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SUMMARY

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and 

their interactions with brain-wide activity drive action selection is less understood. We have 

investigated this question by combining whole-brain volumetric calcium imaging using light-field 

microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring 

dynamics of brain states to exhibit pre-motor bifurcations towards mutually exclusive decision 

outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional 

connectivity changes, especially between cerebellum and habenula, which correlate with decision 

outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor 

activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are 

determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, 

while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the 

trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in 

motor planning.
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Graphical Abstract

In Brief:

A specific motor decision and its timing can be predicted using information from the cerebellum 

>10 seconds before movement, during a cognitive task in larval zebrafish. Decision outcomes and 

timing can be predicted at the single-trial level, using neuroactivity information from whole-brain 

Ca2+ imaging, at single-cell resolution.

INTRODUCTION

Animals interact with their environment in a goal-directed manner and through complex 

behaviors that are optimized over time. Such goal-directed behaviors require motor planning 

that precedes actions. The neuronal signatures of such preparatory activity have been 

reported in the motor (Churchland et al., 2010), pre-motor (Li et al., 2016) and parietal 

cortices (Maimon and Assad, 2006) and display a few common features (Gold and Shadlen, 

2007; Murakami and Mainen, 2015; Shenoy et al., 2013; Svoboda and Li, 2018): First, 

preparatory activity can occur long before movement initiation. Examples include humans 

engaged in self-initiated binary decision tasks (Soon et al., 2008), mice during an instructed-

delay task (Li et al., 2015), or primates involved in a visuomotor task (Maimon and Assad, 

2006), for which preparatory activity encoding for decision outcomes several seconds 

preceding movement can be found in various cortical areas. Second, preparatory 

neuroactivity has been shown to manifest itself as a ramping or sequential activity to a 
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threshold (Harvey et al., 2012) the rate of which has been shown to be correlated with 

decision timing (Gold and Shadlen, 2007; Maimon and Assad, 2006; Mazurek et al., 2003; 

Murakami and Mainen, 2015; Murakami et al., 2014; Wang, 2008; 2012). Finally, the 

neuroactivity of individual neurons during the pre-motor period can take more complex 

forms than merely a subthreshold version of movement-related activity (Churchland and 

Shenoy, 2007) and exhibit different tuning properties during different task epochs 

(Churchland et al., 2010). The common observation of variability in behavior (Gordus et al., 

2015; Osborne et al., 2005) points towards dynamic trial-by-trial changes in the 

neurodynamics and thus cannot be captured by static and trial-averaged tuning frameworks 

for representation of motor responses (Afshar et al., 2011; Briggman et al., 2005; 

Churchland and Kiani, 2016; Wei et al., 2019).

While these findings in the cortex have provided insight, they also highlight the need for 

capturing neuronal population activity on a trial-by-trial basis and, as other studies have 

shown, for taking a brain-wide approach to decision making (Cisek and Kalaska, 2010; Gao 

et al., 2018; Guo et al., 2017; Horwitz and Newsome, 1999; Kunimatsu et al., 2018; Liu et 

al., 2013). Support for this notion comes from the fact that decision making requires access 

to or can be modulated by brain functions such as short-term memory, internal states and 

reward expectation that have a sub-cortical representation (Abbott et al., 2017; Allen et al., 

2017). However, obtaining high spatiotemporal resolution access to whole-brain 

neuroactivity is currently not possible in mammalian brains, while studying complex goal-

directed behaviors, motor planning and decision making in non-vertebrates is challenging 

and results may be not directly transferrable to vertebrates. The larval zebrafish represents 

an attractive model to investigate these questions due to its high level of physiological and 

genetic homology to the mammalian brain, conformity to basic vertebrate brain organization 

(Friedrich et al., 2010; Kalueff et al., 2014) and its transparent brain that allows for whole-

brain in vivo optical recording of neuroactivity at high speed and cellular resolution utilizing 

recent techniques in two-photon (Ahrens et al., 2012; Portugues et al., 2014; Renninger and 

Orger, 2013), light field (Andalman et al., 2019; Cong et al., 2017; Nöbauer et al., 2017; 

Prevedel et al., 2014), light sheet (Ahrens et al., 2013; Favre-Bulle et al., 2018; Migault et 

al., 2018; Wan et al., 2019), and other forms of microscopy (Huisken et al., 2004; Wolf et 

al., 2015; Wu et al., 2011). However, establishing a robust behavioral paradigm in the larval 

zebrafish that involves learning, memory and integration of information across brain regions, 

and within which the neuronal basis of goal-directed motor planning and decision making 

could be studied, has proven challenging.

In the present study, we have combined high-speed volumetric calcium imaging based on 

light-field microscopy (LFM) (Nöbauer et al., 2017; Prevedel et al., 2014)—a technique that 

uniquely enables simultaneous capturing of neuronal network activity on the scale of the 

whole-brain at single-cell resolution—with a new operant conditioning paradigm in larval 

zebrafish, Relief Of Aversive Stimulus by Turn (ROAST, Li, 2013), to investigate the 

neuronal basis of goal-directed action selection. We found the dynamics of brain states to 

display decision-related bifurcation enabling prediction of both decision time and outcome 

at the trial-by-trial level. We found multiple brain areas whose inter- and intra-dynamics 

exhibited performance-dependent trial-by-trial changes of correlated pre-motor 

neuroactivity, representing functional connectivity changes which cannot be explained by 
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slower learning-based changes of the network. The cerebellum also exhibited a surprisingly 

strong level of preparatory neuroactivity, which we found to mainly originate from the 

granule cell population, and which allowed us to predict both turn direction and the 

timepoint of turn initiation ~10 seconds before movement for individual trials. Our 

observations are explained by a model in which turn direction is determined by cerebellar 

ipsi-contralateral competition, while the timepoint of turn initiation is quantitatively 

predicted by the joint ipsi-contralateral population ramping rate.

