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Minimally Invasive Glaucoma
 Surgery: Where Is the Evidence?
Kevin Gillmann, MBBS, FEBOphth, MArch� and Kaweh Mansouri, MD, MPH�y
Purpose: The last decade has witnessed an unprecedented growth in

glaucoma treatment options through the introduction of minimally

invasive glaucoma surgeries (MIGS). The aim of the present review

is to provide an understanding of the currently available MIGS

and to examine what data are currently available to guide treatment

choice.

Design: Meta-analysis and systematic review of randomized and non-

randomized control trials.

Methods: Out of 2567 articles identified, a total of 77 articles were

retained for analysis, including 28 comparative studies and 12 random-

ized control trials. Overall, 7570 eyes were included. When data permit-

ted, the weighted mean difference in intraocular pressure reduction was

calculated for comparison purposes.

Results: Weighted mean intraocular pressure reductions from all ana-

lyzed studies were: 15.3% (iStent), 29.1% (iStent inject), 36.2% (ab

interno canaloplasty), 34.4% (Hydrus), 36.5% (gonioscopically-assisted

transluminal trabeculotomy), 24.0% (trabectome), 25.1% (Kahook dual

blade), 30.2% (Cypass), 38.8% (XEN), and 50.0% (Preserflo).

Conclusions: One of the advantages of the heterogenous range of

available MIGS options is the chance to tailor therapy in an individualized

manner. However, high-quality data are required to make this choice

more than an educated guess. Overall, this review confirms the efficiency

of assessed MIGS compared with standalone phacoemulsification, but it

highlights that only few studies compare different MIGS techniques and

even fewer assess MIGS against criterion standard treatments. Current

evidence, while non-negligible, is mostly limited to heterogenous non-

randomized studies and uncontrolled retrospective comparisons, with few

quality randomized control trials. We suggest that future research should

be comparative and include relevant comparators, standardized to report

key outcome features, long-term to assess sustainability and late com-

plications, and ideally randomized.
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G laucoma is a progressive optic neuropathy and a leading

cause of blindness worldwide. Indeed, with a forecasted

rise in excess of 45% from 2020, it has been estimated that >110

million people would suffer from glaucoma by 2040.1 To face the

increasing burden of glaucoma, the landscape of glaucoma man-

agement has changed radically over the last decade. Although the

1990s were the decade of glaucoma drainage devices and novel

topical therapeutic agents, and innovations slowed down in the

2000s, the second decade of the millennium witnessed an unprec-

edented growth in treatment options through the introduction and

integration of minimally invasive glaucoma surgeries (MIGS).

Traditionally, when topical pharmaceutical therapies and

laser treatments failed, the only alternative was filtering surgery.

Since the 1980s, filtering surgeries have benefited from the

development of antimetabolites and evolved into highly effective

procedures, with reported relative intraocular pressure (IOP)

reductions as high as 50%.2 However, this evolution was associ-

ated with an increase in severe adverse events such as chronic

hypotony, bleb leak, or endophthalmitis, with a rate of late

complications in excess of 30% in some reports.3 MIGS were

designed to bridge the gap between medical or laser therapies and

more invasive filtering surgeries in mild-to-moderate glaucoma.

By essence, MIGS are meant to have an extremely favorable

safety profile ensuring prompt postoperative recovery, so should

achieve reliable IOP reduction, albeit more modest than that of

traditional filtering surgery.4 Through the array of available

techniques, MIGS have not only provided clinicians with a wider

range of therapeutic options, but they have also enabled them to

adjust their therapies more finely which may have contributed a

more patient-centric decision-making process. But such a large

armamentarium to choose from can be overwhelming, especially

in the absence of evidence-based criteria.

