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Abstract

Purpose of Review: Bone elongation is a complex process driven by multiple intrinsic 

(hormones, growth factors) and extrinsic (nutrition, environment) variables. Bones grow in length 

by endochondral ossification in cartilaginous growth plates at ends of developing long bones. This 

review provides an updated overview of the important factors that influence this process.

Recent Findings: Insulin-like growth factor-1 (IGF-1) is the major hormone required for 

growth and a drug for treating pediatric skeletal disorders. Temperature is an underrecognized 

environmental variable that also impacts linear growth. This paper reviews the current state of 

knowledge regarding the interaction of IGF-1 and environmental factors on bone elongation.

Summary: Understanding how internal and external variables regulate bone lengthening is 

essential for developing and improving treatments for an array of bone elongation disorders. 
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Future studies may benefit from understanding how these unique relationships could offer realistic 

new approaches for increasing bone length in different growth-limiting conditions.
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(IGF-1); chondrocytes; vasculature

Introduction

Our understanding of the molecular events that control postnatal bone elongation in cartilage 

growth plates has burgeoned over the last several decades. Bone growth rate is almost 

entirely dependent on the dynamics of cartilaginous growth plates [1]. Long bones (such as 

humerus, radius/ulna, femur and tibia/fibula) lengthen as chondrocytes of the growth plate 

divide and expand, establishing a model for bone through the process of endochondral 

ossification. This process is regulated by local and systemic growth factors, including those 

of the somatotropic axis, which is the signaling between growth hormone (GH) and insulin-

like growth factor-1 (IGF-1). IGF-1 is the major regulator of growth and controls bone 

elongation by promoting chondrocyte proliferation and hypertrophy [2,3]. Environmental 

factors, such as temperature, can also surprisingly alter bone and cartilage growth in both 

natural and laboratory settings [4].

The aim of this review is to critically examine the factors that influence bone elongation 

with respect to their effects on IGF-1 activity in the growth plate. This review focuses in 

particular on how further understanding of these factors is beneficial for developing methods 

to combat an array of bone elongation disorders when the processes of longitudinal bone 

growth are disrupted.

Processes of Bone Elongation

Endochondral Ossification and Growth Plate Morphology

The skeleton develops by means of two different mechanisms: (1) Intramembranous 

ossification, involving direct differentiation of mesenchyme cells to bone as with the 

development of the flat bones of the skull and (2) Endochondral ossification, occurring when 

mesenchyme cells condense and differentiate into cartilage tissue, which then is replaced by 

bone forming the vertebrae, ribs and limbs [5]. Endochondral ossification is initiated during 

fetal life and continues from infancy through adolescence (transitional period from 

childhood to adulthood). Cartilaginous growth plates situated at the ends of developing long 

bones function as the command center for bone lengthening (or linear growth in humans). 

Growth plate cartilage is comprised of cells known as chondrocytes that secrete extracellular 

matrix and are organized into functional zones (Figure 1).

Growth plates are anatomically located between the epiphysis and metaphysis of long bones. 

The end portion of the long bone is referred to as the epiphysis and the shaft is termed the 

diaphysis. Directly between the epiphysis and the diaphysis is the transitional zone, or 

metaphysis, which contains newly mineralized bone at the bone-cartilage interface 

(chondro-osseous junction, COJ). The region adjacent to the epiphysis is the reserve zone 
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(RZ). The RZ consists of round quiescent chondrocytes. The role of the RZ has been 

debated but is most commonly reported to act as the coordinator for the organization and 

orientation of the neighboring proliferative zone (PZ) [6]. It has been suggested that the RZ 

contains stem-like cells that promote the production of proliferative chondrocytes and that 

this proliferative capacity decreases with age aiding to the closure of the growth plate 

associated with skeletal maturity [6–9]. Adjacent to the RZ is the PZ, which contains rapidly 

dividing chondrocytes that are stacked and flattened in multicellular columns. The PZ is a 

region of actively dividing cells that directs longitudinal growth along the long axis of the 

bone, in which the cells are aligned in columns.

The proliferating chondrocytes at the base of the columns make the transition from the PZ to 

the hypertrophic zone (HZ) where chondrocytes behave as terminally differentiated cells that 

begin to enlarge, secrete extracellular matrix and were once thought to ultimately undergo 

physiological death [10–13]. Hypertrophic chondrocytes induce vascular invasion and 

recruit osteogenic cells in the replacement of cartilage with bone at the chondro-osseous 

junction (the interface between growth cartilage and newly mineralized metaphyseal bone). 

A majority of the bone-forming osteoblasts are thought to be differentiated from bone 

marrow stromal cells. However, current research in the mammalian growth plate suggests 

that not all hypertrophic chondrocytes undergo apoptosis but instead transdifferentiate into 

osteoblasts during both bone development and repair [14–17]. Studies by Bahney et al. [14] 

used cartilage grafts to promote bone regeneration through endochondral ossification 

(analogous to long bone development). Their results from lineage tracing experiments 

showed that chondrocytes directly differentiated into osteoblasts during bone repair [14]. It 

is thought that since transdifferentiation occurs adjacent to the vasculature, that the 

vasculature may have a signaling role in the transformation of chondrocytes to osteoblasts 

[16]. Emerging research shows that this chondrocyte-to-osteoblast transdifferentiation is a 

critical component of bone elongation through the process of endochondral ossification [18].

Differential Growth Plate Activity

While the anatomical structure of the growth plate is comparable between the developing 

long bones, the rate at which these growth plates contribute to bone lengthening differs from 

bone to bone, and from proximal end to distal end. This phenomenon is referred to as 

differential growth [19,20]. The humerus, radius and ulna are the major long bones of the 

upper limb (excluding the hand and foot), and the femur and tibia comprise the lower limb. 