Thus, our work extends the traditional view of the cerebellum in motor control and provides 

support for its more cognitive functions, while expanding the existing frameworks of 

“ramping-to-threshold” for decision making (Gold and Shadlen, 2007; Wang, 2012) to the 

level of individual trials which has not been possible due to technical limitations (Shadlen et 

al., 2016). The presence of cerebellar preparatory activity, representing internal variables 

that cannot be directly explained by instantaneous behavior or sensory input, points towards 

the critical role that it could play in motor planning more generally and, as zebrafish lack a 

cortex, prior to the emergence of cortical regions and functions (Hodos, 2009).

RESULTS

An operant conditioning paradigm for larval zebrafish

In ROAST, fish learn to perform a directed tail movement to the right or left in order to 

receive relief from an aversive heat stimulus (Figure 1A). While ROAST was initially 

developed to study learning (Li, 2013), it also provides an ideal opportunity to investigate 

the neuronal basis of action selection and underlying pre-motor activity. The binary nature of 

the decision as well as the extended decision time (DT), between the onset of heat stimulus 

and the initiation of the first movement, allow studying the neuronal dynamics that underlie 

the choice for turn direction as well as the timing of movement initiation (see STAR 

Methods). Data from an example learner is shown in Figure 1B. The learners’ performance 

typically became stable after the first 15 trials in both blocks, with an asymptotic final 

performance of ~80% correct (Figure 1C, see STAR Methods). At the level of single trials, 

we found that the latency to heat offset decreased as a function of trials in learner fish 

(Figure S1A) while the mean DT remained stable (Figure S1B). We performed simultaneous 

whole-brain calcium imaging using a home-built LFM (Nöbauer et al., 2017; Prevedel et al., 

2014) and a transgenic fish line Tg(elavl3:H2B-GCaMP6s) (Vladimirov et al., 2014) while 

animals were engaged in ROAST. Using LFM allowed us to capture cellular neuroactivity at 

the whole-brain level within a volume of 700×700×200 μm, with all voxels acquired truly 

simultaneously at a volume rate of 10 Hz.

Recurring brain state dynamics show bifurcation for different decision outcomes

Volumetric reconstruction of the LFM data (see Movie S1), followed by neuronal signal 

extraction (Prevedel et al., 2014), allowed us to obtain activity traces from ~5,000 of the 

most active neurons across the brain (Figure 1D, example learner in Block 2, right training). 

When these activities were co-registered with the time period of heat stimulus and the 

timepoints of left or right tail movements, a significant level of correlation was observed 

(Figure 1D (i)). Mapping these neuronal activities spatially onto the brain revealed active 

Lin et al. Page 4

Cell. Author manuscript; available in PMC 2020 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons across the entire forebrain, midbrain and anterior hindbrain (Figure 1D (ii)), which 

were consistent in number and distribution across specimens (Figure S1D,E) with distinct 

neuronal dynamics in different brain regions correlated with specific epochs of our task 

(Figure S1C). To identify how the dynamics of brain states—i.e., the state of activity of all 

neurons at a given time—are associated with the different task epochs, we began by 

performing linear dimensionality reduction based on principal component analysis (PCA). 

However, PCA on brain states failed to effectively reduce dimensionality in a fashion that 

would capture key differences during different task epochs (Figure S1F,G). To overcome this 

issue, we applied a nonlinear dimensionality reduction technique, t-distributed stochastic 

neighbor embedding (t-SNE, see STAR Methods), to the time series of brain states (Maaten 

and Hinton, 2008).

We found two major clusters that were associated with the presence and absence of the heat 

stimulus, respectively (Figure S2A), showing that changes of the heat stimulus drive 

temporally sharp transitions between brain states resulting in a higher similarity of intra-

cluster brain states than inter-cluster brain states (Figure S2B). Investigating the brain state 

representation of decision-related behavior, we found that brain states corresponding to 

correct and incorrect turns each densely and distinctively occupied separate sub-regions of 

the “Heat ON” and “Heat OFF” clusters (Figure 2A) with an increased level of similarity of 

brain states before turn events, in particular for correct trials (Figure S2C,D). These 

observations show stereotypical, reoccurring global brain states across trials with increased 

coordination before movement, particularly in correct trials.

We connected temporally consecutive brain states in the t-SNE map on the trial-by-trial level 

and found the brain state dynamics to form a cyclic manifold, with the correct and incorrect 

trials forming distinct loops (***p < 0.0001, Wilcoxon rank sum test, Figure 2B). This 

shows that during correct trials, highly similar brain states occur across trials, despite the 

different duration of the stimulus in each trial and the different timing of the decisions. 

Projecting the brain states into a 3D space spanned by reference brain states for correct 

trials, incorrect trials and the heat-encoding component (see STAR Methods) revealed a 

clear pre-turn bifurcation (Figure 2C) towards the correct and incorrect decision state. 

Strikingly, the bifurcation towards different decision outcomes could be observed well 

before turn initiations at the single-trial level (Figure 2C (ii), Movie S2), despite different 

DTs.

Performance-dependent brain-wide changes in functional connectivity precede motor 
response

Given our observations at the level of brain states, we set out to investigate the brain regions 

that drive the bifurcation towards different decision outcomes. We applied t-SNE to each 

neuron’s activity patterns in order to partition them into functional neuronal clusters. 

