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Abstract

In metagenomic studies of microbial communities, the short reads come from mixtures of genomes. Read assembly is
usually an essential first step for the follow-up studies in metagenomic research. Understanding the power and limitations
of various read assembly programs in practice is important for researchers to choose which programs to use in their
investigations. Many studies evaluating different assembly programs used either simulated metagenomes or real
metagenomes with unknown genome compositions. However, the simulated datasets may not reflect the real complexities
of metagenomic samples and the estimated assembly accuracy could be misleading due to the unknown genomes in real
metagenomes. Therefore, hybrid strategies are required to evaluate the various read assemblers for metagenomic studies.
In this paper, we benchmark the metagenomic read assemblers by mixing reads from real metagenomic datasets with reads
from known genomes and evaluating the integrity, contiguity and accuracy of the assembly using the reads from the known
genomes. We selected four advanced metagenome assemblers, MEGAHIT, MetaSPAdes, IDBA-UD and Faucet, for evaluation.
We showed the strengths and weaknesses of these assemblers in terms of integrity, contiguity and accuracy for different
variables, including the genetic difference of the real genomes with the genome sequences in the real metagenomic
datasets and the sequencing depth of the simulated datasets. Overall, MetaSPAdes performs best in terms of integrity and
continuity at the species-level, followed by MEGAHIT. Faucet performs best in terms of accuracy at the cost of worst integrity
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and continuity, especially at low sequencing depth. MEGAHIT has the highest genome fractions at the strain-level and
MetaSPAdes has the overall best performance at the strain-level. MEGAHIT is the most efficient in our experiments.
Availability: The source code is available at https://github.com/ziyewang/MetaAssemblyEval.
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Introduction

Microorganisms occur as complex communities in all natural
habitats, including ocean, soil and different parts of the human
body. Investigations on what microbial organisms there are,
their abundance levels and how they interact with each other
to influence the function of the communities are essential
problems in many different fields of scientific research. Previous
studies have shown that microbiome composition is highly
associated with human diseases [1–6], effectiveness of medical
treatments [7–9], and functional changes in marine [10] and soil
environments [11]. Therefore, research aimed at revealing the
microbial composition, abundance and interactions have great
significance.

Next-generation sequencing (NGS) technologies make it
possible to rapidly sequence a large number of short reads
efficiently and economically. Faced with massive and complex
metagenomic sequencing reads, the first step in most of the
metagenomic studies is to assemble the reads into contigs con-
sisting of overlapping reads. Metagenomic assembly is essential
for follow-up studies on microbial composition, abundance and
interactions, as well as microbial associations with complex
traits. Many metagenomic assembly algorithms have been
developed based on various principles. While preprocessing
the metagenomic data, researchers usually use sequence
assemblers to link NGS sequence reads into longer sequences,
generally called contigs, whose quality is essential for further
analysis. The assembly quality and usefulness in practice are
usually measured by contiguity, integrity, accuracy, running time
and memory cost. Several research groups have evaluated the
quality of various assemblers [12–17]. The current computational
experimental designs for evaluating metagenomic assemblers
fall into two main categories.

The first category of studies evaluates metagenomic assem-
blers using simulated metagenomes. Since real metagenomes
are generally complex and their microbial compositions are
unknown, it is challenging to compare different assemblers on
real metagenomic datasets. Therefore, most studies evaluating
metagenomic assemblers used simulation approaches [13, 15,
18, 19]. In these studies, the investigators first simulated the
datasets using metagenome simulation programs by selecting
a set of known genomes and their abundance profiles, then
fragmented the genomes into simulated NGS reads, then used
metagenomic assembly programs to assemble these simulated
reads and finally evaluated the quality of the assembled contigs
by comparing the assembly results with the original reference
sequences. With the known reference genomes, the investiga-
tors were able to accurately assess the assembly accuracy and
integrity. However, it is difficult to simulate the complexity of
real metagenome datasets with pure simulated data and it is
not clear whether the evaluation results based on the simulated
data are consistent with that from complex real metagenomic
datasets. Of particular concern is the fact that natural commu-
nities are often composed of many very close relatives, where
extensive sequence variations interfere with the creation of long
contigs.

The second category of studies evaluates metagenomic
assemblers using real metagenomic datasets. Without the
known genomes in the microbial community, it is difficult to
evaluate assembly accuracy and integrity. Under such scenarios,
the investigators first assembled the real metagenomic datasets
and then used the resulting assembly to evaluate contiguity,
running time and memory cost. Nurk et al. [20] used the genomes
identified by metaQUAST [21] as the reference genomes to
evaluate metagenomic assemblers. For example, they selected
the reference genomes as those with a large proportion covered
by the assembled contigs. The assembly integrity and accuracy
of these genomes can then be evaluated. Due to the lack of
known reference genomes, such an approach can only pick up
the most likely genomes for alignment and the misassemblies
and mismatches may be caused by the incorrect assembly or the
incorrect reference genomes [20].

Evaluating the performance of different metagenomic
assembly programs under realistic scenarios remains an impor-
tant yet challenging problem. In this study, we used a hybrid
strategy for evaluating the metagenomic assemblers by adding
simulated reads of the known genomes into the sequencing
reads of the real metagenomic datasets. We then evaluated
the metagenomic assemblers using the sequence of the known
genomes. The strategy has two obvious advantages. First, the
reads we added into the metagenomic datasets were from the
known genomes, that is, the references are known, which avoids
the problem of unknown reference genomes using completely
real metagenomes. Second, adding a small amount of simulated
data into the real metagenomic datasets can construct an
environment that is more similar to the real metagenomes.
Such a strategy also avoids the problem that the simulated
metagenomes are not as complex as real metagenomes.