When comparing proximal to distal ends of these bones, the faster-growing sites are located 

at the proximal humerus (shoulder), distal radius and ulna (wrist), and distal femur and 

proximal tibia (knee) [1,8,21–27]. The most active developing growth plate in humans and 

rodents is the proximal tibia followed by the distal femur (knee), distal radius (wrist), and 

proximal humerus (shoulder) [28]. Wilsman et al. [27] have shown that the proximal tibial 

growth plate of 28-day-old rats (growth rate of 396 μM/day) is nearly nine times faster than 

the much slower proximal radial growth plate (growth rate of 47μM/day).

The main factors contributing to differential growth rate are the number of chondrocytes in 

the proliferative zone, the rate of proliferation, and the size of expanded cells in the 

hypertrophic zone [7,29–32]. Indeed, the faster growing sites are well known to have 
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increased numbers of proliferative chondrocytes, increased rates of proliferation, and 

hypertrophic chondrocyte expansion [1,8,22,25–28,33–35].

Limb Length Discrepancy: Causes and Treatments

Limb length discrepancy (LLD), or anisomelia, is characterized by asymmetric length of 

lower extremities [36,37]. LLD usually emerges during childhood but the etiology varies and 

may be congenital, acquired or idiopathic. Prior to the development of the polio vaccine in 

the 1960s, one of the more common causes of LLD in children was poliomyelitis (viral 

infection causing paralysis) that resulted in shortening of the paralyzed limb [38,39]. While 

polio has been eliminated from the United States, treatments are still sought for adults 

suffering from long-term LLD as a result of poliomyelitis infection during childhood 

[40,41]. Other acquired causes of LLD include infection, tumors, and trauma [38,39,42]. 

LLD caused by trauma most commonly involves epiphyseal fractures, which typically result 

in shortening on the fractured side, and meta- and diaphyseal fractures, which usually lead to 

lengthening on the fractured side as a result of increased blood flow to the affected growth 

plate [38,39,42–46]. Regardless of the cause, untreated limb length inequalities underlie 

many painful musculoskeletal problems in adults [37,47] including lower back pain [48,49], 

gait abnormalities [50–54], scoliosis (abnormal curvature of the spine) [55], and 

osteoarthritis of the hip and knee [56–59].

Limb length discrepancy can vary in severity depending on the underlying cause. Limb 

length inequalities of 2 cm or more (about 2.4% of adult height [60–62]) typically involve 

surgical correction [37,63–65]. Limb shortening is recommended for limb length inequalities 

of 2–5 cm using epiphysiodesis procedures [63]. These methods involve shortening the 

longer limb by either permanently halting growth using a surgically formed bony bridge 

[66], or temporarily slowing elongation using guided growth techniques [63,67,68]. Limb 

lengthening is often recommended for inequalities over 5 cm [63] and includes methods 

based off the traditional Ilizarov technique using external fixators [69] or mechanical bone 

guidance [70]. One drawback to any type of invasive procedure, however, is that these 

surgeries can be associated with complications including pain, implant failure, angular 

deformities and infection [39,70].

The projected limb length discrepancy at the point of maturity varies based on the initial 

inequality and how much limb growth remains [71]. There have been numerous methods of 

predicting final limb length including the Green-Anderson method [72], Menelaus method 

[73], Moseley method [74], and Paley method [75]. These methods are based on 

mathematical modeling of growth patterns in the femur and tibia at different age points. 

While each method takes a slightly different approach, they are all based on growth charts 

developed by Green and Anderson [72] that show femoral and tibial lengths, along with 

stature, for boys and girls at different chronological and skeletal ages. The basic idea is to 

compare femoral and/or tibial length in a child to known growth charts to determine the 

proportion of adult limb length achieved, and thus the predicted amount of growth 

remaining. However, these predictions are subject to error because skeletal age can be more 

or less advanced than chronological age depending on the maturation rate of the child. 

Therefore, the predicated limb length discrepancy varies between these methods [76] and 
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does not always match the actual limb length difference at maturity. Therefore, determining 

the most effective timing to start treatment is difficult and can lead to possible over- or 

under-compensation for unequal limb length. When the correction is not successful, surgical 

interventions may be repeated [63], putting a child at increased risk of post-surgical 

complications.

Although surgical interventions are typically only performed for a marked length inequality 

[37,77,78], studies have shown that discrepancies as small as 0.5–1 cm (0.6–1.2% limb 

length difference based on young adult height) may impact everyday walking [79], leading 

to problems such as back pain and knee osteoarthritis in adults [58]. Shoe lifts or prosthetics 

are inexpensive and noninvasive approaches, but they do not actually change bone length 

[39,47,70]. Alternative non-invasive methods for permanently lengthening limbs have been 

tested. A study by Zhang et al. [65] showed that applying intermittent 0.5 N lateral loads to 

the knee joints of mice (~8-weeks old) increased femoral (2.3%) and tibial length (3.7%). 

This increase in limb length is noteworthy because treatment occurred during slower rates of 

longitudinal bone growth when mice were close to skeletal maturity. Serrat et al. [80] were 

able to use once daily targeted limb heating (40°C for 40mins/day) to unilaterally increase 

femoral (1.3%) and tibial (1.5%) length of growing mice (3–5 weeks of age). At skeletal 

maturity (12 weeks of age), femoral (1.0%) and tibial (1.0%) lengths remained significantly 

increased on the heat-treated sides [80], suggesting that heat could be a realistic alternative, 

or at least supplement, to surgical limb lengthening in certain cases.

