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Abstract
The high rate of thrombotic complications associated 
with COVID-19 seems likely to reflect viral infection 
of vascular endothelial cells, which express the ACE2 
protein that enables SARS-CoV-2 to invade cells. Various 
proinflammatory stimuli can promote thrombosis by 
inducing luminal endothelial expression of tissue factor 
(TF), which interacts with circulating coagulation factor VII 
to trigger extrinsic coagulation. The signalling mechanism 
whereby these stimuli evoke TF expression entails 
activation of NADPH oxidase, upstream from activation of 
the NF-kappaB transcription factor that drives the induced 
transcription of the TF gene. When single-stranded RNA 
viruses are taken up into cellular endosomes, they stimulate 
endosomal formation and activation of NADPH oxidase 
complexes via RNA-responsive toll-like receptor 7. It is 
therefore proposed that SARS-CoV-2 infection of endothelial 
cells evokes the expression of TF which is contingent on 
endosomal NADPH oxidase activation. If this hypothesis is 
correct, hydroxychloroquine, spirulina (more specifically, 
its chromophore phycocyanobilin) and high-dose glycine 
may have practical potential for mitigating the elevated 
thrombotic risk associated with COVID-19.

A key role for endosomal NADPH oxidase in 
endothelial tissue factor expression
COVID-19 is associated with a high incidence 
of thrombotic complications.1 Necropsy studies 
reveal platelet-fibrin plugs in pulmonary arte-
rioles, likely contributing to the hypoxaemia 
characteristic of advanced infection.2 It has 
been suggested that the thrombotic diathesis 
associated with COVID-19 reflects an endothe-
liopathy induced by viral infection of endothe-
lial cells.3–5 These cells prominently express 
the ACE2 plasma membrane protein to 
which the spike protein of SARS-CoV-2 virions 
bind, enabling their endosomal incorpora-
tion into cells.6 7 The thrombotic complica-
tions of COVID-19 infection would be readily 
explained if SARS-CoV-2 infection of endothe-
lial cells induces luminal expression of tissue 

factor (TF), which could then interact with 
circulating coagulation factor VII to trigger a 
proteolytic cascade culminating in the gener-
ation of thrombin and fibrin (extrinsic clot-
ting). TF expression is negligible in healthy 
non-inflamed endothelial cells, but it can 
be upregulated at the transcription level by 
various proinflammatory stimuli that activate 
the NF-kappaB transcription factor. More 
specifically, the heterodimers p65/p50 or 
p65/c-Rel can bind to a novel ‘TF-kappaB’ 
sequence in the promoter of the TF gene, 
driving its induced expression.8–10

Various proinflammatory factors that induce 
TF in endothelial cells—including tumour 
necrosis factor-alpha (TNFα), antiphospho-
lipid antibodies (aPL), ultrafine pollutant 
particles and homocysteine—have been shown 
to do so via signalling pathways in which acti-
vation of NADPH oxidase complexes plays an 
obligate role.11–14 The effects of aPL and of 
TNFα in this regard hinge on the activation 
of NADPH oxidase in endosomes which has 
incorporated these agonists.12

Prior to the emergence of SARS-CoV-2, 
it was demonstrated that a number of RNA 
viruses can activate endosomal NADPH 
oxidase through a mechanism dependent on 
toll-like receptor 7 (TLR7), which is activated 
by binding to single-stranded RNA.15 Presum-
ably, these viruses, after binding to cellular 
plasma membranes, are incorporated into 
endosomes, and viral RNA released from the 
virions can interact with endosomal TLR7, 
triggering NADPH oxidase activation. Indeed, 
To and colleagues found that eight different 
types of single-stranded RNA viruses activated 
endosomal NADPH oxidase in alveolar macro-
phages, and the two types that did not activate 
it do not employ endosomes as their primary 
entry mechanism.15 Moreover, this effect was 
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absent in alveolar macrophages in which TLR7 expression 
was knocked out.