Here we first review the major de novo sequence assembly
algorithms and the metagenomic assemblers. Then, we intro-
duce our experimental design including the real datasets and
known genomes used for our study, the experimental variables
and the evaluation criteria. Next, we present the results of the
preliminary studies to show the necessity of using a hybrid
approach to evaluate read assemblers and the results of our
evaluation strategy. Finally, we discuss the comparison results,
which provides guidelines for the choice of metagenomic assem-
blers in practical studies.

Overview of metagenomic assembly programs
In metagenomic studies, NGS is usually applied directly to
sequence all the genetic materials from a certain environment
resulting in a large number of short reads each with length
ranging from 100–400 bp. Therefore, the data consists of a
mixture of reads from different microbial organisms. For
many analyses, the first step in metagenomic data analysis is
sequence assembly that links overlapping reads into relatively
long fragments called contigs. Many metagenomic assembly
programs have been developed based on different principles
[20, 22–25]. In the following, we briefly review some of the
metagenomic assembly programs investigated in this study.
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Figure 1. Overview of three different categories of de novo assembly programs:

greedy extension, OLC and the de Bruijn graph.

Genome and metagenomic assembly algorithms can be
grouped into three categories based on their assembly principles
[26]: greedy-extension, overlap–layout–consensus (OLC) and de
Bruijn graph-based approaches. Figure 1 shows an overview
of the different groups of de novo assembly algorithms. The
greedy-extension algorithms start with some reads as seeds,
followed by extending the seeds using the reads with the
highest-scoring overlap or the reads whose prefix or suffix have
overlap length longer than a given threshold. The algorithms
then take the extension of the sequence as new seed sequences
and make the next joint until no more reads can be merged
[27]. The assembly algorithms based on the OLC principle
mainly consist of three steps. First, the overlap step finds the
overlaps among all the reads. Then, the layout step uses a
graph to represent a layout of all the reads and the overlap
information obtained in the first step. Finally, the consensus
step infers the consensus sequence according to the layout.
The greedy-extension algorithms just make the best choice
in each step, potentially leading to local optimal solutions,
which usually result in a relatively high number of incorrect
assemblies. The computational costs of the OLC algorithms are
usually very high, making it not practical to deal with large
amounts of metagenomic shotgun sequence data. On the other
hand, the metagenomic assembly algorithms based on the de
Bruijn graph principle are usually much faster and memory
efficient, resulting in their wide applications in metagenomic
assembly.

Figure 2. Examples of tip and bubble structures in the de Bruijn graph.

Assembly algorithms based on the de Bruijn graph

The assembly algorithms based on the de Bruijn graph use the
relationship between k-length substrings (k-mers) derived from
the reads to construct the graph. First, the k − 1 prefix and
suffix of each k-mer are extracted and used as two nodes in
the graph. If there are no corresponding identified nodes in
the graph already, create a new node for the (k − 1)-mer, and
then establish a directional connection between the prefix and
suffix. The resulting graph is called the de Bruijn graph. Next,
sequence assembly might be achieved by finding a path that
contains all edges from the de Bruijn graph, that is, identify-
ing an Eulerian path in the de Bruijn graph. Since sequenc-
ing errors can be present in many substrings, the accuracy of
the resulting assembly based on the de Bruijn graph is sensi-
tive to sequencing errors, while such algorithms are generally
highly efficient and are insensitive to sequencing depth. Many
assembly algorithms based the de Bruijn graph have been devel-
oped for individual genomes [28–31] and metagenomes [20, 22,
23, 32–34].

Challenges of using the de Bruijn graph for genome
assembly

There are several challenges of using the de Bruijn graph
approach for genome assembly. First, repeat regions with length
greater than k within a genome can cause branches in the graph
that can be hard to resolve [35]. There are two kinds of branches:
tips and bubbles. A tip is a chain of nodes that is disconnected
on one end [28] as shown in Figure 2B. A bubble appears if two
paths start and end at the same nodes [28] as shown in Figure 2B.
Large k can potentially decrease the number of branches caused
by repeats, because the lengths of some short repeat regions
may be shorter than the read length.

Sequencing errors can generate extra vertices in the de
Bruijn graph and we call these extraneous ones ‘false positive
vertices’. These false positive vertices not only take more storage
space and influence the computational efficiency, but also bring
more branches, thus, making it more prone to have short and
sometimes erroneous contigs. When the sequencing coverage is
low, some genomic positions may not be sequenced resulting in
‘gaps’ in assembly [35].
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Table 1. The strategies that the assemblers MEGAHIT, MetaSPAdes and IDBA-UD, used to overcome major assembly difficulties including false
positive vertices, branches, repeats and gaps

Major difficulties Assembly program

MEGAHIT MetaSPAdes IDBA-UD Faucet

False positive
vertices

Filter k-mers Disconnect weak edges Use multiple depth-relative
thresholds; Remove
dead-end contigs