Regulation of Postnatal Bone Lengthening

Endocrine and Paracrine Factors

The process of postnatal bone elongation is tightly controlled by 1) systemic endocrine 

molecules, such as hormones distributed through blood that act on target cells of the growth 

plate, and 2) locally produced paracrine/autocrine factors expressed in epiphyseal 

chondrocytes or surrounding perichondrium. Disruption of these regulators results in 

dysfunctional chondrocytes, abnormal longitudinal growth, and skeletal dysplasia, including 

short-limbed dwarfism [81]. Some of the primary endocrine factors that regulate 

longitudinal growth include growth hormone (GH), insulin-like growth factor 1 (IGF-1), 

thyroid hormone, estrogen, androgen, glucocorticoids, and vitamin D [2,81–86], all of which 

can have both coordinated and independent actions. For example, while circulating thyroid 

hormone has been shown to increase longitudinal bone growth indirectly by increasing 

systemic GH secretion [83], it also has been shown to directly interact with the epiphyseal 

chondrocytes and initiate terminal differentiation [87,88]. The actions of IGF-1 in the 

growth plate are discussed in detail below.

Locally acting autocrine/paracrine molecules in the growth plate include Indian hedgehog 

(Ihh), parathyroid hormone-related protein (PTHrP), fibroblast growth factors (FGFs) 

(including FGF1, −2, −9 and −18), bone morphogenic proteins (BMPs) (including BMP2–

7), vascular endothelial growth factor (VEGF), IGF-1, and Wnt [2,11,81,85,86,89,90]. Each 

of these factors can regulate different regional zones of the growth plate. For instance, 

prehypertrophic chondrocytes at the maturational stage between active proliferation and 

hypertrophic expansion express signaling molecules responsible for the successful and 
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timely transition from proliferative to hypertrophic phenotype. These include FGF receptors 

[91,92], BMPs [93,94], and Ihh/PTHrP receptors [95].

Bone lengthening is the ultimate result of the coordinated signaling of both endocrine and 

paracrine/autocrine factors that interact to promote chondrocyte proliferation and 

hypertrophy in the growth plate. In addition to circulating IGF-1, estrogen (endocrine) can 

regulate local expression of IGF-1 in growth plate chondrocytes through an autocrine/

paracrine route [82]. While the impact of some factors, such as IGF-1 discussed below, have 

a dominant role in postnatal growth, normal bone elongation depends on the interaction of 

multiple regulatory inputs.

Nutritional Factors

In addition to hormones and growth factors, adequate nutrition is also an important facet of 

limb elongation. There are strong correlations between undernutrition (inadequate caloric/

vitamin intake) and stunted growth [96–98], as well as overnutrition (high-fat/calorie diets) 

and accelerated linear growth [99–102]. In the absence of catch-up growth, the stunting 

associated with food restriction can lead to permanently shortened bones [103]. However, in 

cases of overnutrition (obesity-induced growth acceleration), it appears that an earlier onset 

of skeletal maturity during puberty counters the accelerated period of linear growth resulting 

in a final height within a normal range [101]. While inadequate nutrition can have some of 

the greatest impacts during the infancy phase of postnatal linear growth (the first 2 years of 

life), proper nutrition is essential for all stages of linear growth continuing from 2 years of 

life past the onset of puberty [104–106].

Nutrition can also alter endocrine/paracrine signaling in the growth plate [96]. Particularly, 

IGF-1, the major growth-stimulating hormone, is commonly involved in mechanisms of 

under- and overnutrition. Serrat et al. [107] found that a high-fat diet increases the delivery 

of IGF-1 to the growth plate and accelerates bone elongation in young mice. Others have 

shown, in both human and animal studies, that nutritional deficiency inhibits IGF-1 

signaling in the growth plate and reduces final adult height [96,108,109].

Since there are multiple nutrient deficiencies in most food-restricted diets, it is difficult to 

determine the role of individual nutrients and their actions on longitudinal bone growth. Zinc 

(Zn), an essential trace mineral for linear growth, has been extensively studied. While the 

mechanism is unknown, it is thought that zinc reduces circulating IGF-1 levels [110,111], 

possibly due to an overall decrease in appetite. However, studies in rats suggest that zinc 

may also have a direct effect on the local action of IGF-1 in the growth plate [96,112,113]. 

Overall, key pathways for hormonal regulation of linear growth, including IGF-1, are clearly 

influenced by nutritional status.

Temperature Effects on Linear Growth

In addition to nutrition, other environmental factors such as altitude, climate and temperature 

can have a significant, yet often underrecognized, impact on bone elongation [114]. The 

classic effects of temperature on limb length have been described by Allen’s “extremity size 

rule,” which states that endotherms (warm-blooded animals) living in warm climates have 

relatively longer appendages (ears, limbs, tail) compared to their colder climate counterparts 
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[115]. This correlation between temperature and limb length was long presumed to be a 

thermoregulatory adaptation by increasing surface area for heat dissipation in warmer 

environments, while reducing surface area relative to body mass for heat conservation in 

colder climates [116]. Allen’s rule is indeed still applied to a variety of different species in 

present day studies. In humans, Allen’s rule was used to suggest that shorter limbs 

(including those of Neanderthals, a group of archaic humans) are advantageous for survival 

in cold climates by reducing the metabolic cost of maintaining body temperature [117].

Other studies, however, have shown that the phenotype described by Allen’s rule can be 

replicated under laboratory conditions, suggesting that it might represent growth plasticity 

rather than a thermoregulatory adaptation to climate. In reptiles, for example, elevated 

incubation temperature (32°C) increased tibial length of embryonic crocodiles [118]. Serrat 

[4] reviewed the impact of temperature on extremity growth in various mammalian species, 

with a primary focus on rodents that had been most widely studied. Their group also 

experimentally demonstrated that mice housed at warm ambient temperature (27°C) during 

post-weaning growth have longer limbs than their cold-reared littermates (7°C) [24], with 

the most substantial differences occurring during the active period of postnatal growth. Al-

Hilli and Wright [120] studied effects of warm ambient temperature (33°C) on tail growth in 

weanling mice and showed that heat-enhanced tail growth occurred during the first 3–4 

weeks of exposure. Serrat [121] found that the “critical phase” of temperature sensitive 

growth occurs in the immediate post-weaning phase, followed by a later “maintenance 

phase,” whereby temperature-induced limb length differences are simply maintained through 

adulthood. Serrat et al. [80] later showed that targeted intermittent heat exposure (40°C on 

one side of the body for 40 minutes per day) unilaterally increased limb length on the heat-

treated side growing mice, demonstrating a direct impact of temperature on bone elongation. 