The aim of the present review is to provide an understanding

of the currently available classes of MIGS and, through a meta-

analysis and the authors’ commentaries on the recent literature,

look into what data are currently available to influence and guide

treatment choice.
METHODS
The meta-analysis presented in this article adheres to the

Preferred Items for Systematic Reviews and Meta-Analyses guide-

lines. Electronic databases of medical literature were searched

using specific keywords referring to each study of MIGS, including

current and previous tradenames, alternative designations, and

surgical techniques. The following MIGS were included in the

search: Trabectome (NeoMedix Corporation, Tustin, USA), Exci-

mer Laser Trabeculotomy, Kahook Dual Blade (New World Medi-

cal, Rancho Cucamonga, USA), Gonioscopy-Assisted

Transiluminal Trabeculotomy, Ab Interno Canaloplasty (iTrack,

Ellex Medical Lasers, Adelaid, Australia), Hydrus Microstent
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(Ivantis Inc, Irvine, USA), High Frequency Deep Sclerotomy

(HFDS, Oertli Instrumente AG, Berneck, Switzerland), iStent

Trabecular Micro-bypass (Glaukos, San Clemente, USA), iStent

inject (Glaukos), CyPass Supraciliary Micro-Stent (Alcon, Geneva,

Switzerland), Trans-scleral Cyclophotocoagulation, Endo-Cyclo-

photocoagulation, Preserflo (Santen, Osaka, Japan), and XEN Gel

Stent (Allergan, Irvine, USA). Keyword search identified 2567

peer-reviewed articles, among which 394 duplicates were

excluded.

Only articles that were available in English were considered.

Nonclinical studies, case reports, studies with a follow-up dura-

tion <6 months, studies with retention rates <20%, and studies

consisting exclusively of pediatric patients (younger than 18

years), or of patients with secondary or narrow-angle glaucoma

were excluded. A total of 77 articles were retained for analysis

[trabeculotomy (n¼ 28); canaloplasty (n¼ 5); Hydrus (n¼ 7);

HFDS (n¼ 2); trabecular micro-bypasses (n¼ 26); CyPass

(n¼ 2); Preserflo (n¼ 1); XEN (n¼ 6)], among which 12 were

randomized control trials (RCTs). Overall, 7570 eyes

were included.

The following data were collected: study design, number of

eyes enrolled, follow-up duration, surgical technique, percentage

of IOP reduction, percentage of antiglaucoma medication reduc-

tion, complication rates, main complications, and elicited risk

factors. In all comparative studies (n¼ 28), absolute IOP reduc-

tion and standard deviation were collected for both groups. When

these were available, they were used to calculate the weighted

mean difference and 95% confidence interval using the following

formula: (M1 – M2)� 1.96� s(M1 – M2) where M1 and M2 are the

mean IOP reductions, and s(M1 – M2) is the standard error

calculated as H[(s2
p/n1) þ (s2

p/n2)]. All calculations were per-

formed using a commercially available software (MedCalc

v.19.1.7, MedCalc Software, Ostend, Belgium).
REVIEW

Approaches
MIGS can generally be classified based on their physio-

logical mechanisms and anatomical sites of action. Said mech-

anisms can focus on: Schlemm canal, suprachoroidal space,

subconjunctival space, and ciliary body. Each class of MIGS

presents its own advantages and limitations, and several tech-

niques or devices usually come under each heading, represent-

ing technical or dimensional variations. The main classes of

MIGS and mechanisms of actions are illustrated in Figure 1 and

Figure 2.

Schlemm Canal: Trabecular Meshwork Bypass and
Schlemm Canal Dilatation

Physiologically, the trabecular or conventional pathway

accounts for the largest part of aqueous humor outflow. Aque-

ous humor drains through the trabecular meshwork into

Schlemm canal, before reaching a wide network of vessels

through the collector channels. In primary open-angle glau-

coma, however, trabecular meshwork outflow resistance

increases, possibly in response to extracellular matrix changes,

the etiology of which is still mostly known.5,6 Furthermore, in

the early 1960s, Grant showed how ab interno 360 degree

removal of the trabecular meshwork resulted in a 75% reduction
204 | https://journals.lww.com/apjoo
of the total resistance in enucleated eyes at an IOP of 25

mm Hg.7,8 Bypassing a site of increased outflow resistance

(often considered the primary site of resistance) and enhancing

the main physiological outflow pathway are 2 of the principles

underlying the rationale of trabecular meshwork bypass or

ablation. This class of MIGS aims to reduce outflow resistance

and IOP by facilitating aqueous drainage into Schlemm canal

either by bypassing the trabecular meshwork via some stent

devices, or by merely removing all or a portion of the trabecular

meshwork. Several variations of stent devices and trabecular

meshwork ablation techniques exist.

