collection of court
decisions in French about landlord-tenant disputes. We were able to extract over
a dozen of characteristics for each decision and to detect biases contained in the
dataset such as landlords being much more successful plaintiffs with respect to
tenants. Such analysis was only feasible thanks to carefully engineered NLP tools
combined with background knowledge of the housing law domain. This prelimi-
nary step allowed us to suggest one multilabel classification task for predicting
legal rulings. Two distinct subtasks were designed for Landlord v. Tenant (LvT)
and Tenant v. Landlord (TvL) lawsuits. We could observe that TF-IDF based
methods perform relatively well when given the first line of each decision while
FastText and FlauBERT approaches excel when all text before verdict is given
as input. The latter achieved micro F1 score average and accuracy of 93.7% and
85.2% in LvT cases and 84.9% and 74.6% for TvL cases respectively. Thanks to
our prior in-depth study of the strong trends present in the data, we emphasized
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the risk of using micro and weighted F1 score averages which can be artificially
maximized in the presence of overly frequent labels. This remark is particularly
important in the evaluation of legal classification models as judges must apply
general legal rules to individual cases with their own particularities.

As future work, we consider pursuing our study with a regression task (pre-
dicting the amount of indemnities awarded that the judge orders the losing
defendant to pay), improving our input corpora by isolating the text sections
related to fact descriptions from those related to legal analysis, and further
investigation of CamemBERT [9] for the multilabel classification task.
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2. Ashley, K.D., Brüninghaus, S.: Automatically classifying case texts and predict-
ing outcomes. Artif. Intell. Law 17(2), 125–165 (2009). https://doi.org/10.1007/
s10506-009-9077-9

3. Boella, G., Di Caro, L., Humphreys, L., Robaldo, L., Rossi, P., van der Torre, L.:
Eunomos, a legal document and knowledge management system for the web to
provide relevant, reliable and up-to-date information on the law. Artif. Intell. Law
24(3), 245–283 (2016). https://doi.org/10.1007/s10506-016-9184-3

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

5. Chalkidis, I., Fergadiotis, E., Malakasiotis, P., Androutsopoulos, I.: Large-scale
multi-label text classification on EU legislation. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 6314–6322. Associ-
ation for Computational Linguistics, Florence, July 2019

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, June 2019.
https://doi.org/10.18653/v1/N19-1423, https://www.aclweb.org/anthology/N19-
1423

7. Le, H., et al.: FlauBERT: unsupervised language model pre-training for French.
arXiv preprint arXiv:1912.05372 (2019)

8. de Maat, E., Winkels, R.: Automated classification of norms in sources of law. In:
Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Pro-
cessing of Legal Texts. LNCS (LNAI), vol. 6036, pp. 170–191. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12837-0 10

9. Martin, L., et al.: CamemBERT: a tasty French language model. arXiv preprint
arXiv:1911.03894 (2019)

https://doi.org/10.1007/s10506-009-9077-9
https://doi.org/10.1007/s10506-009-9077-9
https://doi.org/10.1007/s10506-016-9184-3
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://arxiv.org/abs/1912.05372
https://doi.org/10.1007/978-3-642-12837-0_10
http://arxiv.org/abs/1911.03894


Classification of Decisions from Housing Control Tribunals in Quebec 143

10. Maxwell, T., Schafer, B.: Natural language processing and query expansion in legal
information retrieval: challenges and a response. Int. Rev. Law Comput. Technol.
24(1), 63–72 (2010)

11. Nallapati, R., Manning, C.D.: Legal docket-entry classification: where machine
learning stumbles. In: Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing, pp. 438–446. Association for Computational Linguistics
(2008)

12. Soh, J., Lim, H.K., Chai, I.E.: Legal area classification: a comparative study of
text classifiers on Singapore Supreme Court judgments. In: Proceedings of the
Natural Legal Language Processing Workshop 2019, pp. 67–77. Association for
Computational Linguistics, Minneapolis, June 2019
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