While it is difficult to identify one single mechanism responsible for temperature-enhanced 

limb lengthening, it is likely the effect is driven by multiple direct and indirect mechanisms 

such as altered cell kinetics, gene expression, vascularization, transport of nutrients and 

growth factors [122], and systemic hormone concentrations [4].

Potential Function of IGF-1 in Heat-Enhanced Linear Growth

IGF-1 is the main regulator of linear growth and normal skeletal development does not occur 

without functional IGF-1 activity (see Table 1) [123–126]. In addition to liver-derived serum 

IGF-1 (endocrine), there is strong evidence that locally expressed IGF-1 (autocrine/

paracrine) regulates longitudinal bone growth in the growth plate [87,127–132]. Therefore, a 

working hypothesis for heat-enhanced linear growth is that temperature increases activity of 

IGF-1, which increases rate of chondrocyte proliferation and hypertrophy to subsequently 

enhance limb growth. Heat-enhanced linear growth may occur: (1) indirectly by increasing 

IGF-1 access/delivery to the growth plate with temperature-enhanced blood flow (endocrine 

actions), (2) directly by increasing IGF-1 activity within the growth plate (autocrine/

paracrine actions) by temperature-enhanced expression of local regulators, or (3) a 

combination of both direct and indirect mechanisms.

While blood flow and vascular transport of nutrients may play a role in heat-enhanced limb 

elongation (discussed in section 6), temperature may also directly alter growth through 
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changes in IGF-1 expression. For example, eels (an ectotherm with endoskeleton made 

entirely of bone) reared in warmer temperatures (22°C) were significantly longer and had 

increased IGF-1 gene expression compared to those raised at colder temperatures (16°C) 

[133]. Broiler chicks had increased IGF-1 expression in skeletal muscle that was associated 

with increasing rearing temperature [134,135]. In addition to the suggested relationship 

between temperature and IGF-1 expression in developing tissues, elevated temperature has 

also been shown to weaken the affinity of IGF-1 for the acid labile subunit (ALS), which 

results in increased free circulating IGF-1 [136]. Further research is needed to elucidate the 

role of temperature in modulating IGF-1 action in bone and cartilage of mammals during 

development.

Growth Hormone and Insulin-Like Growth Factor Signaling

Evolution of the Somatomedin Hypothesis

GH and IGF-1 are integral for regulating normal growth and development. Our 

understanding of the means by which GH and IGF-1 regulate growth was set into motion 

after experiments conducted in 1957 by Salmon and Daughaday showed that a factor in the 

serum (“sulfation factor”) was able to stimulate sulfate incorporation into cartilage in vitro 

[137]. Later identified as somatomedin in the early 1970s, the somatomedin hypothesis 

described an intricate relationship in which pituitary-gland derived GH stimulated the liver 

to secrete an intermediate hormone (somatomedin), which in turn caused somatic growth 

[138]. The intermediates were termed insulin-like growth factor 1 (IGF-1) and insulin-like 

growth factor 2 (IGF-2) (also referred to as somatomedin C and A) later in the decade 

[139,140]. Both factors are important for growth and development at different stages of 

maturation as abnormal phenotypes result if either is disrupted (Table 1).

The introduction of the dual-effector theory in 1985 disputed the original somatomedin 

hypothesis and proposed an additional IGF-1-independent role of GH [141]. This revision 

came after reports of local IGF-1 production in non-hepatic tissues, including bone [142], 

demonstrating that IGF-1 acts as both an endocrine and autocrine/paracrine growth 

regulator. In the growth plate, GH directly stimulates cell differentiation in the precursor 

cells of the RZ, while local IGF-1 production mediates clonal expansion of PZ chondrocytes 

[87,127–131]. More recent studies support the direct contribution of GH acting on the 

growth plate independent of IGF-1 [143,144]. Thus since its inception, the somatomedin 

hypothesis has evolved to describe a more complex interplay between GH and IGF-1 

(commonly referred to as the GH/IGF-1 axis) including negative feedback mechanisms 

where IGF-1 inhibits further GH production (Figure 2) [145].

IGF Signaling Pathways

IGF binding protein-3 (IGFBP-3) is the major carrier of IGF-1 in serum. Most circulating 

IGF-1 (~75%) exist in a ternary complex consisting of IGF-1, IGFBP-3, and the acid labile 

subunit (ALS) [136,152]. This ternary complex prolongs the half-life of serum IGF-1 and 

regulates transport from the circulation to the target tissue [136,154,155]. Similar to IGF-1, 

IGF-2 binds to IGFBPs [154,155]. Upon release at the surface of the target tissue, both IGFs 

are capable of binding to the receptor tyrosine kinase type 1 IGF receptor (IGF-1R) [155] 
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expressed in all regions of the growth plate [156,157]. The activation of the IGF-1R leads to 

a signaling cascade involving the phosphatidylinositide 3-kinase (P13K) and mitogen-

activated protein kinase (MAPK) pathways that lead to cell survival and proliferation, which 

ultimately result in bone elongation (Figure 3). While IGF-2 is classically thought to 

function only during prenatal growth [148,149,158], IGF-1 is expressed at low levels during 

embryonic development but is essential for postnatal growth [36,123,125]. Evidence 

supports that IGF-1 is more critical to postnatal longitudinal bone growth compared to 

IGF-2 because the postnatal phenotype of the IGF-1 null is more severe than Igf2 knockouts 

(see Table 1) [36,125,148,149].