Use distances between
junctions

Branches Use multiple k-mer sizes
(large k); merge long-bubbles

Use multiple k-mer sizes
(large k); detect and mask
strain variations

Use multiple k-mer sizes
(large k); Remove dead-end
contigs and bubbles

Introduce artificial dummy
junctions

Repeats Use multiple k-mer sizes
(large k); local assembly

Use multiple k-mer sizes
(large k); resolve repeats
with exSPAnder

Use multiple k-mer sizes
(large k); Local assembly

Clean and refine the graph
structure iteratively

Gaps Use Multiple k-mer sizes
(small k); local assembly

Use multiple k-mer sizes
(small k)

Use multiple k-mer sizes
(small k); Local assembly

Clean and refine the graph
structure iteratively

Efficiency Use SDBG Use perfect hashing
technique; use
parallelization

Filter k-mers A two-pass streaming
approach

Challenges of using the de Bruijn graph for
metagenomic assembly

Metagenomic assembly is even more challenging. First, assembly
is a complicated problem with high computational complexity
to process large volumes of data. The scale of metagenomic data
is usually large and each sample contains GB-level or even TB-
level of data. Increasing amount of data poses significant chal-
lenges to the existing assemblers. Second, a microbial commu-
nity may contain hundreds to thousands of unknown microbial
organisms and the abundance levels of the different genomes
vary widely. For rare microbial organisms, it is challenging to
distinguish the rare variants from sequencing errors in a com-
plex microbial community. Moreover, due to uneven abundance,
some rare species may not be well assembled because of low
coverage [36]. Third, there may be repeat regions within the same
genome or across multiple genomes, which makes metagenomic
assembly especially challenging.

Selected metagenomic assemblers

Several metagenomic assemblers are extensions of the cor-
responding assemblers for individual genomes including
Meta-IDBA [22], IDBA-UD [32], Ray Meta [23] and MetaSPAdes
[20]. They are all based on the de Bruijn graph approach.
Meta-IDBA [22] and IDBA-UD [32] are extensions of IDBA
[30] that was originally developed for assembling individual
genomes. Meta-IDBA partitions the de Bruijn graph into isolated
subgraphs and merges the similar subgraphs using a consensus
approach. IDBA-UD uses an iterative de Bruijn graph approach
iterating from small to large k. When constructing the graph,
instead of using a fixed k, IDBA-UD sets a minimum and
a maximum value of k for iteration step by step. Small k
values can handle low coverage better while large k values
can better handle the repeat issue. Ray Meta is based on a
parallel short-read assembler developed to assemble reads
obtained from different sequencing platforms [29]. It is a scalable
metagenome assembler coupled with Ray Communities, which
profiles microbiomes by adding colors to the de Bruijn graph
utilizing bacterial genomes. However, Ray Meta does not modify
the de Bruijn subgraph while producing the assembly, which
may be the main reason for its low accuracy compared with
other assemblers [20]. MetaSPAdes is an extension from a

popular genome assembler SPAdes [31]. It develops a new
process for processing branches in the graph caused by repeats
compared with the SPAdes, using rare strain variants to improve
assembly. In order to reduce the time required for assembly and
save memory, a perfect hashing method is used to construct
and simplify the graph structure in MetaSPAdes. MEGAHIT
[25, 34] uses the succinct de Bruijn graph (SDBG) and is efficient
for assembling large and complex metagenomic datasets. This
assembler compresses the de Bruijn graph using the method
similar to the Burrows–Wheeler transformation, constructing a
sorted list of edges. Faucet [37] is a two-pass streaming algorithm
for assembly graph construction that can optimize resource
efficiency and can be used for metagenomic assembly.

We selected three advanced metagenomic assemblers, IDBA-
UD, MEGAHIT and MetaSPAdes, as in many recent compara-
tive studies [14–16, 19, 36] and Faucet for evaluation. IDBA-
UD was selected due to its good performance shown in other
development of metagenomic assemblers [20, 24]. MEGAHIT was
selected due to its good performance shown in the first CAMI
challenge [15]. MetaSPAdes was selected due to its good per-
formance in a comparative study of metagenomic assemblers
[19]. Faucet was selected due to its good performance in accu-
racy compared with other advanced metagenomic assemblers in
[37]. Table 1 summarizes the assembly strategies each assembler
adopted to deal with the major difficulties in metagenomic
assembly. More details can be found in their corresponding
papers and Table S1 in the Supplementary Material.

Experimental design and evaluation criteria
The objective of our study is to evaluate several metagenomic
assembly programs using a combination of real metagenomic
reads and simulated reads from known microbial organisms.
This study differs from previous metagenomic assembly evalu-
ation studies since previous studies used either pure simulated
metagenomes or real metagenomes.

In order to investigate how the reads from known genomes
are assembled within the real environment, we developed the
following strategy that mixes real metagenomic data with
the simulated reads from a few known completely sequenced
genomes. First, using the complete genome sequences of the
selected species, we applied Mason [38], a software tool for

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
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Figure 3. The framework of evaluating metagenomic sequence assembly pro-

grams using hybrid of real and simulated reads.

generating short reads using the complete genomic sequences,
to obtain the simulated reads of the selected genomes. After
mixing the simulated reads with the real metagenomic data,
we assembled the hybrid reads with different metagenomic
assemblers. Next, taking the selected genomes as references, we
applied the metagenomic assembly evaluation tool, metaQUAST
[21], to obtain the statistics of the contigs for subsequent
analyses. Figure 3 shows the framework of our metagenomic
reads assembly evaluation strategy.

