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Abstract

Nutrition research can be conducted by using two complementary approaches: (i)

traditional self-reporting methods or (ii) via metabolomics techniques to analyze food

intake biomarkers in biofluids. However, the complexity and heterogeneity of these

two very different types of data often hinder their analysis and integration. To manage

this challenge, we have developed a novel ontology that describes food and their

associated metabolite entities in a hierarchical way. This ontology uses a formal naming

system, category definitions, properties and relations between both types of data. The

ontology presented is called FOBI (Food-Biomarker Ontology) and it is composed of two

interconnected sub-ontologies. One is a ’Food Ontology’ consisting of raw foods and

‘multi-component foods’ while the second is a ‘Biomarker Ontology’ containing food

intake biomarkers classified by their chemical classes. These two sub-ontologies are

conceptually independent but interconnected by different properties. This allows data

and information regarding foods and food biomarkers to be visualized in a bidirectional

way, going from metabolomics to nutritional data or vice versa. Potential applications

of this ontology include the annotation of foods and biomarkers using a well-defined

and consistent nomenclature, the standardized reporting of metabolomics workflows

(e.g. metabolite identification, experimental design) or the application of different enrich-

ment analysis approaches to analyze nutrimetabolomic data. Availability: FOBI is freely

available in both OWL (Web Ontology Language) and OBO (Open Biomedical Ontolo-

gies) formats at the project’s Github repository (https://github.com/pcastellanoescuder/

FoodBiomarkerOntology) and FOBI visualization tool is available in https://polcastellano.

shinyapps.io/FOBI_Visualization_Tool/.

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
https://github.com/pcastellanoescuder/FoodBiomarkerOntology
https://polcastellano.shinyapps.io/FOBI_Visualization_Tool/
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Introduction

The growing emergence of high-throughput analyti-
cal techniques in the life sciences over the past three
decades, such as next-generation DNA sequencing, pro-
teomics, metabolomics and other high-throughput omics
approaches, has created significant challenges in data
management. Currently, one of the main problems that
researchers face lies in the question: where are these
data sets and how can I use them? Unfortunately, the
heterogeneity of storage platforms, data formats and
privacy requirements of some of them often hinders their
widespread access and use. In this vein, the creation of
ontologies, defined as the ‘specification of a represen-
tational vocabulary for a shared domain of discourse—
definitions of classes, relations, functions and other objects’
[1], is of vital importance to help analyze, annotate and
homogenize these large and complex data sets [2, 3]. This
is a major issue within the ‘FAIR Guiding Principles for
scientific data management and stewardship’ [4], which
aim to improve the findability, accessibility, interoperability
and reusability of data. In particular, ontologies play a
central role in the ‘Interoperability’ concept [1, 5], which
establishes that ‘(meta)data has to use a formal, accessible,
shared and broadly applicable language for knowledge
representation’ [4].

Nutritional research largely relies on accurate dietary
assessment, which is of great relevance to evaluate food
intake and dietary habits. Dietary assessments also help in
understanding the association between nutrition and health
status. Nutritional research is often conducted by using
two complementary approaches: (i) self-reporting methods
(e.g. food frequency questionnaires, dietary recalls) [6] and
(ii) the measurement of dietary biomarkers using a variety
of analytical chemistry techniques, including metabolomics
[7, 8]. With regard to traditional dietary assessment tools,
it should be noted that subjective self-reports generate very
complex textual data, containing types and quantities of
foods and recipes in very diverse and heterogeneous for-
mats that depend on the country/region, socio-demographic
factors, etc.

To properly annotate this nutritional data using a com-
mon language, the most relevant ontology in nutrition
research is FoodOn [9]. FoodOn is a comprehensive ontol-
ogy composed of ‘term hierarchy facets’ that cover basic
raw food source ingredients, packaging methods, cooking
methods and preservation methods. It also includes an
upper-level consisting of a variety of product type schemes
under which food products can be categorized. On the
other hand, the metabolomics standards initiative has also
highlighted the importance of ontologies in metabolomics
[10]. As Schlegel et al. reported, ‘the application of ontolo-

gies to metabolomics can improve the consistency of study
data and can help link data using relationships that extend
the computational capacity of the study data and enrich
that knowledge source with a myriad of nationally avail-
able data to help fuel hypothesis driven laboratory based
research’ [3].