Distinct and Overlapping Functions of GH and IGF-1 in Linear Growth

The growth hormone receptor knockout (GHR−/−) mouse model developed by the Kopchick 

laboratory in the 1990’s [160] has made important contributions to our understanding of the 

role of the GH/IGF-1 axis in postnatal bone elongation. The GHR−/− mouse is a model of 

human Laron Syndrome, a recessively inherited inactivating mutation(s) in the GHR. The 

disease is characterized by GH resistance, high serum GH, and low serum IGF-1 [160–163]. 

While at birth these mice are similar in size to their wild-type littermates (suggesting that 

prenatal growth is not dependent on GH), the significant size difference becomes apparent 

during postnatal development [160]. GHR−/− mice have a 30–40% reduction in body size 

[160,162–164] as well as a 65% reduction in tibial elongation rate [165,166] and decreased 

chondrocyte proliferation and hypertrophy [162]. Studies by Lupu et al. [31] found that GH 

and IGF-1 have distinct, yet overlapping, functions during mammalian linear growth. When 

comparing the GHR−/− mouse (lacking GH action) to double- Ghr/IGF-1 mutants (lacking 

GH and IGF action), the observed growth reduction of the double Ghr/IGF-1 mutants was 

more severe than that of either single mutant model [31]. With advancements in the field of 

endocrinology, investigators continue to refine the original somatomedin hypothesis to 

determine how GH and IGF-1 interact to regulate linear growth.

GH and IGF-1 Treatment of Multiple Endocrine Deficiencies

Endocrine disorders involving deficient or excessive production of the important growth-

promoting hormones (GH, IGF-1, thyroid hormones, glucocorticoids, and sex steroids), can 

lead to abnormally short or tall stature. Short stature characterized by stunted linear growth 

may result from GH deficiency [31,130,167], IGF-1 deficiency [123–126,164,168], 

hypothyroidism [169], or hypercortisolism [170,171]. Thyroid hormone (T3) deficiency in 

children is associated with growth reduction [172] and studies in mice using knockout 

models have also shown that linear growth is impaired in thyroid hormone deficient mice 

[169,173] when levels are normal but the thyroid receptor (TRα1 and TRβ) is mutated 

[174,175].

A significant problem that results from short stature is the development of behavioral and 

emotional problems in children [81,176,177]. One common treatment option for children 

with stunted linear growth involves frequent subcutaneous injections of recombinant human 

GH until adult height is reached [130,178,179]. GH has also been used to treat short stature 

resulting from chromosomal disorders and genetic syndromes including Turner syndrome 

[167,178–180], Achondroplasia [181], Prader-Willi syndrome [178,182], and Noonan 
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syndrome [178,183]. Other therapies to increase linear bone growth include oxandrolone 

(synthetic steroid similar to testosterone), estrogens, gonadotropin-releasing hormone 

(GnRH) and IGF-1 [179]. While GH therapy is more commonly used in clinical settings, 

IGF-1 can also effectively reverse skeletal growth discrepancies [31,163,184–192]. 

However, IGF-1 is not the optimal first-line of treatment because of adverse effects such as 

hypoglycemia (abnormally low levels of glucose in the bloodstream), resulting from IGF-1 

acting on the insulin receptor [187,193–196]. In patients that already show symptoms of 

hypoglycemia, such as those with Laron’s Syndrome (GH insensitive), IGF-1 therapy can 

intensify these symptoms and can lead to loss of consciousness or seizures [186,197,198]. 

Other risks with IGF-1 treatment include headaches, intracranial hypertension, growth of the 

nasopharyngeal lymphoid tissues, hearing loss, and injection site lipohypertrophy 

[185,186,189,190]. Researchers continue to seek better delivery mechanisms using a lower 

dose of IGF-1 to avoid the adverse effects of increased systemic levels [199].

IGF-1 as a Primary Mediator of Longitudinal Bone Growth

Role of Locally Expressed IGF-1

Numerous studies have supported the importance of both GH and IGF-1 in mediating linear 

bone growth; however, IGF-1 appears to be the most critical regulator of postnatal growth. 

In mutant animal models where GH action is impaired [31,160–163,166], animals thrived 

despite being significantly smaller than the wild-type counterparts. In contrast, in mutant 

animals where local IGF-1 action is impaired, most animals died shortly after birth and those 

that did survive had severe growth defects [3,142,143] supporting the importance of locally 

produced IGF-1. The observed growth defects suggest that while a degree of circulating 

IGF-1 is necessary [152], local action of IGF-1 may be more critical for longitudinal bone 

growth (see Table 1).

The role of local IGF-1 in chondrocyte proliferation is still somewhat unclear. In the early to 

mid-1990s, investigators reported the expression of IGF-1 in the PZ of the epiphyseal 

growth plate measured by in situ hybridization [87,200,201], and these findings were 

replicated in a separate study a decade later [31]. However, these results differed from 

findings of two other groups that were both unable to detect IGF-1 mRNA in proliferating 

chondrocytes by in situ hybridization methods, and instead found IGF-2 mRNA [157,202]. 

Other investigators have also identified the expression of IGF-2 in the PZ [156,203]. These 

inconsistencies could be due to age of the study animals, however, because levels of IGF-2 

in the PZ consistently decrease with age, whereas IGF-1 levels increase after birth [156]. 

Since several studies that did not detect IGF-1 mRNA in proliferating chondrocytes were 

done during the earliest stages of postnatal development [202,157], it is possible that these 

animals had not yet reached the postnatal age at which IGF-1 can be detected in the PZ.