Applying t-SNE to the time series of all neurons and that of four behavior and stimulus 

regressors (Figure S2E, see STAR Methods) allowed us to identify the individual functional 

neurons and their clustering around our regressors, which we emphasized further by 

partitioning the t-SNE map using hierarchical clustering (see STAR Methods). Using this 

approach, six neuronal clusters with four regressors embedded within them were found 
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(Figure 2D). We found that the t-SNE clusters coincided well with distinct anatomical 

regions (Figure 2E). A distinct group of bilateral neurons (Cluster 1) in the telencephalon 

(Te) responded to the onset of the heat stimulus, “Heat ON”. Another group (Cluster 6), 

overlapping largely with the thalamus, but also with neurons sparsely distributed in the Te, 

encoded for “Heat OFF”. “Turn L” was represented by contralaterally located neurons in the 

hindbrain and the left adjacent anterior rhombencephalic turning region (ARTR, Cluster 2) 

(Dunn et al., 2016; Wolf et al., 2017), while “Turn R” was encoded by neurons in the 

ipsilateral right hindbrain that highly overlapped with the cerebellum and ARTR and fell 

into a single cluster (Cluster 4). Cluster 3 overlapped with habenula and raphe, while Cluster 

5 coincided with the left cerebellum.

We hypothesized that decision making underlying goal-directed behavior relies on the 

coordination and integration of distributed information across different brain regions. While 

this notion has been theoretically proposed (Abbott et al., 2017; Svoboda and Li, 2018), to 

our knowledge it has not been directly demonstrated experimentally. To investigate this, we 

used correlation (Cohen and Kohn, 2011; Kohn et al., 2016), and evaluated it at the single-

trial level for the relevant functional neuronal clusters for correct versus incorrect trials 

(Figure 2F, S2F). We found that the absolute correlation of pre-motor activity within the 

ipsilateral cerebellum (ipsi Cb), as well as between the ipsi Cb and other brain regions such 

as the habenula (Hb) and the contralateral cerebellum (contra Cb), increase on a trial-by-trial 

level, with correct trials exhibiting a higher degree of correlation than incorrect trials (Figure 

S2F). In particular, we found the average difference in correlation of pre-motor neuroactivity 

between the ipsi Cb and Hb for correct versus incorrect trials to be highly significant (Figure 

2F). Moreover, we show that these trial-by-trial changes of correlation, which represent 

changes of functional connectivity, cannot be explained by the direct training-related 

changes of the network as the ipsi Cb and Hb did not show a significant change in their 

correlated activity as a function of training (Figure S2F). In order to establish that the 

observed coordination and integration of brain-wide signals are necessary for correct 

decision outcomes, we performed pre-training lesions in Te and Hb. We found that both 

lesions impair the fish’s ability to learn and make correct decisions (Figure 2G). These 

observations strongly support the notion of a necessary integration and coordination of 

information across and within brain regions to generate motor planning for correct decision 

outcomes.

We next searched for the neuroactivity within each cluster that contributed to the observed 

pre-motor bifurcation of brain states and thus would be predictive of the motor response. 

However, since neurons can in principle have a mixed response, i.e. also decision-

independent components such as those associated with the stimulus, it was necessary to 

parse out the decision-dependent versus decision-independent components from each cluster. 

To do so, we used demixed principal component analysis (dPCA, Kobak et al., 2016, see 

STAR Methods, Figure S3A,B). We found the dPC1 of all clusters to account for at least 

~50% of the observed variance in the corresponding cluster, and to exhibit a decision-

independent response (Figure 3A). Consistent with our observation of the t-SNE map where 

the “Heat ON” regressor is embedded in Cluster 1 (Te), we found the dPC1 of Cluster 1 to 

show increased activity only after heat onset. dPC1 of Cluster 2 (contra ARTR) showed 

increased activity only after turn initiation, suggesting it is encoding for movements, while 
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dPC1 of Clusters 3 (Hb) and 4 (ipsi Cb and ARTR) displayed a linear increase in activity 

upon heat onset followed by a secondary peak after turn initiation, suggesting their potential 

involvement in sensorimotor transformation. dPC1 of Clusters 5 (contra Cb) and 6 

(thalamus) showed an overall decreased activity upon heat onset—in contrast to the 

neuroactivity in Clusters 4 and 1, respectively—followed by an increase of activity after turn 

initiation. dPC2 explained ~25% of observed variance in each cluster. Importantly, we found 

that it exhibited in all clusters a decision-dependent behavior with a clear separation of 

correct versus incorrect decisions, in some clusters prior to and in some clusters after 

initiation of motor behavior (Figure 3A, see STAR Methods). Among these clusters, Cluster 

4, the ipsi Cb and ARTR, allowed for a reliable decoding of the turn direction well before 

turn initiation. Overall, even though the pre-motor signal is available across multiple brain 

areas, the cerebellum and ARTR contain the strongest predictive signal for decision 

direction.

Cerebellar ipsi-contralateral difference neuroactivity predicts decision outcome on the 
trial-by-trial level

Given our above observations on the pre-motor decision-dependent dPCs of the cerebellum 

and ARTR, we hypothesized that they may represent preparatory neuroactivity for motor 

planning, similar to what has been reported in the cortex (Churchland et al., 2012; Gao et al., 

2018; Li et al., 2016). We first looked at the trial-averaged activity of individual neurons in 

Cluster 4, the ipsi Cb and ARTR. For correct trials, we observed a gradual increase of ipsi 

neuroactivity after heat onset which continued until movement initiation, followed by a 

strong peak after the execution of the turn (Figure 3B (i)). In contrast, for incorrect trials, 

neuroactivity was reduced in general. In particular, the above gradual increase of pre-motor 

neuroactivity was absent, although the post-turn peak remained present (Figure 3B (ii)). 