In response to this, ChEBI (Chemical Entities of Biolog-
ical Interest, https://www.ebi.ac.uk/chebi/) has developed
a reference ontology for describing chemical compounds
of biological interest in terms of their chemical structures,
chemical categories and roles [11]. The ChEBI ontology
is manually maintained and annotated. More recently, an
automatic method for describing and classifying chemi-
cals, called ClassyFire [12], has been developed and widely
adopted by databases such as ChEBI, PubChem [13] and the
Human Metabolome Database (HMDB) [14]. ClassyFire
uses the ChemOnt ontology, consisting of more than 4800
different categories (with definitions) hierarchically struc-
tured into 11 different levels (Kingdom, SuperClass, Class,
SubClass, etc.). Additionally, the HMDB has developed the
ChemFOnt (chemical functional ontology) to describe the
biological and industrial functions of all the compounds
and metabolites found in this database. ChemFOnt consists
of four major categories (physiological effect, disposition,
process and role), 152 sub-categories and more than 4100
defined terms.

Although most existing ontologies have been specifically
designed for a single theme, there are also some others
composed of interconnected sub-ontologies, thus enabling
users to establish relationships among different variables.
For instance, ChEBI is organized in two sub-ontologies: (i)
‘Molecular Structure’, in which molecular entities are clas-
sified according to structure and (ii) ‘Subatomic Particle’,
which classifies particles smaller than atoms. On the other
hand, the Gene Ontology, includes three independent sub-
ontologies: (i) ‘Biological process’, referred to a biological
objective to which the gene or gene product contributes;
(ii) ‘Molecular function’, defined as the biochemical activity
of a gene product; and (iii) ‘Cellular component’, which
refers to the place in the cell where a gene product is
active [15]. In this regard, we would argue that nutri-
tional research also generates large amounts of complex
and inter-related data coming from self-reporting methods
and metabolomics experiments. Therefore, an intercon-
nected set of sub-ontologies would be particularly use-
ful for defining relationships between both metabolomics
data and self-reported dietary questionnaires. To facilitate
the construction of such an ontology that describes both
foods and their associated metabolite biomarkers, we will
draw from several open-access databases. These include
Exposome-Explorer [16], Phenol-Explorer [17], PhytoHub
(http://phytohub.eu/) and Food Database (FooDB) (http://

https://www.ebi.ac.uk/chebi/
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foodb.ca/)—all of which contain rich information about
food constituents and food metabolites.

However, relationships between foods and their metabo-
lites are extremely complex and the way they are described
varies tremendously across these databases. This lack of
commonality and the lack of a common, hierarchical struc-
ture makes data comparison and data searching quite diffi-
cult. Therefore, the development of a comprehensive ontol-
ogy to clearly define the relationships between nutritional
(food composition) and metabolomics (food metabolite
or biomarker) data is needed. This ontology could have
multiple practical applications in nutrimetabolomics, being
the annotation of terms using a consistent and standardized
nomenclature the most basic one, but of great importance
in this research field due to the inherent complexity and
heterogeneity of the data managed (i.e. multiple names/syn-
onyms to define the same food/metabolite). Additionally,
other potential applications of the ontology could be the
ability to perform different enrichment analysis (e.g. to
investigate patterns of food consumption on the basis of
metabolomics data sets) or to conduct semantic similarity
analysis (e.g. to establish novel associations between foods
and metabolites). In this work, we describe FOBI (the Food-
Biomarker Ontology), an ontology created with the aim
of providing a common language to describe the many
complex relationships in nutrimetabolomics research. This
new ontology will allow users (and online databases) to
integrate dictionaries and analyze these two kinds of data
independently or together in a consistent and homoge-
neous way.

Results

FOBI is a freely available comprehensive ontology com-
posed of two interconnected sub-ontologies including the
‘Food Ontology’ and the ‘Biomarker Ontology’. This ontol-
ogy has been built using Protégé [18] and is available in
OWL (Web Ontology Language) and OBO (Open Biomed-
ical Ontologies) formats at the project’s Github reposi-
tory (https://github.com/pcastellanoescuder/FoodBiomarke
rOntology). FOBI consists of 1197 terms, 4 different prop-
erties, 13 food top-level classes, 11 biomarker top-level
classes and more than 4500 relationships. Furthermore,
FOBI is part of OBOFoundry project and FOBI IDs have
been indexed into the HMDB and FooDB databases to
facilitate the interoperability and the exchange of data.