Although once thought to only function during prenatal development, the significance of 

IGF-2 in early postnatal chondrocyte development has begun to emerge. IGF-2 has not been 

included in the classic GH-IGF-1 signaling axis [204,205] but the role of IGF-2 in postnatal 

bone growth has been revisited after a group discovered that human postnatal growth 

restriction was associated with nonsense IGF-2 mutations [206]. Uchimura et al. [207] found 

significantly reduced bone length in IGF2-null mice at postnatal periods prior to weaning 
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(1–3 weeks of age) and their histological analysis suggests that IGF-2 may have a role in 

controlling the progression of chondrocytes from proliferation to hypertrophy. The 

mechanism and extent by which IGF-2 regulates longitudinal bone growth throughout the 

postnatal period remains unclear and is an important avenue for future investigation.

Regardless of its local versus systemic roles, IGF-1 is undisputedly a significant factor in 

epiphyseal cartilage development. Local regulation of IGF-1 has been studied in other 

regions of the growth plate aside from the PZ. Cell kinetic studies using hypophysectomized 

rats (pituitary gland removed reducing systemic levels of GH and IGF-1) have shown that 

IGF-1 regulates all phases of chondrocyte differentiation in the growth plate including 

chondrocyte precursors in the RZ of [208]. IGF-1 expression has also been observed in the 

HZ of epiphyseal growth plates [200,201] and local regulation by IGF-1 has been shown to 

augment chondrocyte hypertrophy [124,168,209,210]. An observed 35% reduction in HZ 

height was reported in an IGF-1 null mouse model [168]. IGF-1 has also been shown to 

induce collagen X production (made in the HZ) [168,211]. When local expression of IGF-1 

was blocked by the binding of Wnt induced secreted protein 3 (WISP3), a protein involved 

in cell differentiation, IGF-1-induced collagen X expression was also reduced [211].

IGF-1 Antagonists

Mouse models designed to control the expression of IGF-1 through genetic manipulation 

have been critical in our understanding of IGF-1 regulation. Another approach for studying 

the role of IGF-1 in regulating linear bone growth is by using pharmaceutical inhibitors to 

block IGF-1 action. The major target of an IGF-1 antagonist is the IGF-1R, which serves as 

the gateway for IGF-1 action (see Figure 3). When activation of the IGF-1R is inhibited, the 

growth promoting effects of IGF-1 are blocked (Figure 4). Multiple types of antagonists of 

IGF-1 have been studied including small-molecule tyrosine kinase inhibitors (TKIs) and 

competitive antagonists such as monoclonal antibodies directed against the IGF-1R or the 

use of IGF-1 peptide analogs (Table 2). Since hormones and growth factors, including 

IGF-1, function to promote growth by inducing cell proliferation and survival, hormone 

antagonists are often investigated as means for treating abnormal cell growth such as 

carcinogenesis. However, many of these antagonists face scrutiny because of the reports of 

failure in clinical trials [212]. Therefore, investigators are continuing to seek a better 

understanding of these antagonists using animal models [145] and continue to research 

alternatives for IGF-1 antagonists to improve targeted therapies [212].

Apart from clinical studies using IGF-1 antagonists as anti-cancer drugs, testing antagonists 

for their ability to block IGF-1 action in growing bone is an important area of research. 

Since many of these drugs are administered systemically, the smaller sized antagonists (<0.9 

kDa) are more soluble and better for transport out of the vasculature and especially into 

dense connective tissue [213,214]. As highlighted in Table 2, IGF-1 peptide analogs are 

effective because of their specificity, small molecular size (0.6–1.2 kDa) and low toxicity 

[215–219]. Multiple IGF-1 peptide analogs have been used to inhibit cellular proliferation 

including JB1, JB2 and JB3 [218]. JB1 is a commercially-available analog that 

competitively binds to the IGF-1R and blocks downstream IGF-1 activity [216,217,220–

222] (Figure 4). As with many antagonists, resistance is possible. Haylor et al. [215] 
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reported a bell-shaped curve with the dose response of JB3 and its successful inhibition of 

kidney growth in rats. In addition to determining an effective range of treatment, challenges 

still arise in eliciting a tissue specific response without affecting other systems dependent on 

IGF-1 for normal growth. Further investigation into methods of targeting small molecules 

will be beneficial in optimizing application of IGF-1 antagonists.

Role of Vasculature in Bone Elongation

Vascular Supply of the Growth Plate

The vasculature is crucial for transporting regulators that support the well-controlled 

processes of endochondral ossification. Although bone is a highly vascularized tissue, 

signaling molecules involved in bone elongation must overcome a challenge that is unique to 

the growth plate: cartilage does not have a penetrating blood supply. Systemic factors 

essential for bone elongation are delivered from surrounding blood vessels [226–228]. These 

vascular routes include: 1) epiphyseal vessels, 2) metaphyseal vessels, and 3) perichondral 

vessels [229–232], which arise from a ring vessel found in the encircling groove of Ranvier 

[229,233]. Studies have shown that the epiphyseal vasculature is essential for normal growth 

plate cartilage development [227,228,234,235]. Traditionally, epiphyseal vessels were 

thought to provide the means for normal chondrocyte proliferation, while chondrocyte 

hypertrophy was thought to be dependent on the metaphyseal vessels [236,237]. More 

recently, however, Farnum and colleagues found that small solutes reach growth plate 

chondrocytes from all three vascular routes [238], suggesting that both epiphyseal and 

metaphyseal vessels are crucial in bone elongation.

With the emergence of new imaging modalities, we now have a better understanding of the 

mechanisms of molecular transport to the growth plate from the surrounding vasculature. 