SARS-CoV-2 is likewise a single-stranded RNA virus, the 
intracellular uptake of which is mediated by endosomes.16 
We postulated that SARS-CoV-2, after incorporation into 
endosomes within endothelial cells, can likewise activate 
endosomal NADPH oxidase via TLR7, and that the resulting 
local production of superoxide/hydrogen peroxide leads 
to activation of NF-kappaB—by a mechanism yet to be 
determined—and subsequently to increased expression of 
TF. At present, while it is difficult to trace clinical studies 
that have measured serum markers of oxidative stress in 
COVID-19 patients, the fact that clinical outcomes were 
poorer in those provinces of China where soil selenium 
is deficient is compatible with the view that oxidant stress 
plays a key pathogenic role in this syndrome, and selenium 
is required for function of multiple antioxidant enzymes, 
including glutathione peroxidases and thioredoxin reduc-
tases.17 18 Moreover, oxidative stress is a key feature of other 
viral diseases that evoke acute respiratory distress syndrome 
and cytokine storm.19

Therapeutic implications of the hypothesis
This hypothesis is of practical significance because practical 
measures for inhibiting endosomal NADPH activity may 
be at hand. Hydroxychloroquine (HCQ), the antimalarial 
agent now commonly used to treat systemic lupus erythe-
matosus (SLE) and rheumatoid arthritis, has been shown 
to decrease the elevated risk for thrombotic complications 
associated with SLE.20 21 It has recently been demonstrated 
that HCQ, likely via its alkalinising effect on endosomes, 
abrogates the ability of aPL to activate endosomal NOX2-
dependent NADPH oxidase activity, and this reflects a 
failure of NOX2 to be translocated into endosomes.22 
The authors further demonstrated that HCQ treatment 
protects mice from aPL-induced thrombosis. We postu-
lated that HCQ can likewise prevent endosomal NADPH 
oxidase activation in SARS-CoV-2-exposed endothelial cells, 
thereby reducing risk for the thrombotic complications 
associated with COVID-19 infection. This is of particular 
interest in light of the ability of HCQ to inhibit SARS-CoV-2 
in vitro, and of preliminary evidence that administration of 
HCQ early in the course of COVID-19 may improve thera-
peutic outcomes, likely by slowing cell-to-cell spread of the 
virus.23–25 HCQ-mediated alkalination of endosomes could 
be expected to suppress the proteolytic activity of cathepsin 
L, required for endosomally entrapped SARS-CoV-2 virions 
to escape into the cytoplasm.16 26 27

In addition, phycocyanobilin (PCB), a biliverdin metab-
olite prominently expressed as a light-absorbing chro-
mophore in cyanobacteria (such as spirulina) and many 
blue-green algae, has been found to mimic the ability of its 
chemical relative unconjugated bilirubin to inhibit NADPH 
oxidase complexes.28 29 This likely explains the strong anti-
oxidant/anti-inflammatory effects of orally administered 
spirulina (or of phycocyanin, the spirulina protein to which 
PCB is covalently attached) in a number of rodent models 

of heath disorders in which NADPH oxidase activation 
plays a pathogenic role.28 30 It is therefore proposed that 
oral administration of PCB (or of spirulina or of phyco-
cyanin) could help prevent thrombotic complications of 
COVID-19. Independent considerations suggested that this 
agent might also be useful for boosting the type 1 inter-
feron response to SARS-CoV-2 and other RNA viruses and 
for blunting the cytokine storm that complicates late-stage 
COVID-19.31

Theoretical considerations suggested that elevated 
plasma levels of the amino acid glycine—which is known 
to have intriguing anti-inflammatory properties—may 
suppress endosomal activation of NADPH oxidase in cells 
that express strychnine-inhibitable glycine receptors.32 
Indeed, endothelial cells express such receptors.33 34 
Hence, the impact of supplemental glycine—inexpensive, 
well-tolerated and pleasantly sweet—on TF expression in 
endothelial cells exposed to proinflammatory stimuli—in-
cluding SARS-CoV-2—would be of interest to study. Glycine 
supplementation might also aid control of thrombotic 
complications via a direct antiaggregatory effect on plate-
lets mediated by glycine receptors.35