Food Ontology

The Food Ontology was created on the basis of dietary data
obtained from self-reported surveys for dietary assessment,
including food frequency questionnaires (FFQ) and dietary

recalls (DRs) [6]. The FFQ is a closed-ended survey that
provides information on long-term dietary habits regarding
a pre-defined list of 100–150 food items. On the other hand,
DRs collect detailed information about foods consumed
over a specific period (e.g. 24 hours, 3 days). To expand
our Food Ontology as much as possible, we used the
knowhow of our research group in working with FFQs and
DRs collected from previous and ongoing projects. These
projects involved cohorts from various European countries
(e.g. Spain, France, United Kingdom). This allowed us to
cover common foods for various dietary patterns, thus
potentiating the applicability of FOBI in diverse research
projects.

Accordingly, the Food Ontology is composed of more
than 350 entities classified in different food classes. For
this purpose, we considered both ‘raw foods’ and ‘multi-
component foods’, with a multi-component food defined as
any food item composed by two or more raw foods. In turn,
the Food Ontology also describes the major ingredients
forming part of each multi-component food according to
the literature [19, 20]. These entities were annotated using
a common nomenclature to reduce the complexity and
heterogeneity of dietary data collected from free text ques-
tionnaires. This is because the same food/multi-component
food can be named in many different ways (e.g. hamburger,
burger, beef burger, etc.). Furthermore, FOBI also includes
the FoodOn IDs for those food items common for both
ontologies.

Major food classes in the Food Ontology were created
considering both the nature of the food and the availability
of food intake biomarkers for each class. A total of 13 food
top-level classes were generated: beverage food product,
cacao food product, dairy food product, egg food product,
flavouring additive, fruits and vegetables, grain plant, lipid
food product, meat food product, multi-component food,
nuts and legumes, spice or herb and sugar. In turn, each of
these 13 top-level classes have different subclass structures
depending on its nature.

Biomarker Ontology

Food intake biomarkers (FIBs) are compounds derived
directly from foods or the metabolism of food compounds
that are characteristic or particular to a specific food item
(e.g. phloretin for apple) or food category (e.g. glucosino-
lates for cruciferous vegetables) [7]. An important aspect
to highlight on this regard is that, although the concen-
tration of these metabolites in the food product may vary
as a response to different factors (e.g. variety, agronomic
practices, breeding, food processing), FIBs can always be
associated with the consumption of the corresponding food
(i.e. apple always contains phloretin, regardless the variety

http://foodb.ca/
https://github.com/pcastellanoescuder/FoodBiomarkerOntology
https://github.com/pcastellanoescuder/FoodBiomarkerOntology
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or cultivation conditions). FIBs potentially consist of a vast
number of chemicals with very different physico-chemical
properties, including polyphenols and carotenoids, coming
from plant-derived foods; derivatives of amino acids and
fatty acids (mainly found in animal products); methylxan-
thines from coffee, tea and cocoa; alkaloids, organic acids
and many others. Food constituents can undergo multiple
biotransformation steps after ingestion, thus significantly
expanding their metabolic complexity. Typically, xenobiotic
food constituents are first subjected to phase I and phase II
transformations, principally in the liver, kidneys and intes-
tine, for detoxification purposes and to facilitate their excre-
tion. Phase I metabolism normally involves cytochrome
P450-mediated oxidation and hydrolysis transformations,
while phase II reactions consist of chemical conjugations,
such as methylation, acetylation, sulfation, glucuronidation
and amino acid conjugation [21]. The gut microbiota also
plays a major role in the metabolism of poorly bioavailable
food derived metabolites, usually involving ring cleavage
reactions and a variety of fermentative pathways to pro-
duce smaller, more easily absorbed derivatives [22]. Rather
than trying to handle all possible compounds (possibly
numbering in the tens of thousands), we chose to gather
currently reported food derived metabolites and to define
their relationships with foods and dietary patterns.