Sorting neurons both within correct and incorrect trials according to their activity onset time 

in the correct trials, we found that the identity of neurons that displayed strong activity after 

turns was different in correct versus incorrect trials (Figure 3B (i–ii)). Moreover, neurons 

that displayed strong post-turn activity in incorrect trials were the same ones that also 

showed early onset of strong pre-motor activity in correct trials (Figure 3B (i–ii)). This 

indicates that individual neurons displayed different ‘tunings’ during pre-motor and post-

motor epochs of the task, and that pre-motor neuroactivity was not merely a subthreshold 

version of motor response (Churchland et al., 2010). We then mapped the order by which 

neurons became active to their anatomical locations in the brain. Following an anterior to 

posterior gradient, we found that neurons with an earlier onset time of pre-motor activity 

were located in the cerebellum while neurons with a later onset of activity were mainly 

located in the ARTR (Figure 3B (iii)). To exclude the possibility that the observed pre-motor 

activity represents an innate feature of the cerebellum, we investigated its changes as a 

function of trials. We found that the observed pre-motor activity uniquely emerges through 

learning in the ipsilateral side (Figure 3B (iv)) for correct trials. This observation also 

highlights the fact that a more complex behavioral task is indeed necessary to observe the 

cerebellar ramping activity. Compared to the ipsilateral side, the contralateral side displayed 

very little pre-motor ramping. In correct trials, the responses of the first few active neurons 

were similar to those of the ipsilateral side, however significantly fewer neurons participated 

in the pre-motor ramping activity, while a similarly strong post-turn response persisted for 
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the correct trials (Figure 3C (i)). In incorrect trials, neurons that displayed strong post-turn 

activity had an early onset time of pre-motor activity (Figure 3C (ii)), and mostly overlapped 

with the contra ARTR (Figure 3C (iii)). Consistent with our above observation of weak 

ramping activity in the contra Cb, we found no significant changes in contralateral ramping 

activity as a function of trial in our learning task (Figure 3C (iv)).

The ARTR in each hemisphere has been shown to project inhibitory connections to the 

contralateral hemisphere (Dunn et al., 2016). Moreover, the parallel fibers of the cerebellar 

granular neurons, which feed into the Purkinje cells, span across both hemispheres of the 

cerebellum densely (Knogler et al., 2017). These observations provide evidence that the 

contra ARTR and Cb are an integral part of the learning, motor planning and action selection 

circuit and that the activity of the ipsi and contra ARTR and cerebellum should be analyzed 

collectively. Thus, we investigated the joint dynamics of Clusters 2, 4 and 5 during different 

task epochs, decomposed their joint activity into decision-independent and decision-

dependent activity by applying dPCA, and focused on the top 4 dPCs, which explain >80% 

of the variance. Within the decision-independent components, dPC1 displayed ramping and 

dPC3 a plateau, while for the decision-dependent components, dPC2 exhibited post-motor 

separation and dPC4 pre-motor separation (Figure 4A, S4A). The observed ramping mode 

of dPC1 is consistent with activity that would represent a non-direction-specific, but rather 

temporal aspect of a decision (i.e., the DT), while the plateau region in dPC3 is consistent 

with heat-and-motor-evoked signals, as the rise and fall of dPC3 coincides with heat onset 

and movement initiation. dPC2 represents the decision outcome after the turn—which can 

serve as a feedback signal for learning—while dPC4 represents the feed-forward pre-motor 

signal that encodes future turn direction. In both non-learners (Figure S4B) and fish 

performing spontaneous turns in the absence of a heat stimulus (Figure S4C), the post-motor 

feedback signals were present, but pre-motor cerebellar signals were not predictive of turn 

direction.

Next, given our observations on the pre-motor decision-dependent dPCs in learners, we set 

out to quantify how well these predicted the outcome of the turn before movement initiation 

at the trial-by-trial level. Our prediction accuracy analyzed across fish (see STAR Methods, 

n = 8 training blocks) reached ~80% before turn initiation (Figure 4B (i)). Figure 4B (ii) 

shows the prediction time in our example learner dataset, for which we found a value of 11.1 

s (see STAR Methods and Figure S3C,D). This result was reproducible across multiple 

learners (n = 5) for which we found an average prediction time of 10.4 s (Figure 4B (ii)). 

The above time scales are different from the millisecond time scale that has been 

traditionally associated with the role of the cerebellum in motor control (Johansson et al., 

2016), but well within the range of working memory (Buhusi and Meck, 2005; Tetzlaff et 

al., 2012).

We speculated that the decision for turn direction might arise from an ipsi-contra interaction 

between the neuroactivity in the cerebellum, with the “winning” side determining the 

decision outcome. We tested this idea by comparing the difference in the decision-dependent 

neuroactivity of the Cb and ARTR between the two hemispheres during the pre-motor 

period at the single-trial level (see STAR Methods). Compared to the original neuronal time 

series, this reconstructed time series only contained pre-motor decision-dependent 
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information but had the same dimension (i.e. neurons × time, Figure S4D). Thereby, we 

could preserve the information on the location of each neuron and obtain the ipsi-contra 

difference activity. An example of the ipsi-contra difference of reconstructed neuroactivity as 

a function of time is shown in the Figure 4C, where it is positive during correct trials and 

negative during incorrect trials.

For an individual learner, we found a significantly higher level of preparatory activity on the 

ipsilateral side than the contralateral side in correct trials, but a significantly lower level of 

activity in the incorrect trials (Figure 4D). These observations were consistent across fish 

and when all trials were pooled (Figure 4E), but not present in non-learners (Figure S4E,F). 

This mirroring relationship between the ipsilateral and contralateral side was seen in dPC4 

across animals, but none of the other three top dPCs. Post-training ipsi Cb lesions led to a 

significant decrease in the correct rate, whereas contra Cb lesions resulted in a slight 

increase in the correct rate (Figure 4F). In fish performing spontaneous turns without 

stimuli, cerebellar lesions did not affect turning preference (Figure 4G), consistent with our 

previous observations that pre-motor cerebellar is only present in fish that learned (Figure 

S4A–C). These observations support our idea that cross-hemisphere difference neuroactivity 

in the cerebellum during motor planning forms the basis of the decision for turn direction, 

with the more active side determining the decision outcome on the trial-by-trial level.