However, recent studies have suggested that, contrary to the

common misconception that the main site of glaucoma resistance

lies within the juxtacanalicular trabeculum, the IOP elevation

observed in primary open-angle glaucoma is more accurately

caused by a combination of 3 equally determinant factors: loss of

permeability of the entire thickness of the trabecular meshwork,

collapse of Schlemm canal, and downstream resistance, notably

with the closing of collector channel entrances.9–11 This was

further supported by the finding that Schlemm canal dilatation

was positively correlated with the magnitude of IOP reduction.12

It was, therefore, theorized that Schlemm canal’s increased

volume is associated with the stretching of its walls, which in

turn causes the opening of pressure-dependent collector channels,

leading to aqueous outflow.13 Based on these observations,

another subcategory of MIGS specifically targets Schlemm canal,

with the aim of restoring a healthy Schlemm canal function and

opening closed collecting channels. Two approaches were used to

produce Schlemm canal dilatation: the mechanical dilatation

using a temporary or resorbable medium, and the use of a

permanent implantable scaffold.

Despite theoretically different approaches, these 2 subcate-

gories of MIGS are, in effect, physiologically related. Indeed,

although the latter group directly targets Schlemm canal to cause

its dilatation with aqueous humor and restore distal outflow

capacity, studies have shown that the former group, although

merely bypassing the trabecular meshwork, produces a similar

effect. Indeed, it was reported that the magnitude of IOP reduction

after trabecular meshwork bypass implantation was directly cor-

related to the dilatation of Schlemm’s canal.14 Furthermore,

aqueous angiography techniques have shown that, beyond their

effects on Schlemm canal, trabecular bypass devices could

increase collector channel outflow.15 Both of these approaches,

however, suffer the same limitation in that they do not address any

resistance that may be distal to the collector channels’ openings.

Therefore, the IOP achieved will always be dependent on distal

outflow capacity and episcleral venous pressure, resulting in a

floor effect in IOP reduction.

This raises the question of the importance of targeting

collector channels with MIGS. Although it has been reported

that trabeculotomies performed in the nasal hemisphere, where

the concentration of collector channels is denser, increases out-

flow more than trabeculotomies performed in the temporal hemi-

sphere,16 more recent research suggests a more nuanced reality.

Indeed, Huang et al17 have shown that targeting an area deprived

of collector channel outflow could recruit new, previously closed,

channels. In the absence of a dedicated comparative study, the

question remains controversial and most MIGS procedures con-

tinue to be performed superonasally, both for practical reasons

and to target more collector channels.
� 2020 Asia-Pacific Academy of Ophthalmology.
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FIGURE 1. Illustration of different anatomical and technical approaches of minimally invasive glaucoma surgeries. GATT indicates gonioscopy-assisted

transluminal trabeculotomy.
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Suprachoroidal Space: Suprachoroidal Shunts
The physiological proportion of aqueous humor draining

through the suprachoroidal space is subject to debate due to

the lack of techniques available to measure uveoscleral flow,

but estimates range between 4% and 60%.18,19 It is, however,

accepted that aging is responsible for a mark reduction in

uveoscleral outflow.20 This outflow pathway is produced by a

combination of relative ciliary body permeability, which is

believed to be the site of main resistance in the uveoscleral

pathway,21 and the existence of a hydrostatic pressure gradient

through the anterior chamber, the supraciliary space, and the

suprachoroidal space.22 Such a negative gradient is believed to be
� 2020 Asia-Pacific Academy of Ophthalmology.
produced by the rapid absorption of aqueous from the supra-

choroidal space into the large and dense choroidal vascula-

ture.23,24 Another characteristic of the uveoscleral pathway is

that it is relatively pressure-independent, and was shown to have a

constant effect between 4 and 35 mm Hg.25

These last 2 characteristics suggest that exploiting uveoscl-

eral pathway may theoretically provide remedy some of the

conventional pathway: the risk of distal resistance and the floor

effect. However, devices targeting this pathway can be expected

to have a whole different risk profile to trabecular bypass devices.