Many factors can affect the quality of assembling the reads
from the newly added genomes. If the newly added genome
is genetically highly similar to one of the genomes in the real
microbial community, it will be challenging to assemble the
reads from the newly added genome. On the other hand, if
the newly added genome is highly different from the microbial
organisms in the real metagenome, the reads from the newly
added genome should be relatively easy to assemble. Therefore,
the first parameter we investigated was the minimum distance
between the newly added genome and the genomes in the real
metagenome data.

Low sequencing coverage would result in many gaps in the
assembly. Therefore, sequencing depth can influence the quality

of the assembly. Thus, the second parameter we investigated
was the sequencing depth of the added genomes. We used the
following formulas to calculate the sequencing depth.

Data size = Read length × Read number (1)

Sequencing depth = Data size
The size of reference genome

(2)

Datasets

To evaluate the assembly quality as a function of the genetic dif-
ference of the newly added simulated genomes with the genome
sequences in the real metagenome and the sequencing depth
of metagenome, we chose two real metagenomic datasets with
different data sizes and generated simulated reads from five and
eight different genomes, respectively, as shown in Table 2.

Real metagenomic datasets

Dataset 1, human gut metagenome (SRR769529), contains Illumina
HiSeq 101bp paired-end reads. The size of raw sequence reads of
the sample is 7.9Gb. The reads were downloaded from the NCBI
website (https://www.ncbi.nlm.nih.gov/).
Dataset 2, marine metagenome (ERR2762185), one of Tara Oceans
Polar Circle DNA samples. It contains Illumina HiSeq 101bp
paired-end reads. The size of raw sequence reads of the sample
is 145.8Gb. The reads were downloaded from the NCBI website
(https://www.ncbi.nlm.nih.gov/).

Individual genomes used for simulation

Table 2 shows the individual genomes chosen for generating
simulated reads, their major living environments and genome

Table 2. The living environments and the genome size of the individual genomes chosen for generating simulated reads

Species name Abbreviation Major living environment Genome size

Individual genomes chosen for being added in the SRR769529 dataset

Porphyromonas gingivali P. gingivali human oral cavity 2 339 898 bp
Streptococcus salivarius S. salivarius human oral cavity and

upper respiratory tract
2 259 227 bp

Aggregatibacter
actinomycetemcomitans

A. actinomycetemcomitans human localized aggressive
periodontitis

2 382 853 bp

Rahnella aquatilis R. aquatilis fresh water 4 861 101 bp
Methanococcus maripaludis M. maripaludis wetland 1 661 137 bp

Individual genomes chosen for being added in the ERR2762185 dataset

Synechococcus elongatus S. elongatus ocean 2 696 255 bp
Loktanella vestfoldensis L. vestfoldensis ocean 3 836 950 bp
Saccharomonospora marina S. marina ocean 5 965 593 bp
Thermaerobacter marianensi T. marianensi ocean (isolated at a depth of

>10000 meters)
2 844 696 bp

Shewanella sediminis S. sediminis ocean 5 517 674 bp
Alpha proteobacterium
HIMB59

α-proteobacterium HIMB59 ocean surface 1 410 127 bp

Oceanithermus profundus O. profundus ocean (isolated from a
hydrothermal vent in the
Pacific Ocean)

2 303 940 bp

Salinispora arenicola S. arenicola ocean 5 786 361 bp

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Table 3. Different measures for evaluating the assembly quality of individual genomes. The following introductions of the measures are adapted
from the definitions in QUAST [40].

Measures Introductions

Integrity Genome fraction The proportion of the aligned bases in the reference.
Duplication ratio The total bases of the alignment in the assembly divided by the total bases of the

alignment in the reference.

Contiguity

N50 The contig length for which 50% of the bases of the assembly are represented in longer
or equal length contigs.

NGx The contig length for which x% of the bases of the reference genome are represented in
longer or equal length contigs.

NGAx NGAx is NGx where the contig lengths are replaced with the lengths of aligned blocks.
L50 The number of contigs of length at least N50.
LGx The number of contigs of length at least NGx.
LGAx LGAx is LGx where the contig lengths are replaced with the lengths of aligned blocks.
Largest alignment The total bases of the largest continuous alignment in the assembly.
Total aligned length The total bases of alignment in the assembly.

Accuracy

# misassemblies The number of misassemblies.
Misassembled contig
length

The number of total bases contained in all contigs with one or more misassemblies.

# mismatches The number of mismatches in the alignment.
# indels The number of indels in the alignment.
Indels length The number of total bases that indels contain.
# mismatches per 100
kbp

The average number of mismatches per 100 kbp (aligned bases).

# indels per 100 kbp The average number of indels per 100 kbp (aligned bases).

sizes. Since the microbial organisms in the metagenomes are
not completely known, it is difficult to know the genetic distance
between the chosen individual genomes with the metagenome.
As a proxy, we used the major living environment of the chosen
individual genome for the closeness of the genome with the
metagenome. We assume that the genetic difference between
the metagenome and the species increase with their environ-
mental difference.