The ramping rate of bilateral cerebellar population dynamics determines decision time at 
the trial-by-trial level

A number of previous studies have shown that in various decision-making tasks, the DT is 

linked to the velocity of the increase of cortical preparatory activity (Afshar et al., 2011; 

Hanes and Schall, 1996; Murakami et al., 2014; Shenoy et al., 2013; Wang, 2012). Given our 

observation of ramping in the decision-independent pre-motor component of the cerebellar 

neuroactivity (Figure 4A, dPC1), we asked if the rate of this ramping would be correlated 

with DT at the trial-by-trial level. We found trials with a shorter DT to exhibit a higher 

ramping rate and those with a longer DT a lower ramping rate (Figure 5A). We then 

calculated the ramping rate by a linear fit of the population activity (Z-score of dPC1) from 

heat onset to one second before the turn (Figure S5A) and found the ramping rate to be 

linearly correlated with the logarithm of the DT at the single-trial level (Figure 5B). We 

further confirmed that such an inverse correlation exists across animals at the single-trial 

level, despite systematic differences in the average DT of each fish (Figure 5C).

Next, we asked if the population ramping rate is predictive of the time of turn initiations on 

the single-trial level. We obtained the fit parameters for a linear ramping and used this linear 

model to make a prediction about the expected turn initiation time at any given timepoint t 
after the heat onset (Figure S5B, see STAR methods). As expected, we found the predicted 

turn initiation time to become more accurate as t approached the turn initiation timepoint 

and to be highly predictive for actual turning time within a 20-second window before the 

turn (22.3 s ± 2.5 s when t = 20 s, mean ± SEM), at the single-trial level (Figure 5D, Movie 

S3). To provide further causal support for our proposed mechanism, we performed both 

unilateral and bi-lateral post-training cerebellar lesion experiments. We found that, 

consistent with our model, both types of lesions, performed independently or together, led to 
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a general increase of the DT (Figure 5E) as they reduced the pool of neurons contributing to 

the bi-hemispheric ramping signal.

In principle, such ramping could be facilitated by a gradual increase of activity in individual 

neurons, which seemed unlikely due to their various complex forms at single-trial level 

(Figure S5C), or from more neurons joining the population of active neurons over time and 

participating in the generation of ramping activity on a population level. We found a high 

level of similarity between the ramping activity (dPC1) and the degree of neuronal 

participation (r = 0.799, ***p < 0.0001, see STAR methods), while the observed correlation 

of single-neuron activities with the population ramping activity was lower and ~82% of all 

neurons showed a lower degree of correlation with the population ramping activity 

compared to the degree of neuronal participation (Figure S5D). This suggests that an 

increase in the number of active neurons is more likely to be the source of observed ramping 

activity than a gradual increase in activity in individual neurons. The remaining 18% of 

neurons overlapped with the ipsilateral ARTR (Figure S5E).

We next aimed to determine which of the main cerebellar cell types, namely the Purkinje, 

granule and eurydendroid cells, were the primary contributors to cerebellar ramping activity. 

We used Tg(gSA2AzGFF152B; UAS:GCaMP6s) (Filosa et al., 2016; Knogler et al., 2017; 

Takeuchi et al., 2015) which specifically labels the granule cells with GCaMP and allowed 

us to separate the contribution of granule cells and the cerebellar output neurons. We found 

the granule cells to display strong pre-motor activity (Figure 6A (i)). To differentiate 

between the activity of the Purkinje and eurydendroid cells, which are intermingled in the 

zebrafish cerebellum (Bae et al., 2009; Takeuchi et al., 2015), we utilized Tg(Huc:H2B-
GCaMP6s; GAD1b:RFP) (Freeman et al., 2014; Satou et al., 2013) in which the Purkinje 

cells are most strongly labeled in GAD1b:RFP (Bae et al., 2009). We took advantage of the 

anatomy and the fact that the Purkinje cells in fish are predominately located in dorsal layer 

of the cerebellum (Bae et al., 2009; Takeuchi et al., 2015). We found pre-motor activity, 

although at different levels, for all three cell types (Figure 6A (i–iii)). Individual neurons 

exhibited a response that was either positively or negatively tuned to the decision outcome. 

We found that more than 70% of recorded neurons of these three cell types displayed 

significant differences in pre-motor activity in correct compared to the incorrect trials. This 

could be also clearly observed for the Purkinje cell population, despite its overall lower level 

of premotor activity (Figure 6A (ii)), suggesting that our observed pre-motor turn direction 

prediction is driven by the neuroactivity of a large, diverse cerebellar population. Given that 

the eurydendroid cells are known to integrate input from both the granule and Purkinje cells 

(Figure 6A (iv)), our data suggest that the main source of the observed pre-motor ramping 

activity predictive of the DT is stemming mainly from the granule cells rather than the 

Purkinje neurons. However, we observe a significant increase in post-turn activity in the 

Purkinje cells (p < 0.05) in incorrect trials that may represent feedback via the climbing 

fibers. This observation is also consistent with recent mammalian studies show that the 

granule cells represent learning and reward-related signals (Giovannucci et al., 2017; 

Wagner et al., 2019; 2017).
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DISCUSSION

