Skip to main content
. 2020 May 26;9:e17. doi: 10.1017/jns.2020.11

Table 3.

Evaluation of prediction equation accuracy in comparison with RMR measured by indirect calorimetry

(Mean values and standard deviations; limits of agreement (LOA); percentages)

REE (kcal/d) Bias (P-M) Slope (kcal/d per 100 kcal/d) Intercept (kcal/d)
Mean sd Mean sd 95 % LOA (± 2 sd) RMSE Accurate predictions within ± 5 % (%) Accurate predictions within  ± 10 %§ (%) Underpredictionsǁ (%) Overpredictions (%) Mean sd Mean sd
RMR measured 1424 247
Harris–Benedict 1502 162 78* 157 −229, 384 174 33⋅6 60⋅8  7⋅2 32⋅0 −4⋅6* 0⋅1 757* 88
Henry 1432 202 8 163 −311, 327 153 41⋅6 65⋅6 14⋅4 20⋅0 −0⋅2* 0⋅1 335* 96
Mifflin St–Jeor 1424 180 0 153 −300, 300 162 43⋅2 71⋅2 12⋅0 16⋅8 −3⋅5* 0⋅1 503* 86
Owen 1303 131 −121* 165 −443, 202 204 24⋅8 59⋅2 36⋅8  4⋅0 −6⋅8* 0⋅1 803* 76
Schofield 1466 211 42* 173 −297, 381 177 29⋅6 63⋅2 13⋅6 23⋅2 −1⋅8* 0⋅5 313* 83

REE, resting energy expenditure; P-M, predicted RMR minus measured RMR; RMSE, root-mean-square error calculated as √(Σ(actual RMR – predicted RMR)2)/n.

*

Mean value was significantly different from zero (P < 0⋅05).

To convert kcal to kJ, multiply by 4·184.

Percentage of participants with predicted RMR within 5 % of measured RMR.

§

Percentage of participants with predicted RMR within 10 % of measured RMR.

ǁ

Percentage of participants with predicted RMR being more than 10 % below measured RMR.

Percentage of participants with predicted RMR being more than 10 % above measured RMR.