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Abstract

Background: Coronary heart disease is one of the diseases with the highest mortality rate. Due to the important
position of cardiovascular disease prevention and diagnosis in the medical field, the segmentation of cardiovascular
images has gradually become a research hotspot. How to segment accurate blood vessels from coronary
angiography videos to assist doctors in making accurate analysis has become the goal of our research.

Method: Based on the U-net architecture, we use a context-based convolutional network for capturing more
information of the vessel in the video. The proposed method includes three modules: the sequence encoder module,
the sequence decoder module, and the sequence filter module. The high-level information of the feature is extracted
in the encoder module. Multi-kernel pooling layers suitable for the extraction of blood vessels are added before the
decoder module. In the filter block, we add a simple temporal filter to reducing inter-frame flickers.

Results: The performance comparison with other method shows that our work can achieve 0.8739 in Sen, 0.9895 in
Acc. From the performance of the results, the accuracy of our method is significantly improved. The performance
benefit from the algorithm architecture and our enlarged dataset.

Conclusion: Compared with previous methods that only focus on single image analysis, our method can obtain
more coronary information through image sequences. In future work, we will extend the network to 3D networks.
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Background
Cardiovascular disease, especially coronary sclerotic heart
disease, also known as coronary heart disease, is one of
the diseases with the highest mortality rate. Tradition-
ally, doctors diagnose these cardiovascular diseases by
directly observing angiographic images with their eyes.
According to experience, they make a qualitative judg-
ment on the patient’s condition. This diagnostic method
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is greatly affected by human factors and lacks accuracy
and objectivity. With the widespread application of image
segmentation technology in the field of medical image
analysis and processing, and the increasing emphasis on
the prevention, diagnosis, and treatment of cardiovascular
disease, the segmentation of coronary angiography images
and videos has gradually become a research hotspot. The
segmentation and extraction of coronary blood vessels are
also gradually being applied, in practice such as assisted
diagnose of the disease, precise location of lesions, quan-
titative analysis of vascular tissue, and research on three-
dimensional reconstruction of coronary arteries.
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Due to the particularity of medical images, there have
been some difficulties in the processing and analysis of the
images. The analysis of angiograms has the following dif-
ficulties: first, the shape of the blood vessels in the video is
complex and easily deformed. Blood vessels have a tubular
curved structure, and some blood vessels can block, cover
or entangle with each other, which brings some difficul-
ties to image processing. Second, the density and diameter
of blood vessels vary. With the extension of the blood ves-
sels, the blood vessels gradually become thinner, and there
is vascular stenosis caused by the blockage. This causes
the contrast and resolution of the small blood vessels in
the contrast image to be very low and difficult to pro-
cess. Third, the background noise in the image is relatively
high. In coronary angiography images, besides blood ves-
sels, there are different tissues such as the chest, lungs,
and ribs. The shape or grayness of some tissues is simi-
lar to that of the blood vessels, which makes it difficult to
extract blood vessels.
So far, many methods have been used to segment blood

vessels. These methods maybe classified as follows: pat-
tern recognition, model-based tracking, propagation, and
artificial intelligence-based methods [1–5]. Most of the
vessel detection methods are performed in the spatial
domain of the original image such as single-scale top-
hat operator [6], hit-or-miss transform [7], and Gaussian
matched filter [8]. Poli [9] also proposed an efficient
method based on linear filters, which used a shifted
Gaussian kernel as it is more sensitive to vessels with
different orientations and radius. An adaptive tracking
method was also presented to extract vessels from the
X-ray angiograms [10]. Model-based approaches for med-
ical image segmentation were also applied. In [11], the
author proposed a snake model to extract the vessels by
deforming the spline to minimize energy functions. All
these previous methods for vessel segmentation are lim-
ited by at least one of the following disadvantages: they
either were unable to suppress sudden noise, could not
detect vessels in a wide range from a fixed scale image, or
needed heavy computation for the vessel segmentation.
Nowadays, the learning-based methods were very pop-

ular in segmenting medical images. An unsupervised
learning-based method was proposed by Aganj [12] to
segment the X-ray and MRI images. Tong [13] also pro-
posed a multi-organ segmentation method by combing
dictionary learning and sparse coding. There was also
some work [14, 15] using the pixel-level classification
method to get the ROI of the medical image by using the
pre-trained data. The main drawback of these methods is
that it is difficult to design the representative features for
different applications, and if we change the kind of the
input image, it is hard to capture the features. With the
development of the deep learning method, the convolu-
tional neural network played an important role in medical