Indeed, the potentially greater outflow capacity of this approach

could, in theory, be associated with higher risks of hypotony and
https://journals.lww.com/apjoo | 205

https://journals.lww.com/apjoo


FIGURE 2. Illustration of a selection of minimally-invasive glaucoma surgery procedures. From top left to bottom right: iStent, iStent inject, Hydrus

Microstent, iTrack, trabectome, TRAB 360, Kahook Dual Blade, CyPass Micro-stent, iStent Supra, XEN 45, PreserFlo, MicroPulse G6

cyclophotocoagulation.
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choroidal detachment, especially in patients with a long history of

prostaglandin therapy. Although the cases are too rare to warrant

for a prospective study, there has been anecdotal cases suggesting

that patients who were chronically treated with prostaglandins

may be at a higher risk of developing choroidal pathologies.26–29

This may be related to the effect of prostaglandins, reducing

collagens within the uveoscleral pathway.30 Furthermore, from a

practical point of view, the suprachoroidal space may be less

readily accessible and visualizable by a surgeon than

the trabeculum.

Although there are no commercially available MIGS relying

on suprachoroidal drainage, some new devices are under devel-

opment and sound clinical data are available on a previously

commercialized device. Therefore, we will discuss the case of this

device, some characteristics of which may be comparable with

future devices of the same category.

Subconjunctival Space: Subconjunctival Filtration
Contrary to the trabecular and the uveoscleral approaches,

subconjunctival filtration does not seek to enhance or increase a

physiological pathway. Instead, it relies on the creation of an
206 | https://journals.lww.com/apjoo
artificial canal between the anterior chamber and the subcon-

junctival space, typically through a stent. This process results in

an iatrogenic filtration bleb from which aqueous humor diffuses

into the surrounding subconjunctival tissue and is eventually

reabsorbed into subconjunctival capillaries.31

The idea of subconjunctival filtration is not new. Indeed, it

stems from the anterior sclerectomy technique designed by De

Wecker in 1858.32,33 Although modern-day trabeculectomies and

deep sclerectomies have considerably refined the technique, the

use of the subconjunctival pathway remains. Like trabeculec-

tomy, the success of subconjunctival MIGS procedure depends on

the persistence of a healthy filtering bleb. Therefore, these MIGS

share many similarities with filtering surgeries, in terms of risks

and advantages. One of the main advantages of subconjunctival

filtration is precisely that it does not impact any of the physio-

logical outflow pathways, and as such, preserves any remaining

physiological filtration. Another significant advantage of these

techniques is that they do not rely on episcleral venous pressure or

suprachoroidal pressure gradients to achieve filtration. Instead,

their filtration capacity is only dependent on the outflow resis-

tances of the stent and the subconjunctival space. Therefore, they
� 2020 Asia-Pacific Academy of Ophthalmology.
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can potentially achieve lower IOPs than physiological

approaches.

The outflow resistance of the subconjunctival space, how-

ever, is very much patient-dependent and can be difficult to

predict. A significant factor recognized to influence resistance

is conjunctival scarring and fibrosis, which has been linked to a

significant proportion of failures after filtering surgery.34 The

pathophysiology of fibrosis is complex, but growth factors and

cytokines expressed in inflammatory cells are clear culprits.35

This is particularly problematic in glaucoma patients when

inflammation is exacerbated through 4 mechanisms: the predis-

position of patients to conjunctival fibrosis through long-term use

of topical prostaglandins or toxic preservative, both of which were

associated with local inflammation36,37; the surgical procedure

itself is a clear source of inflammation; subconjunctival flow, by

itself, constitutes a persistent mechanical stress to local tissue,

which was shown to translate into pro-inflammatory biochemical

signals38–40; and the mere presence of aqueous humor in the

subconjunctival space, where it is not naturally present, was

shown to promote tissue fibrosis. Some components, particularly

transforming growth factor-beta, and endothelial growth factor-A,

present at increased levels in the aqueous humor of glaucoma

patients are believed to be responsible.41,42 Although both endo-

thelial growth factor antagonists and Rho-kinase inhibitors were

suspected to be beneficial in the context of bleb surgery, they have

so far failed to demonstrate clear superiority or to translate into

clinical practice,43,44 and, to date, the clinical recommendations

with regards to inflammation mediation are the preoperative

washout from proinflammatory topical medications and the pro-

longed postoperative use of topical steroids. This point, however,

remains the major impediment to sustainable subconjunctival

filtration and the control of inflammation in glaucoma has become

a clear focus of research. With this regard, MIGS may have a role

to play in reducing the amount of inflammation caused by

subconjunctival procedures.