Supported by the conjecture that brain-wide processing of information is necessary for goal-

directed behavior, we have used an operant learning task to investigate the neural basis 

underlying decision making in larval zebrafish. The combination of our behavioral assay 

with high-speed whole-brain calcium imaging based on LFM has allowed us to capture 

global and local brain state dynamics at cellular resolution, and their relationship to behavior 

at the trial-by-trial level. Our combination of brain-wide imaging and neuronal population 

analyses has uniquely enabled the study of dynamic changes in functional connectivity that 

occur on the timescale of seconds to minutes and are predictive of variability in decision 

timing and outcome, which could be masked by the requirement of averaging across task 

repetitions to reduce noise (Figure S6). Based on our observations and the known 

connectivity of the involved brain regions, we propose a model for how sensory information 

is transformed into decision and motor signals, and how learning and reward prediction is 

facilitated in this process (Figure 6B). The telencephalon (Portavella and Vargas, 2005), 

thalamus (Komura et al., 2001; Zhu et al., 2018) and habenula (Andalman et al., 2019; 

Hikosaka, 2010; Lee et al., 2010; Matsumoto and Hikosaka, 2007) are known to be involved 

in the regulation of learning, reward prediction and internal brain states, and can instruct the 

cerebellum on action selection. Upon heat onset the sensory signal is relayed to the 

telencephalon (Figure 2E) which suppresses neuroactivity in the thalamus and activates the 

habenula, which displays ramping-like activity during the pre-motor period. These signals, 

as well as other sensory and motor signals, are integrated by the cerebellum through the 

mossy fibers. Following movement initiation, the cerebellum sends motor information back 

to the thalamus, thereby forming a closed loop. Likely because our assay involves a learning 

and motor planning component, the overall functional circuitry spans the entire brain (Figure 

6B), in contrast to a heat-evoked sensorimotor transformation which involves a hindbrain 

local circuit, yet also shows a strong response to heat in the telencephalon and the habenula 

(Haesemeyer et al., 2018).

This input to the cerebellum could be further amplified by the divergent mapping of the 

mossy fiber input to the granular cells (Huang et al., 2013; Ito, 2006; Li et al., 2013) and 

then integrated by the eurydendroid neurons (Ito, 2008) and fed into the ARTR, i.e. the 

hindbrain oscillator (Figure 6B). The underlying divergence of this circuitry at the level of 

the granular cells, their abundance in the cerebellum (Ito, 2006) and the observed pre-motor 

ramping activity explain our observation of the neuronal participation model (Figure 6B) 

and accounts for the granular cells as a main source of ramping. On the other hand, the 

observed contribution to the ramping by a small neuronal population with a gradual increase 

of activity (Figure S5D) can be explained by the activity of the ARTR neurons, which 

presumably receive input from the eurydendroid neurons. This notion is also directly 

supported by the observation that this small neuronal population is anatomically overlapping 

with the ARTR neurons (Figure S5E).

The bilateral relationship of the cerebellar neurodynamics that are predictive of turn 

direction and DT can be explained within a ‘competition-cooperation’ framework, in which 

turn directions are determined by the difference in neuroactivity between the ipsilateral and 

contralateral hemispheres, and the rate of bi-hemispheric population ramping activity 
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predicts the DT. After motor response, two feedback signals are sent: The inferior olive 

activates the contralateral Purkinje cells via climbing fibers (Apps and Garwicz, 2005), 

while a self-excitatory ipsilateral feedback is sent to the ARTR (Dunn et al., 2016). The 

signal to the contralateral Purkinje cells can serve as an error signal that, together with 

inputs from other brain areas, facilitates synaptic plasticity (Albus, 1971; Apps and Garwicz, 

2005; Dempsey and Sawtell, 2016; Marr, 1969). The preparatory activity, i.e. the neural 

signature underlying motor planning and decision making (Churchland et al., 2010; Svoboda 

and Li, 2018), is not an innate feature but emerges during learning of a task that requires 

optimization of expected reward for different possible actions (Wagner et al., 2019). We 

demonstrate this explicitly by showing that our observed cerebellar ramping activity 

uniquely emerges through our ROAST paradigm rather than representing an innate pre-

motor activity feature of the cerebellum as it is absent in trials prior to training (Figure 3B 

(iv)). In mammals, the neuronal processes underlying decision making and preparation of 

goal-directed movements have been mainly attributed to the cortex (Miller, 2000; Shenoy et 

al., 2013; Svoboda and Li, 2018), while motor coordination functions, such as fine motor 

control and execution have been traditionally associated with the cerebellum (Glickstein, 

1993; Manto et al., 2012). Our observations and interpretations are consistent with a number 

of recent studies which have challenged the traditional views of the cerebellum by providing 

evidence for cognitive functions such as in learning, language, evidence accumulation and 

reward prediction (Deverett et al., 2019; Giovannucci et al., 2017; Raymond and Medina, 

2018; Schmahmann and Sherman, 1998; Sokolov et al., 2017; Strick et al., 2009; Timmann 

and Daum, 2007).

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to the lead contact, 

Alipasha Vaziri (vaziri@rockefeller.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Subjects—Experiments were carried out in accordance with protocols approved 

by the Institutional Animal Care and Use Committee. Zebrafish (Danio rerio) lines used in 

this study for imaging and behavioral experiments were 7–9 day-post-fertilization 

Tg(elavl3:H2B-GCaMP6s) (Vladimirov et al., 2014) in Nacre or Casper mutant background. 

Adult fish were housed in a facility at 28.5 °C with lights on between 8 am and 10 pm. No 

statistical methods were used to pre-determine sample size.