For Dataset 1, S. salivarius is from the human saliva, and
there is a high possibility that S. salivarius and its similar
species appear in the human gut metagenome. P. gingivali
and A. actinomycetemcomitans are from the human mouth
that is relatively close to the human intestinal environment.
R. aquatilis generally lives in fresh water, and is occasionally
separated from human clinical specimens, which is com-
paratively far from the human intestinal environment. M.
maripaludis lives in wetland that is quite different from the
human gut. For Dataset 2, all the species are from oceans,
but they are isolated from different parts of the oceans. We
find that only around 16% of the reads from the human
gut dataset (https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=
SRR769529) and the marine dataset (https://trace.ncbi.nlm.
nih.gov/Traces/sra/?run=ERR2762185) can be identified by the
NCBI SRA Taxonomy Analysis Tool (STAT). The organisms
that have strong signals in the datasets are summarized in
Tables S2 and S3 in the Supplementary Material. According
to the taxonomy analysis results based on the identified
reads, there are no species in the same family with the
references used in the human gut dataset. On the other hand,
by using STAT to help identify close related genomes in the
marine dataset to the references, we find that there are five
species belonging to Shewanella genus with S. sediminis, four
species belonging to Rhodobacteraceae family with L. vestfoldensis
and one species belonging to Pelagibacteraceae family with
α-proteobacterium HIMB59. All identified closely related organ-

isms of the references in the metagenomes are summarized in
Table S4 in the Supplementary Material.

We used Mason [38] with default parameters to simulate
Illumina reads from the chosen individual genomes.

Experimental variables

We set the sequencing depth of the simulated data as 5x, 20x and
50x. The size of the genomes selected for simulation are shown
in Table 2. The calculation method of sequencing depth is shown
in Equations (1) and (2).

The genetic difference between the simulated data and
real metagenomes is described in Individual genomes used for
simulation.

Evaluation criteria

The objective of genome and metagenomic assembly is to obtain
genomes as complete and accurate as possible. Many different
criteria have been used to evaluate genome assembly and they
can be grouped into three broad categories: integrity, conti-
guity and accuracy. The integrity measures attempt to assess
whether the aligned contigs can recover the complete genomes.
The contiguity measures attempt to assess the length of the
contigs, and one contig per chromosome is the ideal aim [16].
The accuracy measures attempt to assess how well the contigs
correspond to the real genomes. The definitions of the corre-
sponding evaluation criteria are given in Table 3. Most assembly
programs try to balance integrity, contiguity and accuracy [39]
and we follow this tradition in our evaluation. Given an assem-
bly, metaQUAST [21] presents such measures and we used the
outputs from metaQUAST to evaluate the different assembly
programs.

Genome fraction and duplication ratio have both been used
to measure the integrity of an assembly and their definitions

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR769529
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR769529
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR2762185
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR2762185
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
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Table 4. The average accuracy statistics of the assembly of the simulated data based on the metaQUAST recruited and true reference
genomes (20×)

Accuracy statistics metaQUAST recruited versus corresponding true reference genomes

A. actinomycetemcomitans D7S-1 A. actinomycetemcomitans
# Misassemblies 6.50 1.00
Misassembled contig length 545106.50 24138.75
# Mismatches per 100 kbp 228.51 2.70
# Indels per 100 kbp 34.45 0.95

M. maripaludis X1 M. maripaludis
# Misassemblies 18.75 0.00
Misassembled contig length 1194508.00 0.00
# Mismatches per 100 kbp 2496.36 1.29
# Indels per 100 kbp 59.50 0.20

are given in Table 3. The more complete the assembly is, the
closer to 1 the genome fraction will be. The duplication ratio
reflects whether the assembly contains many contigs that cover
the same regions of the reference, which may be caused by over-
estimating repeat multiplicities and small overlaps between
contigs [40].

Eight different measures have been used to measure
contiguity of an assembly. N50 is a traditional assembly
metric to assess the contiguity of genome assembly. Although
some researchers pointed out that it is less informative and
may frequently misrepresent the quality of the assembly for
metagenomes [41], it is reasonable to use the N50 value to
measure the contiguity of individual genomes. In addition, we
also chose the NGx, NGAx, L50, LGx, LGAx, the size of the largest
alignment and the total aligned length metrics for evaluation as
shown in Table 3.

Seven other measures have been used to measure the
accuracy of an assembly. ‘# misassemblies’ stands for the
number of positions identified as wrong assembly in assembled
contigs. ‘# mismatches’ and ‘# indels’ reflect whether the
assembly can be aligned to the reference genomes perfectly.
We also chose four corresponding measures for evaluation and
the details are shown in Table 3. Because the references for
evaluation are exactly the genomes in the dataset assembled, the
‘# misassemblies’ reported by metaQUAST are true ‘# misassem-
blies’ or sequencing errors, not due to structural variations.

Results
We evaluated MEGAHIT-1.1.3, SPAdes-3.12.0, IDBA-1.1.1 and
Faucet in this study. All experiments were done on a machine
with 4-way 6-core 1.87 GHz Intel Xeon CPUs and 1T memory.
We ran all the evaluated assemblers with multiple threads
except Faucet, which does not currently support multi-threaded
execution. MEGAHIT was launched with default parameters.
SPAdes was launched with 48 threads on the mode for
metagenomic assembly (with ‘- -meta -t 48’ options). IDBA-UD
was launched with read pre-correction part as recommended for
metagenomic assembly (with ‘- -pre_correction’ options). Faucet
was launched with a k-mer size of 31 and ntCard [42] was used
to extract the number of estimated k-mers (F0) and singletons
(f1) in the datasets as recommended in [37] (with ‘-size_kmer
31 -max_read_length 101 -estimated_kmers F0 - singletons f1
–paired_ends’ options). We also varied the parameters of the
assemblers to see the effect, and the results are shown in
Table S12 in the Supplementary Material.