Further risks common to all bleb-creating procedures include

bleb dystesthesia, bleb leaks, blebitis, and bleb-related endoph-

thalmitis. These complications can be common and some authors

have reported rates of bleb interventions in excess of 50% after

XEN implantations.45 Hypotony is another inherent risk of having
TABLE 1. Summary of Some MIGS Techniques by Anatomical Category, Deta

Reduction at the Final Timepoint of Each Analyzed Study, the Mean Reduction

Most Commonly Reported Complications

Technique
Details of the

Procedure

Reported Effect o
Intraocular Pressu

at Timepoints, mo
(� Standalone)

Trabecular stents
iStent 1.0 � 0.3 mm

L-shaped stent inserted
through the trabeculum
into Schlemm canal

16 mo: 13.4%�

36 mo: 17.0%
12 mo: 9.7%
12 mo: 15.4%
6 mo: 16.4%
36 mo: 30.4%�

12 mo: 22.0%
15 mo: 17.9%
6 mo: 14.9%
12 mo: 13.8%
18 mo: 13.2%
WM: 15.3%

� 2020 Asia-Pacific Academy of Ophthalmology.
a low floor effect, but this risk can theoretically be mediated by

the adjustment of devices’ internal dimensions to create specific

levels of outflow resistance.46 Finally, contrary to traditional

filtration surgery, prospective studies and occasional case reports

have highlighted a risk of stent displacement and occlusion, which

are inherent to the placement of an artificial stent.47,48

Ciliary Body: Reduction of Aqueous Humor Production
The ciliary body is site of aqueous production. Reducing

aqueous humor production is a logical alternative to the increase

of aqueous outflow to lower IOP. Cyclophotocoagulation consists

of using a laser to selectively deliver thermal energy to the

pigmented tissues of the ciliary body and induce tissue coagu-

lative necrosis.49 Historically, the technique that emerged in the

1930s as cyclodiathermy has long been exclusively indicated for

refractory glaucoma and painful blind eyes. This was mostly due

to the relatively high risk of intense and chronic postoperative

inflammation, pain, hypotony, vision loss, and phthisis.50,51

However, recent innovations have allowed for more targeted

treatments and less collateral tissue necrosis, leading to reduced

complication rates and better safety profiles. This has led to

cyclophotocoagulation’s gradual acceptance for the treatment

of milder forms of glaucoma, and to some surgeons considering

it a MIGS. The main theory underlying this change in practice is

that the rates and severity of complications after cyclophotocoa-

gulation are directly related to the total amount of energy used

during the procedure.52 However, despite a clear reduction in the

rates of complications over the last decades, the risk of permanent

visual loss to a sighted eye remains non-negligible,53,54 and a

recent Cochrane review concluded that there was still insufficient

evidence to conclude positively on the effectiveness and safety of

cyclophotocoagulation in nonrefractory glaucoma.55

Furthermore, it has been speculated that the significant

perilimbal conjunctival inflammation and scarring produced by

transscleral cyclophotocoagulation could affect the outcome of

subsequent filtering surgeries, casting further doubt over the

indications of this type of treatment as an initial procedure.

Table 1 provides a summary of the studied techniques, and

Figure 3 illustrates the percentage of IOP reduction reported in

all analyzed studies.56–110
iling the Percentage of Intraocular Pressure and Medication Burden

Weighted for the Subject Distribution for Each Technique, and the

n
re

Reported Effect on
Antiglaucoma
Medications

(� Wash-Out)

Most Commonly
Observed

Complications Ref.