To create the Biomarker Ontology, we considered almost
600 known food metabolites, including dietary compounds
and their host and microbiota-derived metabolites. These
compounds were compiled from extensive literature
reviews and the information contained in open access
databases such as Phenol-Explorer, PhytoHUB and the
FooDB. Of particular help was the material produced by
the EU-funded FoodBAll project (http://foodmetabolome.
org/), which worked on discovering and validating FIBs for
a range of foods. The FoodBAll consortium has produced a
collection of review articles published over the past 2 years
focused on the most frequently consumed food groups
[23–30]. Supplementary Table S1 summarizes the major
classes of FIBs included in our first draft of FOBI and their
associations with foods. It should be noted that this sub-
ontology is only composed by food derived metabolites,
while biomarkers of effect (i.e. endogenous metabolites
altered after food intake) have been discarded. This is not
intended to be a final, definitive ontology of food intake
biomarkers, since it will be updated with novel FIBs as new
studies are reported.

The FIBs in the Biomarker Ontology were classified
according to their chemical classes using ClassyFire [12]
and ChemOnt (version 2.1).

A key challenge in creating this sub-ontology was the
complexity and diversity of the chemical nomenclature
of food derived metabolites. For instance, caffeic acid,

a relatively simple phenolic acid found in numerous
foods such as coffee, can also be named as (E)-3-(3,4-
dihydroxyphenyl)prop-2-enoic acid (IUPAC name), trans-
3,4-dihydroxycinnamic acid, trans-3,4-dihydroxycinnamate
or 3-(3,4-dihydroxyphenyl)acrylic acid, among other
names. This disparity is even greater for more complex
metabolites or phase II derivatives (e.g. caffeic acid 3-
glucuronide, 3,4-dihydroxycinnamic acid 3-glucuronide, 4-
hydroxycinnamic acid 3-O-glucuronide, (2S,3S,4S,5R,6S)-
6-5-[(1E)-2-carboxyeth-1-en-1-yl]-2-hydroxyphenoxy-3,4,5-
trihydroxyoxane-2-carboxylate). To facilitate the use of
FOBI, metabolites are named according to the nomencla-
ture commonly employed by nutrimetabolomic researchers,
which easily enables users to differentiate isomers and
similar metabolites within the same chemical class. Besides
the FOBI ID, this ontology also lists the code numbers for
HMDB, KEGG, ChEBI, PubChem, InChIKey, InChI and
ChemSpider for all these compounds, if available, which
further facilitates the interoperability of FOBI and the
exchange of data. In addition, the Biomarker Ontology
also contains some putative FIBs previously identified via
targeted metabolomics by our research group [31, 32]. It
should be noted that, for most of these biomarkers, only
InChIKey and InChI codes are available. This is because
only a few of them are listed in HMBD, KEGG, ChEBI,
PubChem or ChemSpider so there is limited information
about their biological roles and potential food sources.

In addition, we have created a synonym file with all
these annotations for all food intake biomarkers or food
metabolites included in the Biomarker Ontology, which can
be freely download as a.csv file (Supplementary Table S2).

Ontology architecture

The architecture of FOBI is composed by classes corre-
sponding to the items from the two sub-ontologies previ-
ously described (Food and Biomarker Ontologies), based on
ChEBI (for metabolites) and FoodOn (for foods), respec-
tively, and edges representing their relationships. Within
the Food Ontology, raw foods are connected with the
corresponding food class by the property is_a. On the other
hand, multi-component foods are related to raw foods by
the property Contains, in the same way that raw foods
are connected with multi-component foods in the form of
IsIngredientOf . For the Biomarker Ontology, the relation-
ship between individual metabolites and the chemical class
(defined by ClassyFire) is also defined by the property is_a.
Finally, nodes from the Food and Biomarker Ontologies are
interconnected by the inverse properties BiomarkerOf and
HasBiomarker.