The necessity of using a hybrid approach to evaluate
metagenomic assemblers

Limitations of evaluating metagenomic assemblers using real
metagenomic data

Nurk et al. [20] compared the performance of MetaSPAdes with
other metagenomic assemblers using real metagenomes. They
first used metaQUAST [21] to automatically search for the refer-
ence genomes in the NCBI database and then chose the genomes
with genome fractions greater than a certain threshold to
evaluate the different metagenomic assembly programs. To see
the validity of this approach, we assembled the reads from the
five genomes chosen for being added in SRR769529 dataset and
evaluated the assembly using metaQUAST [21] without pro-
viding known reference genomes. Then, we compared the
assembly accuracy based on the metaQUAST recruited genomes
with the corresponding values based on known reference
genomes.

At 20-fold coverage, three genomes: Porphyromonas gingivalis
TDC60 (P. gingivalis TDC60), Aggregatibacter actinomycetemcomi-
tans D7S-1 (A. actinomycetemcomitans D7S-1) and Methanococcus
maripaludis X1 (M. maripaludis X1), were recruited by metaQUAST
and the average genome fractions using the four assembly pro-
grams were 96%, 93% and 85%, respectively. Only one genome,
P. gingivalis TDC60, was the true genome used in the simulation.

Since the other two metaQUAST recruited genomes were
different from the true genomes in the simulation, the assembly
accuracy values based on the recruited genomes were highly
different from that based on the true genomes. Table 4 shows
some of the assembly accuracy values based on the metaQUAST
recruited genomes and the most similar true genomes, respec-
tively. Taking M. maripaludis as an example, the average ‘# mis-
assemblies’ of the four assemblers based on the metaQUAST
recruited reference genome was around 20, while that based on
the true reference genome was zero. The comparison underlines
that based on the metaQUAST-recruited genomes the numbers
of misassemblies, mismatches, etc. can be much higher than
that based on the true genomes.

Limitations of evaluating metagenomic assemblers using purely
simulated metagenomic data

Many simulation studies have been carried out to compare
the performance of metagenomic assemblers. Since microbial
communities are generally much more complex than simulated
data, the results from simulation studies may be better than
that for real metagenomic data. To test this, we took five known

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
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Table 5. Summary statistics of the assembly of the datasets with different hybrid modes. The optimal numbers for each sequencing coverage
and hybrid approach are in bold

Assembly Genome fraction (%) Duplication ratio Total aligned length #misassemblies #mismatches

Simulated data (5×) only 71.84 1.003 9546850.25 38.00 5623.00
SRR769529+Simulation(5×) 70.00 1.009 9343325.50 46.00 7330.75
Simulated data (20×) only 98.70 1.002 13168349.75 3.75 749.50
SRR769529+Simulation(20×) 98.49 1.004 13157784.50 3.50 1636.00
Simulated data (50×) only 98.26 1.001 13109553.50 2.75 667.25
SRR769529+Simulation(50×) 98.66 1.003 13172616.50 4.50 1419.75

Table 6. The assembly integrity measured by genome fraction and duplication ratio of the simulated genomes based on the hybrid approach
using four assembler programs: MEGAHIT, MetaSPAdes, IDBA-UD and Faucet. Two real metagenomic datasets with different sequencing
amounts (SRR769429 of data size 7.9Gb and ERR2762185 of data size 145.8Gb) were used (purple/red cells indicate that the results improve/de-
teriorate compared with the median value)

genomes chosen for being added in the human gut dataset as
reference genomes. We assembled the hybrid reads of simulated
genomes and real metagenomes, and then we compared the
assembly with the assembly based on the simulated reads only.
The corresponding results are shown in Table 5.

The table shows that the assembly of the simulated data has
better performance compared to the assembly of the mixture
of the simulated data and real metagenomes at low sequencing
depth. As for the high sequencing depths, the results are quite
close except for the ‘# mismatches’ criterion. So if we simply
use simulated data for evaluation, the assemblers will have
better performance which does not reflect their performance
on real metagenomic datasets, especially for the genomes at
low sequencing depth. Therefore, it is useful to use the hybrid
sequences of simulation and real metagenomes for the evalua-
tion of metagenomic assemblers.

Comparison of metagenomic assemblers based on the
hybrid approach

We also evaluated if the two metagenome datasets contain
any of the added genomes used for simulation. To answer
this question, we assembled the metagenomic reads from the
two metagenomes using MEGAHIT, MetaSPAdes, IDBA-UD and
Faucet and then used metaQUAST [21] to obtain the genome
fractions of the genomes used for simulation. For the first
dataset, the genome fractions for P. gingivali and S. salivarius
were estimated to be 0.12% and 0.36%, respectively, and others
were not present in the dataset. For the second dataset, the
genome fractions for L. vestfoldensis, S. sediminis were estimated
to be 0.37% and 0.26%, respectively, and the estimated genome
fractions for the other genomes are all below 0.03%.

MetaSPAdes has the highest assembly integrity

We first evaluated assembly integrity measured by genome frac-
tion and duplication ratio for the different genomes using the
four assembly programs. The corresponding results are given
in Tables S5 and S6 in the Supplementary Material. For Dataset
1, under all the simulated scenarios, the genome fractions for
R. aquatilis and M. maripaludis are generally higher than that
of P. gingivali, S. salivarius and A. actinomycetemcomitans, and
the duplication ratios for P. gingivali, S. salivarius and A. acti-
nomycetemcomitans are generally higher than that of the other
organisms. For Dataset 2, the genome fractions for L. vestfolden-
sis and S. sediminis are generally lower than that of the other
organisms and the duplication ratios for L. vestfoldensis and
S. sediminis are generally higher than of the other organisms
for all the assemblers. These results indicate that the genomes
relatively far away from the real metagenomes are easier to
assemble than genomes that are close to the metagenomes.