31.6%
63.0%
65.0%
90.6%
47.4%
0.0%�

12.1%
80.0%
6.4%
64.2%
47.1%
WM: 38.0%

27.0% Device obstructions
16.7% Device malposition
12.6% Intraocular pressure

spikes
2.4%–18.9% Hyphema
0.8% Iridodialysis

56–66
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TABLE 1. (Continued)

Technique
Details of the

Procedure

Reported Effect on
Intraocular Pressure

at Timepoints, mo
(� Standalone)

Reported Effect on
Antiglaucoma
Medications

(� Wash-Out)

Most Commonly
Observed

Complications Ref.
iStent inject 0.3 � 0.2 mm

Straight stent inserted
through the trabeculum
into Schlemm canal

Dual implantation

12 mo: 34.2%
12 mo: 21.0%
24 mo: 26.6%
36 mo: 42.0%�

18 mo: 11.6%
24 mo: 28.2%
36 mo: 37.0%
12 mo: 48.4%�

36 mo: 42.7%�

12 mo: 27.0%
12 mo: 27.3%
WM: 29.1%

0.0%
32.9%
81.0%
82.0%
50.0%
0.0%�

68.0%
0.0%�

-
66.7%
100.0%
WM: 34.0%

45.7% Deep implantation
13.3% Device obstruction
6.0% Hyphema
1.0% Corneal oedema
1.0% Corneal abrasion

66–76

Trabecular dilatation
Ab interno canaloplasty

(iTrack)
Illuminated microcatheter

used to cannulate
Schlemm’s canal and
inject a viscoelastic
device to dilate it

12 mo: 30.3%
12 mo: 41.0%
36 mo: 34.3%
12 mo: 34.8%
WM: 36.2%

15.0%
89.0%
52.6%
60.7%
WM: 62.1%

19.1% Cataract formation
2.8%–13% Hyphema
1.8% Intraocular pressure

spikes

77–80

Hydrus Microstent 8.0 � 0.3 mm
Crescent-shaped stent

inserted as a scaffold
into Schlemm canal

12 mo: 18.6%�

24 mo: 31.6%
24 mo: 25.0%
12 mo: 43.2%�

24 mo: 19.1%
24 mo: 37.5%�

24 mo: 80.0%
WM: 34.4%

61.1%
82.4%
46.2%
60.0%
66.7%
-
75.0%

12.2% Device obstruction 81–87

Trabeculotomy
Gonioscopy-assisted

transluminal trabeculotomy
(GATT)

Trabeculotomy via an
illuminated
microcatheter or a suture
used to cannulate
Schlemm canal and tear
through the trabeculum

6 mo: 6.2%�

24 mo: 38.6%
19 mo: 36.4%
24 mo: 55.0%�

6 mo: 67.3%
24 mo: 37.3%
12 mo: 44.0%�

24 mo: 40.1%�

WM: 36.5%

58.3%
63.6%
64.7%
74.2%
77.1%
43.8%
61.3%
37.5%
WM: 56.1%

28.0%-38.0% Hyphema
15.4% Intraocular pressure

spikes

88–95

Trabectome Trabeculotomy via
electrocautery

18 mo: 23.0%�

12 mo: 24.8%�

24 mo: 9.2%
42 mo: 27.2%�

12 mo: 16.0%
60 mo: 22.0%�

12 mo: 25.9%�

WM: 24.0%

34.7%
30.8%
46.1%
31.0%
75.5%
44.4%
16.7%
WM: 31.6%

35.0%–48.4% Hyphema
(including 4.9% of
persistent hyphema after
2 mo)

27.4% Early intraocular
pressure spikes

96–102

Kahook Dual Blade Trabeculotomy via a beveled
dual blade

6 mo: 14.4%
6 mo: 13.0%�

12 mo: 47.2%
12 mo: 27.5%
12 mo: 14.0%
12 mo: 26.2%
12 mo: 13.8%
6 mo: 23.7%
WM: 25.1%

47.9%
44.5%
91.7%
71.0%
33.3%
50.0%
27.3%
64.7%
WM: 64.1%

3.5%–30.8% Hyphema
3.8%–18.2% Intraocular

pressure spikes
1.6%–3.8% Posterior

capsule opacification

57,59,63,64,88,102–105

Suprachoroidal outflow
CyPass Micro-Stent 6.35 � 510.0 mm

Polyimide fenestrated micro-
stent inserted into the
suprachoroidal space—

discontinued in 2018

24 mo: 30.2% 85.7% Withdrawn due to concerns
over endothelial cell
density loss

106

iStent Supra 4.0 � 0.2 mm
Titanium and

polyethersulfone stent
inserted into the
suprachoroidal space

Not commercially available.