The upregulatory impact of NADPH oxidase activity on 
NF-kappaB activation and TF expression is likely mediated 
by reversible oxidation by hydrogen peroxide of sulfhydryl 
groups in specific proteins that participate in this activa-
tion.36 37 If so, then boosting synthesis of glutathione and 
thioredoxin while upregulating the expression of enzymes 
that work with them to reverse cysteine oxidations (eg, 
glutathione reductase and thioredoxin reductase) would be 
expected to counteract the impact of hydrogen peroxide on 
NF-kappaB activation.38 Moreover, increasing the expres-
sion of glutathione peroxidase would also counteract the 
signalling impacts of hydrogen peroxide. These benefits 
could be achieved with clinically useful phase 2 inducer 
nutraceuticals—such as lipoic acid, ferulic acid or sulfora-
phane—complemented by supplementation with N-ace-
tylcysteine; the latter supplies cysteine, the rate-limiting 
substrate for glutathione synthesis.39–46 Glycine supplemen-
tation can also promote glutathione synthesis.47 48

A number of studies have observed that nitric oxide 
(NO) and endothelial NO synthase (eNOS) activity oppose 
the endothelial induction of TF by various proinflamma-
tory stimuli. The ability of drugs that stimulate or activate 
soluble guanylate cyclase (sGC) to replicate this effect 
suggests that cGMP is the downstream mediator of NO’s 
impact in this regard.49 Intriguingly, these drugs do not 
influence the ability of TNFα to suppress protein levels of 
IkappaB, but nonetheless they do suppress the transcrip-
tional activity of NF-kappaB as assessed with a transfected 
reporter gene.49 Since the oxidative stress induced by 
NADPH oxidase activation would seem likely to promote 
uncoupling of eNOS, agents that correct this uncoupling 
might be expected to downregulate COVID-19-mediated 
TF induction. Specifically, supplemental intakes of citrul-
line and of high-dose folate might be useful in this regard, 
as these agents counteract the uncoupling induced 
by asymmetric dimethylarginine and by oxidation of 
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Box 1  Suggested dose schedules for drugs/nutraceuticals 
with antithrombotic potential in COVID-19

Hydroxychloroquine—200 mg, 2 times per day
Spirulina—15 g (rounded tablespoon), one time per day
Glycine powder—5 g, 2–3 times per day
Lipoic acid—600 mg, 2–3 times per day
Ferulic acid—500 mg, 2 times per day
Broccoli sprout powder—5 g, 1–2 times per day (providing 20–40 mg 
of sulforaphane)
N-acetylcysteine—600 mg, 2–3 times per day
Citrulline powder—2 g, 2 times per day
Folic acid—40 mg, one time per day
Biotin—10 mg, 2–3 times per day

tetrahydrobiopterin, respectively.50–53 Alternatively, agents 
that directly stimulate or activate sGC might also be useful 
for suppressing TF induction; in addition to pharmaceuti-
cals that have this effect, supraphysiological concentrations 
of biotin can stimulate sGC activity.54 55

Measures that quell endothelial oxidative stress while 
supporting effective eNOS activity might not only help to 
control the thrombotic complications of COVID-19, but also 
be expected to blunt the exuberant influx of neutrophils 
that promote respiratory distress in this syndrome. Nitric 
oxide, by both cGMP-dependent and cGMP-independent 
mechanism, inhibits endothelial expression of adhesion 
factors for neutrophils whereas oxidants upregulate such 
expression.56–67

Box 1 proposes dose schedules for the drugs/nutraceu-
ticals cited earlier that might have practical potential for 
reducing the thrombotic risk associated with COVID-19. 
These suggestions deal with agents that might impact the 
endothelial activation associated with COVID-19. Evidently, 
drugs that address overactive coagulation or platelet activa-
tion may also have potential for controlling the thrombotic 
complications of this syndrome; in that regard, many physi-
cians are currently employing heparin injections.68 69

Limitations
This essay proposes a hypothesis that, in the authors’ 
opinion, is credible and, if true, it should help to explain 
the common thromboembolic complications of COVID-19, 
while also suggesting practical measures that could lessen 
the thrombogenicity of vascular endothelium infected 
by the virus, or exposed to proinflammatory cytokines 
released in response to viral infection. It is intended to stim-
ulate preclinical study of interactions between SARS-CoV-2 
and vascular endothelial cells which could be useful for 
affirming or disproving the hypothesis. This hypothesis 
should not be considered to be proven, and the suggestions 
it provides regarding drugs or nutraceuticals which might 
ameliorate vascular dysfunction during COVID-19 should 
not be considered as prescriptive.
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