Table 6 shows the average genome fractions and duplica-
tion ratios of all the references in the assembly of the hybrid
sequences. At all the sequencing depths, the assembly using
MetaSPAdes has the highest genome fractions and comparable
duplication ratios with others. At low sequencing coverage of
5×, Faucet has the lowest genome fractions. The genome frac-
tions from MEGAHIT are close to that from MetaSPAdes in the
human gut dataset, while the genome fractions from IDBA-UD
were somewhat lower compared to that from the other two
programs. For the marine dataset, the genome fractions from
MetaSPAdes are much higher than that from other programs. At
high sequencing coverage of 20 or higher, all the metagenomic
assemblers have high genome fractions and low duplication
ratios. For example, the genome fractions from three of the
programs increased over 10% when the sequencing coverage
changes from 5× to 20×.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
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Figure 4. The NGA50 statistics of the assembly for the individual genomes based on different combinations of sequencing coverage and real metagenome datasets.

(A) The NGA50 statistics of the mixture of the SRR769529 dataset and the simulation (5x). (B) The NGA50 statistics of the mixture of the SRR769529 dataset and the

simulation (20x). (C) The NGA50 statistics for the individual genomes of the assembly of the mixture of the SRR769529 dataset and the simulation (50x). (D) The NGA50

statistics of the mixture of the ERR2762185 dataset and the simulation (5x). (E) The NGA50 statistics of the mixture of the ERR2762185 dataset and the simulation (20x).

(F) The NGA50 statistics for the individual genomes of the assembly of the mixture of the ERR2762185 dataset and the simulation (50x).
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Table 7. The assembly accuracy of the simulated genomes based on the hybrid approach using four assembler programs: MEGAHIT, MetaSPAdes,
IDBA-UD and Faucet. Two real metagenomic datasets with different sequencing amounts (SRR769429 of data size 7.9Gb and ERR2762185 of data
size 145.8Gb) were used (purple/red cells indicate that the results improve/deteriorate compared with the median value)

MetaSPAdes has the highest assembly contiguity and MEGAHIT
follows

We next evaluated the assembly continuity using the continuity
measures in Table 3. The complete results are given in the
Supplementary Material as Tables S7 and S8 using real
metagenome datasets SRR769429 and ERR2762185, respectively.
For the NGA50 criterion, if a contig has a misassembly with
respect to the reference, the contig will be broken into smaller
pieces. Therefore, the NGA50 criterion is more reliable than
N50 for evaluating assembly continuity. Figure 4 shows the
NGA50 results for individual genomes of the six mixed datasets
with different combinations of sequencing coverage and real
metagenome datasets. MetaSPAdes performs best on most
individual genomes in terms of the most contiguity statistics.
MEGAHIT and IDBA-UD have comparable performance in
terms of assembly contiguity, and Faucet has worst assembly
contiguity in general. With the increase of sequencing depth,
the assembly contiguity of each assembler is improved greatly,
from about 2000 bp to over 19 000 bp for all the four assemblers
in terms of N50.

The individual genomes that have greater genetic difference
from the genomes in the real metagenome often obtain the
assembly with better contiguity at high sequencing depth, how-
ever, the difference is not obvious at low sequencing depth. For
instance, the NGA50 of the assembly of M. maripaludis is over
6× those of other genomes at high sequencing depth but close
to others at low sequencing depth while using MetaSPAdes. For
the individual genomes that have smaller genetic difference
from the genomes in the ERR2762185 dataset, L. vestfoldensis
and S. sediminis, MetaSPAdes performs best at low sequenc-
ing depth while MEGAHIT performs best at high sequencing
depth.

Faucet has best performance in assembly accuracy and MetaSPAdes
follows

Finally, we evaluated the assembly accuracy of the different
genomes using the different assembly programs and the com-
plete results based on the accuracy measures in Table 3 are
given in Tables S9 and S10 in the Supplementary Material. The
aggregated results for the reference genomes based on the num-
ber of misassemblies, misassembled contig length, number of
mismatches per 100 kbp and the number of indels per kbp are
shown in Table 7. For each sequencing coverage, the assembly
from Faucet has the best performance in accuracy and the
assembly from MetaSPAdes and MEGAHIT have overall com-
parable performance in accuracy on the human gut dataset.
At high sequencing coverage, the assembly accuracies from
MetaSPAdes and Faucet are similar on the marine dataset. The
misassembled contig length and number of mismatches from
MetaSPAdes are close to that from MEGAHIT, but MetaSPAdes
often has the highest number of indels at high sequencing
depth. IDBA-UD has the highest number of misassemblies, but
the number of mismatches and the number of indels decrease
rapidly with the increase of sequencing coverage, almost the
same as that of MEGAHIT. Since some rare species may not
be well assembled because of low coverage, we present the
whole results of mixture of real metagenome ERR2762185 and
simulated data with low sequencing depth in Figure 5. Although
the assembly from Faucet has high accuracy, the genome frac-
tions were far lower than that of others. Therefore, the results
of the assembly from Faucet are not shown in Figure 5. IDBA-
UD has the worst performance with respect to the number of
misassemblies, misassembled contig length and the number of
mismatches per 100 kbp, meanwhile MetaSPAdes and MEGAHIT
have comparable performance in these three criteria. However,

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
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Figure 5. The assembly accuracy results of the simulated genomes with sequencing coverage of 5x and ERR2762185 metagenome dataset. (A) The numbers of the

misassemblies of the assembly of the ERR2762185 dataset with the simulated data (5x). (B) The misassembled contig lengths of the assembly of the ERR2762185 dataset

with the simulated data (5x). (C) The numbers of the mismatches per 100 kbp of the assembly of the ERR2762185 dataset with the simulated data (5x). (D) The numbers

of the indels per 100 kbp of the assembly of the ERR2762185 dataset with the simulated data (5x).