Subconjunctival Outflow
(bleb-forming procedures)

XEN 45 gel stent 6.0 � 0.5 mm
Gelatin stent inserted into

the subconjunctival
space from the anterior
chamber

24 mo: 29.0%
12 mo: 40.0%
12 mo: 42.0%
12 mo: 42.0%�

24 mo: 43.2%
WM: 38.8%

70.0%
74.7%
65.8%
76.7%
47.1%
WM: 59.9%

21.3% Hypotony
11% Cataract progression
2.0%–4.3% Conjunctival

erosion
2.1% Choroidal

haemorrhage

45,89,107–109

PreserFlo
(formerly known as InnFocus/

Arrow)

8.5 � 0.4 mm
Stent inserted into the

anterior chamber from
the subconjunctival
space—ab externo

24 mo: 50.0% 83.3% 13.0% Hypotony with
shallow anterior
chamber (including
8.7% of choroidal
detachments)

110

MIGS indicates minimally invasive glaucoma surgeries; WM, weighted mean. Asterisks in the pressure reduction column indicate the effect was obtained from a

standalone procedure, as opposed to combined surgeries. Asterisks in the medication reduction column indicate the null result is due to a preoperative medication

wash-out.
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FIGURE 3. A, Percentage of intraocular pressure reduction reported at the final timepoint of each analyzed study. The size of the dots is proportional

to the reduction in antiglaucoma medications. Solid lines represent studies of standalone procedures, whereas dotted lines represent studies of

combined procedures. The asterisks mark alternative procedures. B, Weighted mean intraocular pressure reduction of all reported studies for each

surgical technique. The vertical bars show the 95% confidence interval. 1iS indicates 1 iStent; 2iSi, 2 iStent inject; AbIC, ab interno canaloplasty; CPC,

cyclophotocoagulation; CyP., CyPass; GATT, gonioscopy-assisted transluminal trabeculotomy; Hyd., hydrus; IOP, intraocular pressure; KDB, Kahook Dual

Blade; Trab, trabeculotomy; XEN, XEN45 gel stent.
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Comparative Studies
Of all the studies reviewed, 28 were comparative studies,

among which there were 12 RCTs. Figure 4 shows a comparison

of the techniques assessed in all considered comparative studies.
� 2020 Asia-Pacific Academy of Ophthalmology.
DISCUSSION AND OPINION
The traditional landscape of glaucoma management has

changed dramatically over the last decade, with the development

of a large array of novel surgical techniques. Although a surge in
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FIGURE 4. Forest plot for WMD in intraocular pressure reduction. The asterisk indicates RCT and (n) is the total number of subjects enrolled in each study.

CI indicates confidence interval; COMB, combined; GATT, gonioscopy-assisted transluminal trabeculotomy; KDB, kahook dual blade; RCT, randomized

controlled trial; STD, standalone; WMD, weighted mean difference.
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attention, investment, and innovation and, eventually, treatment

options foretells a bright future for the sub-specialty, at a clinical

level, it rises the questions of patient-centered treatment choices

and evidence-based decisions. Indeed, one of the advantages of
FIGURE 5. This graph shows the value curves of various surgical approaches to

It illustrates how benefit profiles of different surgical techniques vary widely. C

210 | https://journals.lww.com/apjoo
such a heterogenous range of surgical options is the chance to

tailor therapy in an individualized manner. High-quality data are

required to make this choice more than an educated guess.

Figure 5 illustrates the advantages and inconvenience of surgical
glaucoma management based on the authors’ subjective assessment.

PC, cyclophotocoagulation; IOP, intraocular pressure.
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techniques, as perceived by the authors. This illustrates the

diversity of benefit profiles and the subjectivity of some assess-

ments in absence of research data.