Multiphoton microscopy (MPM) as described by Zipfel, Williams, & Webb [239] is a 

minimally-invasive method of in vivo fluorescent imaging that can be used to study solute 

transport to the growth plate of live anesthetized animals at cellular-level resolution [238]. 

This imaging approach provides a new approach for tracking systemic fluorescent tracers 

through the vasculature into the growth plate in real time, in a way not possible using other 

techniques [119,122,235,238,240]. For example, dextrans larger than 40kDa are somewhat 

size-limited from entering the growth plate [122], but molecules less than 10kDa enter the 

growth plate through all three vascular routes [238]. Using these approaches to study the 

transport of molecules into the growth plate may ultimately provide a better understanding 

of how larger signaling molecules such as FGFs (FGF2, 18kDA; FGF18, 23kDa), PTHrP 

(9–23kDa), and BMPs (BMP-2, 26kDa) expressed in the perichondrium can regulate growth 

plate chondrogenesis [11].

Transport of Systemic IGF-1 into the Growth Plate

IGF-1 is the major circulating hormone of growth. At a molecular weight of 7.6kDa, IGF-1 

falls within the range of molecules that readily enter the growth plate through the 

surrounding vasculature (less than 10kDa) [122]. To study the role of IGF-I uptake in bone 

elongation, Serrat and Ion [241] developed methods for visualizing the transport of 

fluorescently-labeled, biologically-active IGF-1 into the proximal tibial growth plate of live 
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young mice using MPM. They showed that biologically active IGF-488 (IGF-1 conjugated 

with Alexa Fluor 488) entered the growth plate and localized to chondrocytes [241]. Since 

IGF-1 is used as a drug to treat short stature in GH insensitive children, such as Laron 

Syndrome patients [31,161,163,180,184–192], it is essential to understand how IGF-1 is 

transported through the vasculature. Real-time imaging could be a crucial step forward in 

developing approaches to better target IGF-1 delivery to the growth plate using mechanisms 

such as warm temperature [119,122,240].

Chondrocyte Expression of Angiogenic Factors

Angiogenesis (development of new blood vessels) is an essential part of normal linear bone 

growth. During endochondral ossification, hypertrophic chondrocytes secrete angiogenic 

factors that initiate vascular invasion and recruit bone absorbing and forming cells to replace 

mineralized cartilage with bone. The key regulator of angiogenesis during both prenatal and 

postnatal growth and development is vascular endothelial growth factor (VEGF). Survival is 

dependent on functional VEGF during both embryonic [242,243] and early postnatal life 

[244]. Different VEGF isoforms exist but only VEGF-A is expressed in growth plate 

cartilage and therefore is the most important for regulating longitudinal bone growth [245]. 

There are also additional splice isoforms of VEGF-A that vary between species. 

Hypertrophic chondrocytes in both human and murine growth plates secrete VEGF 

[7,81,234,246–249] to promote vascular invasion from the metaphyseal bone throughout 

postnatal limb elongation. In human growth plates, the most common splice isoforms are 

VEGF121, VEGF165 and VEGF189 [234,245]. The analogous isoforms in mice are 

VEGF120, VEGF164 and VEGF188 [234,250]. Interestingly, Maes et al. [234] discovered 

that different processes of vascularization require specific isoforms of VEGF-A and that the 

combined action of VEGF120 and VEGF188 is required for both epiphyseal and 

metaphyseal vascularization. Other local factors expressed by hypertrophic chondrocytes 

that promote angiogenesis include FGFs [251–253] and matrix metalloproteinase 9 

(MMP-9) [81,247,250,254,255]. Systemic factors including estrogen [245] and IGF-1 

[256,257]) have also been shown to induce vascular invasion by stimulation of VEGF in 

growth plate chondrocytes.

Normal longitudinal bone growth is dependent on VEGF expression in growth plate 

chondrocytes. Inhibition of VEGF in young mice (24 days old) suppressed blood vessel 

invasion, lengthened the hypertrophic zone and reduced bone growth, all of which was 

corrected after anti-VEGF treatment ended [247]. These results are clinically relevant to 

actively growing children that may require therapeutic intervention using angiogenesis 

inhibitors to prevent unwanted formation of new blood vessels, such as in pediatric cancers. 

A monoclonal antibody against VEGF, bevacizumab (Avastin®; Genentech, Inc), has been 

used in adults as an FDA approved anti-cancer agent [243] and is considered a promising 

treatment option for children [258,259]. It is especially important to improve chemotherapy 

in pediatric patients since children are undergoing an essential stage of bone development 

requiring growth factors, including IGF-1 and VEGF, for bone elongation. Therefore, as 

with IGF-1 antagonists, the development of non-invasive methods for targeting drugs 

directly to a tissue will be essential for preserving linear growth in children.
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Conclusions

The goal of this review was to highlight factors that influence postnatal bone elongation with 

respect to their effects on IGF-1 activity in the growth plate, and in particular, the current 

state of knowledge regarding effects of IGF-1 and environmental variables, such as 

temperature, on bone elongation in cartilaginous growth plates. The available evidence 

demonstrates that environmental variables such as temperature and nutrition impact IGF-1 

activity in the growth plate. While there are still gaps in our knowledge, there are many 

potential avenues of future studies to elucidate the complex mechanisms by which IGF-1 

interacts with environmental variables to enhance bone elongation. By understanding the 

interplay between these important factors during postnatal linear growth, the goal is to 

ultimately develop better approaches for treating children with a range of bone elongation 

disorders.
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Abbreviations

ALS acid labile subunit

BMP bone morphogenic protein

COJ chondro-osseous junction

FDA Food and Drug Administration

FGF fibroblast growth factor

GH growth hormone

GHR−/− growth hormone receptor knockout

GnRH gonadotropin releasing hormone

GP growth plate

HZ hypertrophic zone of growth plate cartilage

IGF-1 insulin-like growth factor 1

IGF-1R insulin-like growth factor 1 receptor

IGF2 insulin-like growth factor 2

IGFBP insulin-like growth factor binding protein
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Ihh Indian hedgehog