image analysis, such as [16, 17]. Different from the tradi-
tional classification method, deep learning methods learn
the features automatically. For the medical image segmen-
tation, most of the earlier deep learning-based methods
use the image patches and sliding window block like [18].
But this kind of method will have a huge amount of com-
putation caused by sliding the window block and ignore
the global feature at the same time. In 2015, U-net [19] was
proposed for medical image segmentation and achieve a
good result. After that many different methods based on
U-net architecture had been proposed.M-net [20] added a
multi-scale input image and deep supervision to the orig-
inal U-net architecture. Also, some new modules were
proposed to replace some blocks in the U-net architec-
ture to enhance the feature learning ability. Gibson et
al.[21] proposed a dense connection in the encoder block
to do the organ segmentation task on CT images. Also,
to improve the segmentation performance, Zhao et al.[22]
introduce a modified U-net by adding a spacial pyramid
pooling.
The U-net and its modification methods have a com-

mon drawback which is the continuous pooling and con-
volution striding will lose the feature resolution, and
this is a big limitation for segmenting the vessels witch
require small spatial information. Especially, in medi-
cal video analysis, the continuous segmentation between
frames needs more detail information of the segmenta-
tion results. With the previous discussion and reference
the work of Gu et al.[23], in this paper, we focus on a new
application of the segmentationmethod used for coronary
angiography video. Similar to [23], the method combines
with three main modules: the video encoder module, the
video decoder module, and the video filter module. In
the encoder module, to achieve more high-level seman-
tic features, a dense atrous convolution (DAC) block and
a residual multi-kernel pooling (RMP) block are added.
After the normal decoder module, we add a video filter
block to get the smooth video sequences.
The main contributions of our work are summarized as

follows:
– A novel method to extract vessel from the coronary

video.
– A new application of the segmentation algorithm used

in the medical assistance field.
– A new dataset used for coronary angiography video

segmentation.

Methods
Figure 1 shows an overview of the proposed method. The
method uses the coronary angiography video sequences as
input, and outputs are the segmented sequences. The pro-
posed method consists of three main parts: the sequence
encoder module, the sequence decoder module, and the
sequences filter module.
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Fig. 1 Framework for video segementation

Encoder module
We use the U-net as the basic architecture for the pro-
posed method. In this architecture, the original encoder
replaced with the pre-trained ResNet-34, as ResNet
can avoid gradient disappearance and accelerate net-
work convergence. In the ResNet-34, we keep the first
four feature extracting blocks only. We use the mod-
ified U-net with pre-trained ResNet as the backbone
method.
The context extractor consists of the DAC (Dense

Atrous Convolution) block and the RMP (Residual Multi-
kernel pooling) block [23], which can extract more high-
level features. Based on the Inception-ResNet-V2 block

[24] and atrous convolution [25], high-level features can
be encoded by the dense atrous convolution (DAC) block.
As shown in Fig. 2, we use the same four cascade branches
with the gradual increment of the number of atrous con-
volution in the DAC block, this block employs different
receptive fields. The convolution of a large reception field
could extract and generate more abstract features of large
objects, while the convolution of a small reception field is
better for small objects. By combining the atrous convo-
lution of different atrous rates, the DAC block can extract
features for objects with various sizes. A residual multi-
kernel pooling (RMP) is also adopted in this method,
which works on a large variety of object sizes in a medical

Fig. 2 Dense atrous convolution module
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Fig. 3 Video filter of the image element (n,k)

image, like coronary angiography with different sizes of
vessels. The RMP extracts the feature with four differ-
ent sizes of poolings: 2×2, 3×3, 5×5 and 6 ×6. After
every pooling step, a 1 ×1 convolution is used to reduce
the dimension of the computational cost. In the end, by
bilinear interpolation, we do the upsampling to get the
final features.

Decoder module
Using the decoder module, we can recover the high-level
features extracted from the feature extraction encoder
module. Just like U-net, as normal striding convolution
and continuous pooling operations will lead to loss of
information, we can skip the connection and transfer
some detailed information directly from the encoder to
the decoder. The upscaling and deconvolution are two
common operations of the decoder in U-net. The upscal-
ing operation increases the image size by linear interpo-
lation, while the deconvolution uses a convolution oper-
ation to enlarge the image. Here, it mainly includes 1×1
convolution, 3×3 transposed convolution, and 1×1 con-
volution consecutively. The deconvolution operation can
adaptively learn the mapping to recover features using
more detailed information. Therefore, in our method,
deconvolution was selected to recover the high-resolution
features in the decoder. The output of the final feature
recovery decoder module is a mask of the same size as the
original input image.

Video filter module
We observe that there exists some confusion between
frames in the output mask from the decoder. Since we
only do the segmentation in a one-shot manner with-
out considering temporal information in other frames. To

Fig. 4 Annotated image
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Fig. 5 Learning curves

improve the segmentation results and reduce computa-
tional complexity, we use a simple temporal filter to carry
out a weighted averaging of successive frames [26]. As
shown in Eq.(1),

f̂ (n, k) =
K∑

l=−K
h(l)g(n, k − l) (1)

where g(n, k) is the recorded image sequence, k is the
number of the sequence. n=(n1, n2) refers to the spatial
coordinates. h(l) are the temporal filter coefficients used
to weight 2K+1 consecutive frames. In case the frames are
considered equally important we have h(l) = 1/(2K + 1).
The motion artifacts can greatly be reduced by operating
the filter along with the image elements that lie on the
same motion trajectory [27], as shown in Fig 3.