Figure 1 illustrates the FOBI architecture considering
apple as an example. According to this, apple can be

http://foodmetabolome.org/
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa033#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa033#supplementary-data
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Figure 1. FOBI architecture considering apple as an example.

a raw food with the following relationships ‘apple is_a
pomaceous fruit food product is_a plant fruit food product
is_a Fruits and vegetables is_a Food’ (the property is_a
is represented by blue arrows). In addition, apple can
also be an ingredient in multi-component foods such as
apple pie, so that ‘apple IsIngredientOf apple pie is_a
bakery product is_a multi-component food is_a Food’ as
well ‘apple pie Contains apple’ (the properties IsIngredi-
entOf and Contains are represented by orange arrows).
Considering phloretin and 5-(3’,4’-dihydroxyphenyl)-γ -
valerolactone as biomarkers of apple intake, they can be
categorized as ‘phloretin is_a 2’-Hydroxy-dihydrochalcone
is_a Chalcones and dihydrochalcones is_a Linear 1,3-
diarylpropanoid is_a Phenylpropanoids and polyke-
tides is_a Biomarker’ and ‘5-(3’,4’-dihydroxyphenyl)-γ -
valerolactone is_a Catechol is_a Benzenediol is_a Phenol
is_a Benzenoid is_a Biomarker’. Because phloretin is a
specific marker of apple, this metabolite is exclusively
connected via the Food Ontology by the relationships
‘phloretin BiomarkerOf apple’ and ‘apple HasBiomarker
phloretin’ (the properties BiomarkerOf and HasBiomarker
are represented by yellow arrows). On the other hand,
5-(3’,4’-dihydroxyphenyl)-γ -valerolactone can be derived
from various procyanidin-rich foods (cacao, tea), so it
can be connected with them following the same structure
described for apple.

FOBI network analysis

To evaluate the information content of FOBI and its effi-
ciency, we conducted network analysis to compute the
average path length (APL) among FOBI’s network nodes.
The APL is defined as the average number of steps along

the shortest paths for all possible pairs of network nodes.
The APL can be used for enrichment analysis [33] and
is considered a robust measure of a network’s topology
and its efficiency of information transport [34]. From a
more pragmatic point view, the APL can be thought of as
a measure to demonstrate whether the entities (or nodes)
within an ontology are functionally cohesive. Thus, nodes
with high cohesive functionality tend to have lower APL
values compared to randomly selected nodes [33].

If we consider an unweighted directed graph G with
the set of vertices V. Let d(v1, v2), where v1, v2 ∈ V
denote the shortest distance between v1 and v2. Assume that
d(v1, v2) = 0 if v2 cannot be reached from v1. Then, the
APL lG is:

lG = 1
n · (n − 1)

·
∑

i�=j

d(vi, vj), (1)

where n is the number of vertices in G.
To evaluate the FOBI network, we first calculated its

APL and then created 10 000 random graphs using the
Erdös–Rényi algorithm [35] and calculated the mean of
their APLs. The computed FOBI APL value was 2.33, which
is 114.26 standard deviations below the random mean
APL (5.30) (Figure 2), thus demonstrating the very high
information transport efficiency of FOBI compared to a
random network.

Implementation of the FOBI web application

The FOBI’s web application (https://polcastellano.shinya
pps.io/FOBI_Visualization_Tool/) is powered by Shiny
(https://shiny.rstudio.com). This Shiny app imports all FOBI

https://polcastellano.shinyapps.io/FOBI_Visualization_Tool/
https://polcastellano.shinyapps.io/FOBI_Visualization_Tool/
https://shiny.rstudio.com
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Figure 2. APL of FOBI versus random graphs APLs.

relationships in R and organize them in a table or in a graph
according to the user input.

The FOBI application settings panel is shown in
Figure 3A. This user-friendly application accepts both
food and biomarker entries as FOBI entity, which can
be displayed using multiple layouts and using different
properties (is_a, BiomarkerOf and Contains). Results can
be downloaded in either a table or a graph format.

As summarized in Figure 3, this FOBI application
considerably simplifies inspection of the interrelationships
between foods and biomarkers. On one hand, food items
can be interrelated by their properties is_a and Contains
to show their classification according to food classes and
the presence of ingredients in complex multi-component
foods (Figure 3B). Similarly, food intake biomarkers can
also be categorized according to their chemical class and
additionally related to foods by their properties is_a and
BiomarkerOf (Figure 3C).

Discussion

Knowledge of the complex inter-relationships between
food types, food components, food ingredients and food
intake biomarkers is critical to facilitate our understanding
of nutrition and metabolism. Such an understanding
will enable accurate metabolomics-based food intake
assessment and assist with the development of personalized
nutrition strategies to select specific diets according
to the subject’s phenotype, disease state, microbiome,
metabolome, etc.