LID liver IGF-1-deficient

LLD limb length discrepancy

MAPK mitogen-activated protein kinase

MMP-9 matrix metalloproteinase 9

MPM multiphoton microscopy

PTHrP parathyroid hormone-related protein

PZ proliferative zone of growth plate cartilage

RZ reserve zone of growth plate cartilage

T3 triiodothyronine

TKI tyrosine kinase inhibitors

TRα1 thyroid hormone receptor alpha 1

TRβ thyroid hormone receptor beta

VEGF vascular endothelial growth factor

WISP3 Wnt induced secreted protein 3

Wnt wingless/integrated

Zn zinc
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Figure 1. 
Diagram of a growth plate. Illustration represents the different cellular zones that comprise 

cartilaginous growth plates (dark gray). Arrows indicate the different zones. The vertical 

yellow line (top) denotes the proliferative zone (PZ) and the vertical green line (bottom) 

denotes the hypertrophic zone (HZ). The PZ is a region of actively dividing chondrocytes 

that are stacked and flattened in multicellular columns. The HZ is a region of enlarged 

chondrocytes. Epiphyseal and metaphyseal bone on each end of the growth plate contains 

blood vessels (red lines) that supply each region of bone.
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Figure 2. 
GH/IGF-1 Axis in Postnatal Limb Elongation. Flow diagram illustrates the basic pathways 

in which GH and IGF-1 interplay to promote longitudinal bone growth. In addition to 

stimulating IGF-1 production in the liver as originally proposed in the somatomedin 

hypothesis, GH also stimulates longitudinal growth (1) by promoting local production of 

IGF-1 in growth plate chondrocytes and (2) independent of IGF-1 as explained by the dual 

effector theory. IGF-1 also has autocrine/paracrine effects independent of GH by promoting 

longitudinal growth locally in growth plate chondrocytes. The red arrow demonstrates the 

negative feedback mechanism of IGF-1 inhibiting further GH synthesis and release.
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Figure 3. 
IGF-1 Induced Intracellular Signaling Pathway. The binding of IGF-1 to its receptor 

(IGF-1R) triggers downstream signaling cascades, which includes the phosphatidyl 

inositol-3 kinase (P13K) and mitogen-activated protein kinase (MAPK) pathways that 

ultimately lead to cell survival and proliferation. Illustration based on Crudden, Girnita, A, 

and Girnita, L [159].
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Figure 4. 
Inhibition of IGF-1R Signaling. The IGF-1 peptide analog, JB1, competitively binds to the 

IGF-1R. JB1 thus inhibits IGF-1 binding and prevents IGF-1R activation, ultimately 

blocking kinase signaling that would otherwise lead to cell survival and proliferation 

(repressed downstream effects indicated by the red “X”). Illustration based on Crudden, 

Girnita, A, and Girnita, L. [159].
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Table 1.

Mouse Models with Disrupted IGF-1 Regulation

Model Phenotype Citation

IGF-1 null mice (global IGF-1 disruption) 95% mice died prenatally; undetectable levels of IGF-1 in serum and 
tissues; significant decrease in tibial length (70%); abnormal 
chondrocyte proliferation and differentiation

[36,123,124,147]

Igf2 null mice (global IGF-2 disruption) Mice are viable; reduced body growth (60%) at birth; normal 
postnatal growth

[148,149]

LID mice (systemic disruption of liver-derived 
IGF-1)

75% reduction in serum IGF-1; no significant change in body length; 
no significant change in tibial length; slight decrease in femoral 
length (6%)

[149,150]

ALS knockout mice (systemic disruption ternary 
complexes (IGF-l/ALS/IGFBP-3)

65% reduction in serum IGF-1; no significant change in body length; 
slight decrease in femoral length (7.5%)

[151]

LID+ALSKO mice (systemic disruption of liver-
derived IGF-1 and ternary complexes (IGF-l/ALS/
IGFBP-3))

85–90% reduction in serum IGF-1; significant reduction in body 
length (30%); significant decrease in femoral length (20%)

[152]

(Col2al)-driven Cre mice (local disruption of 
chondrocyte-derived IGF-1)

40% reduction in chondrocyte IGF-1; Significant decrease in 
postnatal body length; no morphological differences in proliferative 
and hypertrophic regions

[153]

CartIGF-1r−/− mice (local disruption of cartilage-
specific IGF-1R)

Mice died shortly after birth [3]

TamCartIGF-1r−/− mice (local disruption of 
cartilage-specific IGF-1R induced by tamoxifen 
injections)

Significant decrease in body length (40%); disorganized growth 
plates associated with reduced chondrocyte proliferation and 
differentiation

[3,142,143]
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Table 2.

Summary of IGF-1 Antagonists

Antagonist Advantage Disadvantage Citation

Anti-IGF-IR antibodies (i.e. 
ganitumab and αIR3)

Highly specific for the IGF-1R Activates the insulin receptor and promotes 
unwanted growth; Large molecular weight 
(145–155kDa); Drug resistance

[145,216]

Small-molecule TKIs (i.e. Linsitinib 
and BMS-754807)

Targets both IGF-1R and insulin 
receptor; Small molecular weight 
(0.42-0.46kDa)

Less specific; Reported toxicity (i.e. diarrhea 
and myelosuppression); Drug resistance

[223–225]

IGF-1 peptide analogs (i.e. JB1, JB2 
and JB3)

Highly specific for the IGF-1R; Small 
molecular weight (0.6–1.2kDa); Low 
toxicity

Drug resistance [215–219]
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