METHOD DETAILS

Whole-brain Calcium Imaging with the Operant Conditioning Task, and Signal 
Extraction—7–9 day-post-fertilization zebrafish larvae were embedded in 2–2.5% low-

melting-temperature agarose in a custom-made chamber on a glass slide and then immersed 

in fish water. The agarose around the tail, caudal to the swim bladder, was removed to free 

the tail of the larvae and then incubated for 6–8 hours for further solidification. Under this 

head-fixed condition, larvae were placed above a camera (Grasshopper3, PointGrey) for 

tracking tail movements at 160 Hz and placed under a 20×/0.5-NA water-immersion 
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objective (Olympus) for whole-brain calcium imaging with an upright light-field microscope 

at 10 Hz (Nöbauer et al., 2017; Prevedel et al., 2014). The tail was illuminated with a near-

infrared (NIR) 950 nm light-emitting diode (LED), and GCaMP was excited with a blue 

LED (pe-2, CoolLED). Custom-written MATLAB (MathWorks) software was used to 

extract the tail angle, using the resting tail position as the reference, with positive angles 

representing right turns and zero degrees corresponding to a straight tail. Heat stimulus was 

delivered using 980-nm fiber-coupled laser (Roithner Lasertechnik), collimated via a 

collimator (Thorlabs, F220FC-1064) and then projected to the head of the fish along the 

midline, with the spot diameter of 2.0 mm (measured power: 300 mW). A 950-nm bandpass 

filter (FB950–10, Thorlabs) was placed in front of the Grasshopper camera to reject 

scattered visible light and crosstalk from the heat stimulus. Real-time heat stimuli were 

controlled by a data acquisition board (USB-6008, National Instruments) and modulated by 

the extracted tail angle exceeding a threshold (35°) in a closed loop. For movement events 

with multiple tail deflections, only the first deflection was considered.

Image acquisition of the LFM was controlled using Micro-Manager (Stuurman et al., 2007) 

and triggered by the custom MATLAB software. The whole setup was controlled from a 

dual-CPU workstation (Z820, HP). 3D reconstruction of the LFM images was carried out 

offline with the volume of ~700 μm × 700 μm × 200 μm with 51 z-planes and fed into a 

custom-written pipeline for neuronal signal extraction based on the approach proposed by 

(Mukamel et al., 2009; Prevedel et al., 2014): The reconstructed LFM data, which is a 

timeseries of volumetric frames, was first de-trended by dividing each volumetric frame by a 

slowly-varying fit to the frame means. To reduce the data to an amount tractable by 

Independent Component Analysis (ICA), the variance over time was computed for each 

voxel, and the highest-variance voxels, as well as 2–3 continuous time ranges amounting to 

10% of the total recording time were selected to serve as input data to the ICA. The entire 

recording volume was divided into 6 slightly overlapping sub-volumes. The selected voxels 

and timepoints were factorized independently for each sub-volume using the FastICA 

algorithm (initialized by PCA) (Hyvärinen and Oja, 2000), resulting in a set of spatial filters 

and associated temporal signals. The spatial filters were thresholded to detect regions of 

interest (ROIs), and ROIs compatible with shape and size of neurons were kept. Duplicate 

ROIs in the overlapping sub-volume regions were merged, resulting in the final set of neuron 

spatial filters. Finally, the corresponding neuron activity signals were extracted from the 

original reconstructed LFM dataset by summing (for each timestep) over the voxel 

brightness values in each neuron spatial filter.

Training Protocol and Animal Behavior—We aimed to find a robust behavioral 

paradigm that involved learning and short-term memory while exhibiting a delay period 

from the onset of an instructing sensory cue to the execution of motor response, during 

which the neuronal basis of motor planning and decision making could be studied. While 

previously used assays in larval zebrafish for sensorimotor transformation lack the above 

features, most of the typically used assays in rodents or primates study motor planning by 

introducing a delay period from the onset of the stimulus to a go cue, after which the animal 

is trained to initiate a motor response (Mohebi and Oweiss, 2014; Shenoy et al., 2013; 

Svoboda and Li, 2018). However, motor responses of animals engaged in naturalistic action 
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selections are self-initiated and happen in the absence of a go cue. The ROAST operant 

conditioning paradigm (Figure 1A) addresses both issues. Typically, each recording 

consisted of 20–25 trials and lasted for one hour. In each trial, heat stimulus was delivered 5 

seconds after the trial started and was terminated immediately when a turn in the correct 

direction exceeded a threshold (35 degree). If an animal failed to make a correct movement 

within 100 s, the laser was switched off and the fish received a 20 s break before the start of 

the next trial. Otherwise, if an animal made a correct movement, the heat stimulus was 

turned off and the fish received a break for the rest of the 100 s trial. The full training 

protocol for each fish consisted of two training blocks (one left- and one right-training 

block), with each block containing 20–25 trials. Since individual fish exhibited a bias for a 

specific direction (Li, 2013), the reward direction in the first training block was chosen 

against this bias and was subsequently reversed in the second block. Prior to the first block, 

3–5 probe trials were conducted to determine the pre-existing bias of individual fish. For 

“learners” (see below), the same larvae were imaged twice for two training blocks, over a 

total of two hours, and with a 0.5 h break in between. A given trial was classified as correct 

when the first heat-evoked turn of the animal was in the reward direction, and a fish was 

defined as a “learner” when the asymptote of the learning curve (modelled by a sigmoidal 

function that was fit to the outcomes) in both blocks reached a threshold of 70% correct. 

Fish that learned in the first but not in the second block were defined as intermediate 

learners and their data was not included in the data analysis. If a fish failed to learn in the 

first block, it was categorized as a non-learner and was not considered further for the second 

training block. Overall, we behaviorally trained and recorded data from 26 larvae resulting 

in 39% learners, 46% non-learners and 15% intermediate learners, which were not included 

in further analyses. In all further analyses, training blocks were analyzed separately, such 

that a “correct trial” always corresponded to a turn in the left or right direction.