To this end, we have developed the FOBI. This is a
nutrition-specific ontology composed of two sub-ontologies
with an independent hierarchy but clear relationships
between them. The Food Ontology consists of known
foods grouped according to their major (13) nutritional

classes, while the Biomarker Ontology contains food
derived metabolites categorized according to their chemical
classes. The edges linking these two sub-ontologies define,
using a common language, the hierarchy of each food
and food biomarker entity, as well as the properties that
relate these two kinds of data. This architecture can be
easily interpreted at both the user and computational level.
Likewise, FOBI can be used for different purposes, from
making simple queries to complex computational queries
simultaneously using all the information stored in the
ontology.

Ontologies facilitate many practical applications, such
as annotating entities or items, performing enrichment
analysis (e.g. over representation analysis), conducting
semantic similarity analysis [2] or even to find unexpected
patterns. Some of the potential applications of FOBI are
described below. The most basic application of FOBI is in
the annotation of foods and related food biomarkers using
a consistent, well-defined, fully standardized nomenclature.
This will facilitate the comparability and interoperability
between nutrition studies, projects and research groups.
FOBI will also facilitate nutrimetabolomics research
thanks to the comprehensive description of associations
between food types and food derived metabolites, as
summarized in Supplementary Table S1. For instance,
interrelationships defined in this ontology, together with
the accurate nomenclature defined in the synonym file, will
be particularly useful in untargeted metabolomics studies
(e.g. acute intervention studies) for discriminant feature
identification.

Furthermore, this information can also serve to facilitate
study designs, from hypothesis generation (e.g. expected
metabolites occurring after a dietary intervention) to exper-
imental design (e.g. optimization of targeted metabolomics
methods focused on analytes of interest). Additionally, the
availability of FOBI will give nutrimetabolomic researchers
the ability to perform enrichment analysis. Given a set of
metabolites (e.g. discriminant metabolites identified in a
metabolomics study), the hierarchical structure of FOBI
enables one to evaluate possible over-representation of spe-
cific chemical classes, which could reflect the consumption
of particular foods or food groups. This could be a first step
towards ‘food enrichment analysis’.

Limitations

FOBI has two main limitations. The first one concerns the
relationship between foods and their metabolites. The rela-
tionships that FOBI contain are limited to the best known
and most frequent. However, there can be relationships
between foods and their metabolites that FOBI does not
contain due to the fact that not every food compound (or its

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa033#supplementary-data
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Figure 3. The FOBI web application. (A) Settings panel of the web interface; (B) interrelationships of food items in FOBI; (C) relationships between

food items and metabolites in FOBI.

metabolite) has been tested for its presence in certain foods
or within certain human biofluids.

The second limitation concerns the limited number of
foods and food metabolites/biomarkers in FOBI. Currently,
FOBI has more than 350 food nodes (in total) and 590 food
biomarkers (only metabolites) corresponding to more than
4500 relationships (among foods, among biomarkers and
between foods and biomarkers). As with most ontologies,
FOBI is undergoing constant evolution and development.
As a result, the number of entities and the quality of
relationships described in this ontology will be continuously
increasing and improving.

Future work

FOBI is an open-source project that can be readily
used and enhanced by anyone in the nutritional and
nutrimetabolomic community. Further expansion of the
ontology to cover more food types, more food biomarkers
and more relationships will certainly increase its utility.

Future efforts will be directed at expanding this
ontology and extending it so that it is more widely used
in other curated databases such as Exposome-Explorer,
Phenol-Explorer, HMDB and FooDB.

Conclusion

FOBI is the first ontology that integrates nutritional and
metabolomic data in a comprehensive common language.
At the moment, FOBI has a total of 1197 terms (366 from
Food Ontology and 831 from Biomarker Ontology), 11
chemical top-level classes, 13 food top-level classes and 4
different properties that are fully defined and which have
clear relationship mappings. FOBI defines the relationships
between foods and their metabolites (biomarkers) through
a formal ontology.

FOBI allows experts to annotate and analyze nutritional
and metabolomic data in a consistent way, making the
results comparable between and across studies in the same
field. The development of FOBI will lead to an improvement
in the interoperability of nutritional and nutrimetabolomic
data thereby making the data sets generated from these
studies fully FAIR compliant.
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