Fig. 6 Result of angiography image segementation
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Fig. 7 Video sequences segementation results. For frame 3060, 3065, 3070, 3075

Results
Data
In our work, we choose two parts of the dataset for
training, one is the public DRIVE [28] dataset which is
widely used for vessel detection, and the other dataset
comes from the angiography video of coronary inter-
ventional surgery. 170 video clips contain clear blood
vessels with contrast agents were annotated manually
by medical students. We record hundreds of videos of
interventional surgeries, clip the videos which have con-
trast agents, then do interframe sampling about every
three frames, finally we get 4904 annotated angiography
images, as shown in Fig. 4. The annotated images are
divided into two sets by selecting 4354 images for the
train set and 550 images for the validation set during the
training.

Train
loss function This paper uses the end-to-end learning
process based on U-net. Blood vessel segmentation is a
pixel-level classification task. Usually, the cross-entropy
loss function is used for this kind of segmentation task.
But, in the coronary segmentation task, the background
occupies a large area of the image, and the blood vessels
are unevenly distributed in the image, so dice loss [29] is
selected to replace the cross-entropy loss function. If the
dice coefficient is higher, the similarity between the pre-
dicted result and the ground truth is higher. Also, it is
more feasible to train for minimizing the loss value. The
loss function is defined as:

Ldice = 1 −
M∑

m

2wm
∑N

i p(m,i)g(m,i)∑N
i p2(m,i) + ∑N

i g2(m,i)
(2)

where M is the number of the pixel, the p(m,i) and g(m,i)
are predicted probability and ground truth for classm. and∑

m wm = 1 are the class weights, here wm = 1/M . The
final loss function is defined as:

Lloss = Ldice + Lreg (3)

here Lreg represents the regularization loss [30]. The loss
curve is shown in Fig. 5.

Implementation environment
The model in this method is implemented using PyTorch
based on GeForce GTX 1070 GPU. The system is Ubuntu
16.04, and the CPU is intel i5, the RAM is 16G.

Method results and performance
In this section, we show the results and evaluate the
performance of the proposed method on the tasks of
coronary angiography video segmentation.
Figure 6 shows the segmentation result of one image.

Figure 7 shows the results of a video sequence. From the
results we can see the detail of the coronary arteries. To
evaluate the performance of the vessel segmentation, we
compute the sensitivity and the accuracy, which are also
calculated in[31].

Sen = TP
TP + FN

(4)

Acc = TP + TN
TP + TN + FP + FN

(5)

where TP is the number of true positives, TN is the
number of true negatives, FP and FN represent the num-
ber of false positives and false negatives. In addition, we
also compute the IoU overlap to measure segmentation
performance as shown in Fig. 5. Table 1 shows the perfor-
mance comparison with other method. What needs to be
explained here is that we use not only the public data set
DRIVE [28] but also our own data set. Our work achieves

Table 1 Performace comparison of vessel segmentation

Method Sen Acc

U-Net[19] 0.7537 0.9531

DeepVessel[31] 0.7603 0.9523

Backbone 0.7781 0.9477

Ours 0.8204 0.9867
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Fig. 8 Fail sample

0.8739 in Sen, 0.9895 in Acc, the average values of TP,
TN, FP, and FN are 3929912.0, 115029685.0, 747732.0,
and 860167 for all the test frames. From the performance
of the results, the accuracy of our method is significantly
improved. The performance benefit from the algorithom
architecture in [23] and the enlarged dataset.

Discussion
As shown in Fig. 8, two situations can cause segmentation
results to fail. First, there are some tissue structures in the
video image which have close grayscale value and similar
shape with the angiographic vessels, which will cause the
tissue to be segmented together. The second is that when
the contrast agent is very thin or uneven, the coronary
blood vessels will not be segmented. Considering these
two situations, we need to make the dataset bigger. At
the same time, we need also to consider the differences
between the imaging effects of different contrast devices.
The time-consuming of this method is about 59ms per
frame on a GeForce GTX 1070 GPU, it is almost real-time
if the rate set by the coronary angiography system is 15f/s.
The algorithm still has room for continuous optimization
and will continue to be improved in the future.

Conclusion
Image segmentation is important in the field of medi-
cal image analysis, and segmentation of medical image
sequences can obtain more motion information than
single-image segmentation, which also has a positive sig-
nificance for assisting doctors in the diagnosis and treat-
ment. This article introduces the application and imple-
mentation of a segmentation method for medical image
sequences in coronary angiography video. Compared with
previous methods that only focus on single image analysis,
we can obtain more coronary information through image

sequences. At the same time, we annotated our coro-
nary sequence data set. Experimental results show that
this method can segment coronary angiography image
sequences with high accuracy. In future work, we will pay
more attention to the continuity of information between
frames, so that the results look more natural. Our method
is now validated on 2D networks and will extend to 3D
networks in future work.
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