MetaSPAdes has the worst performance in the number of indels
per 100 kbp.

In terms of individual genomes, the assembly of M. mari-
paludis has the best accuracy but the assembly of R. aquatilis
does not have obvious advantages at low sequencing depth
based on the human gut metagenomic data. The assembly of
L. vestfoldensis from all the assemblers has the worst number
of mismatches per 100 kbp based on the marine metagenomic
data.

MetaSPAdes has the best performance on strain-level
genomes

There might be similar strains in real metagenomes, and it is
important to evaluate whether the metagenomic assemblers
can handle strain micro-diversity. To test this, we included
five Escherichia coli strains in the human dataset with sim-
ulated data. The complete results of the individual strains
are given in Table S11 in the Supplementary Material. The

aggregated results for the references are shown in Table 8.
Although the assembly from Faucet has high accuracy, the
genome fractions and assembly contiguity were far lower
than that of others. At low sequencing depth, the assembly
from MEGAHIT, MetaSPAdes and IDBA-UD have comparable
genome fractions and assembly contiguity but MetaSPAdes
performs best on the duplication ratio and the accuracy criteria.
At high sequencing depth, the assembly from MEGAHIT has
highest genome fractions and assembly contiguity, but the
assembly accuracy were far lower than that of MetaSPAdes and
Faucet.

MEGAHIT has the shortest computational time

Table 9 shows the running time of the compared programs.
MEGAHIT has the shortest computational time. Even though
Faucet does not currently support multi-threaded execution, its
running time is comparable with that of the multi-threaded
assemblers, MetaSPAdes and IDBA-UD.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz025/-/DC1
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Table 8. The statistics of the assembly of the five simulated E. coli strains based on the hybrid approach using four assembler programs: MEGAH
IT, MetaSPAdes, IDBA-UD and Faucet (purple/red cells indicate that the results improve/deteriorate compared with the median value)

Table 9. Running time of the different assembly programs (purple/red cells indicate that the results improve/deteriorate compared with the
median value)

aRuns of Faucet were performed with a single thread, as it does not currently support multi-threaded execution.

Discussion
Metagenomic sequence assembly is an essential while chal-
lenging problem in metagenomic studies. The characteristics of
the metagenomic data, such as uneven depth, genomic vari-
ants of the different microbial organisms and the large vol-
ume of data, undoubtedly increase the difficulty of metage-
nomic reads assembly. Previous comparative studies of metage-
nomic assemblers either used purely simulated or completely
real metagenomes. We showed in this paper that the purely
simulation-based studies tend to yield better performance than
in real metagenomic studies, while real metagenome based
studies tend to give more conserved performance because the
genomes recovered from metaQUAST [21] may not be the true
genomes in the metagenome resulting in much lower assembly
accuracy than the true accuracy.

In this study, we used a hybrid simulation approach to
evaluate metagenomic reads assemblers by adding simulated
sequence reads from multiple genomes to real metagenomes,
assembling the combined reads and evaluating the assemblers
for the simulated genomes. Such a hybrid approach can yield
more realistic assembly quality including integrity, continuity
and accuracy overcoming the problems using either the purely
simulated or real metagenomes. We evaluated the perfor-
mance of four popular metagenomic assemblers: MEGAHIT,
MetaSPAdes, IDBA-UD and Faucet. When the sequencing
coverage is relatively high (20× or higher), all four programs

perform quite well on species-level. However, there are some
marked differences when the sequencing coverage is low. At
low sequencing coverage, MetaSPAdes performs best in terms
of integrity and continuity. Faucet performs best in terms of
accuracy at a cost of low integrity and continuity. MEGAHIT
has the highest genome fractions on the strain-level genomes
and MetaSPAdes has the best overall performance at the strain-
level. We also showed that isolated genomes tend to be easily
assembled than genomes that are similar to the others in the
metagenome. MEGAHIT is the most efficient metagenomic
assembler compared with other assemblers due to the use of
SDBG. Our study provides useful guidelines for the choice of
metagenomic assemblers in practical studies.

Key Points
• Metagenomic assembly is challenging and essential for

the follow-up studies. There are many metagenomic
assemblers developed.

• Benchmarking metagenomic assemblers based on
hybrid reads of real and simulated metagenomic
sequences would better reflect the performance of
the metagenomic assemblers on real metagenomic
datasets.
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• Four advanced metagenome assemblers, MEGAHIT,
MetaSPAdes, IDBA-UD and Faucet, are selected for eval-
uation.

• Overall, MetaSPAdes performs best in terms of integrity
and continuity on the species-level and MEGAHIT fol-
lows. Faucet performs best in terms of accuracy at a cost
of low integrity and continuity at low sequencing depth.
MEGAHIT has the highest genome fractions on strain-
level genomes and MetaSPAdes has the best overall
performance on strain-level genomes. MEGAHIT is the
most computationally efficient in our experiments.
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