To provide some objective criteria in the assessment of glau-

coma surgery, and to guide innovation, the “10-10-10 Goal” was set.

According to these criteria, the ideal surgical technique would take

<10 minutes to perform, be able to consistently achieve IOPs <10

mm Hg, and be efficient for >10 years, without any significant

complications. These objectives were originally set with the aim of

achieving them by 2020. So, are we anywhere near achieving

these goals?

With procedures typically taking between 15 and 30 minutes

to perform, MIGS have managed to significantly reduce surgical

times. Although this represents a 50% reduction from most

traditional filtering procedure or glaucoma drainage device

implantations, MIGS are yet to provide us with a simple-enough

procedure to be consistently carried out in <10 minutes by the

average glaucoma surgeon. In terms of IOP reduction potential,

considering that the average candidate for MIGS surgery has a

preoperative IOP in the 20- to 25-mm Hg range, it would require a

50% to 60% reduction to achieve postoperative pressures under

the 10 mm Hg threshold. In the examined studies, only rarely did

some MIGS provide IOP reduction of �50%. Furthermore, the

few incidences of IOP reductions >50% could not be replicated,

and—aside from the PreserFlo that was only represented in a

single study—the same surgical techniques showed more modest

effects in alternative studies. It does, however, appear that of all

the results assessed, the subconjunctival approach is more likely

than other categories of MIGS to achieve IOPs in the low-teens.

But in this context of intense innovation, new technologies will

likely appear and reshuffle the cards in the years to come,

including new devices offering variations on existing techniques,

or all-new approaches such as drug-coated devices or ocular

surface shunts. Finally, it is at present difficult to assess the

sustainability of MIGS efficiencies. Since most MIGS have been

commercially available for <5 years, there is a general lack of

long-term data in the field, but knowledge is slowly accruing. This

aim of longevity, however, should prompt us to design sound

clinical trials early on, to obtain not only extensive, but also

reliable long-term data.

Overall, the results of this review confirm the efficiency of all

assessed MIGS compared with standalone phacoemulsification,

with a decrease in IOP and medication burden in the vast majority

of cases. The reported rates of complications also compare

favorably with traditional filtering surgeries. But to be clinically

advisable, a procedure needs not only be safe, but also to prove its

noninferiority to commonly accepted alternatives. However, this

analysis shows that there are only few studies comparing different

MIGS techniques, especially considering the vast and growing

number of procedures available nowadays, and even fewer

assessing MIGS against topical medications. More comparative

data, especially with criterion standard therapies and common

practice options, could be extremely relevant for ophthalmolo-

gists and health care authorities, allowing to ascertain the best

therapeutic option for the patients, and potentially reducing the

medication burden and its associated costs. But considerably more

evidence will be needed to achieve this level of certainty. Indeed,

current evidence, although non-negligible, is still mostly limited

to nonrandomized studies and uncontrolled retrospective compar-

isons, with few quality RCTs. This leads to significant variability
� 2020 Asia-Pacific Academy of Ophthalmology.
in studies’ results and a blurring of the outcomes, and further

highlights the need for carefully designed RCTs.

The present review considered the IOP reduction potential

rather than each individually reported success rates, due to the

great heterogeneity of the criteria used in determining the latter,

and to the fact that pressure reduction was one of the only results

to be consistently reported in most studies. However, we recog-

nize that this does not constitute an ideal comparison criterion

either, and oversimplifies the question of surgical outcome.

Therefore, we suggest that future research should be standardized

to systematically report key outcome features, comparative

including alternative treatments that are relevant and include a

criterion standard therapy, long term to assess the sustainability of

treatment options and the rates of late complications, and ideally

randomized. When possible, washed-out IOPs should be reported

to permit meaningful comparison, and long-term definitions of

success should include functional and structural markers of

glaucoma progression. Finally, and perhaps most challengingly,

cohorts should be large enough to ensure that statistical tests will

have adequate power and to allow identification of individual

biomarkers to help achieve truly individualized therapy.

Eventually, all these data will provide clinicians with the

necessary knowledge to make evidence-based decisions and

decide on the best treatment option for each individual

glaucoma patient.
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