Pre-processing of the Neuronal Signals—Each neuronal time series was de-trended 

individually to correct for photo-bleaching, and then normalized as ΔF/F0 = (F-F0)/F0, 

where F is the fluorescence of the neuron at a given timepoint and F0 is the average 

fluorescence of the neuron across the entire recording. Noise was removed via total variation 

regularization by calculating the cumulative sum of the de-noised time derivatives 

(Chartrand, 2011). The de-noised time series X of each neuron were then normalized by 

taking the Z-score, given as (X – mean(X))/SD(X), for further analysis. This pre-processing 

procedure and subsequent analyses were performed using MATLAB (MathWorks).

Behavior Classification—In addition to online tracking, offline behavioral classification 

was used to classify the tail movements as left turns, right turns, and struggles (or 

swimming), using a method similar to the one described by (Haesemeyer et al., 2018). 

Briefly, since larval zebrafish move in bouts rather than swim continuously, and since the 

bout duration lasts for about 250–400 ms in head-restrained fish (Severi et al., 2014), the 

movement bout was detected by scanning through the time series of the tracked tail angle in 

a sliding window of 50 frames (corresponding to ~312 ms at a frame rate of 160 Hz). Within 

the time window of one bout, the time of movement initiation was set to the timepoint when 

the tail angle exceeded 5° for the first time. Then, the bias of tail movements was calculated, 

and the bout was categorized as a unilateral ‘turn’ or a bilateral ‘struggle’ with the threshold 
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of bias at 1.05. The turn direction was determined from the sign of the tail angle, negative or 

positive, for left and right turns (labelled “TurnL” and “TurnR”), respectively.

Decision Time—Decision time (DT) was measured as the time between heat onset to the 

initiation of the first turn, regardless of correct or incorrect outcome, in a given trial. Because 

the temperature changes from the heat stimulus became relatively stable 5 s after heat onset, 

only trials with DT longer than 5 s were used, to minimize stimulus-related variation across 

trials.

Performance-dependent Bifurcation of Brain States—To visualize the temporal 

evolution of brain states towards correct versus incorrect decisions, the time-dependent 

correlation (Pearson’s r) was calculated between each brain state in a trial and a reference 

brain state determined by averaging all brain states of the same type (i.e., correct versus 

incorrect). Partial correlation coefficients were utilized to factor out the heat-induced 

neuronal contribution both in correct and incorrect trials.

Partial Correlation Coefficients—The partial correlation coefficient r of X and Y while 

controlling for the effect of Z is given as:

rXY ⋅ Z =
rXY − rXZrY Z

1 − rXZ2 1 − rY Z2

Here, rXY is the pair-wise correlation coefficient:

rXY = cov X, Y
σXσY

Partial correlation coefficients were computed in MATLAB (MathWorks), using the function 

partialcorr().

t-SNE on the Brain States—t-Distributed Stochastic Neighbor Embedding (t-SNE) 

(Maaten and Hinton, 2008) was applied to the sequence of brain states, where each “brain 

state” input vector was the activity state of all neurons at a given timepoint. Briefly, t-SNE 

transforms the structure contained in high-dimensional data into a two- or three-dimensional 

map by minimizing the Kullback-Leiber divergence between the Gaussian similarity matrix 

of the data points and the t-distributed similarity matrix of the map points. t-SNE maintains 

the local structure by keeping similar data points close to each other on the t-SNE map 

(Maaten and Hinton, 2008). Even though t-SNE has the disadvantage of not providing the 

same visualization on each run of the optimizer, nor an explicit transformation matrix that 

would be required to establish a quantitative correspondence between the t-SNE map and 

neuroanatomy, it nevertheless provides an effective, exploratory tool for identifying hidden, 

low-dimensional structure in high-dimensional data (Davie et al., 2018; Grün and van 

Oudenaarden, 2015; LeCun et al., 2015; Macosko et al., 2015). Brain states consisting of 

25,000 to 35,000 input vectors were mapped onto a 2D t-SNE map using value of 1000 for 

the “perplexity”, which is a critical hyper-parameter in t-SNE. Other values for perplexity, 

such as 500–2000, gave similar results. t-SNE maps from different animals were normalized 
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to [0,1] in both the x- and y- dimension. Pair-wise distances of all pairs of brain states were 

measured by their Euclidian distance in the 2D t-SNE map.

t-SNE on the Neuronal Space—To highlight task-relevant activity, we embedded 

regressors of the behavior and the heat stimulus into the neuronal space as “baits”. We 

defined four regressors: “Turn L”, “Turn R”, “Heat ON” and “Heat OFF”, obtained by 

convolving the actual time series of each regressor with the temporal response kernel of our 

calcium sensor (NL-GCaMP6s). Then t-SNE was applied to the “neuronal space”, where 

each input vector was the normalized time series of one neuron in one recording, plus the 

four behavior- and stimulus regressors. 4000 to 6000 inputs were transformed into a 2D t-

SNE map. Perplexity values ranging from 40 to 120 were tested and then chosen such that in 

the resulting map the regressors were mostly well-separated. Hierarchical clustering was 

then performed on the chosen t-SNE map using the criterion of Ward’s minimum variance 

method (Ward, 2012). The final number of clusters was determined as the smallest number 

of clusters such that the top three principal components of each cluster explained more than 

80% of the variance, or the first component more than 50%, using principal component 

analysis (PCA).

Measuring Coordination and Integration Across Brain Regions—Correlation was 

used as a quantitative metric of coordination and integration (Cohen and Kohn, 2011; Kohn 

et al., 2016). Brain regions were defined using the functional clusters identified using t-SNE 

on the neuronal space (see above). Specifically, the absolute value of the mean pre-motor 

correlation between all pairs of neurons across two brain regions was calculated for each 

trial. The period over which the correlations were calculated lasted from 10 seconds before 

heat onset to 1 second before movement initiation. Significant differences between correct 

and incorrect trials in all pairs of brain regions were measured using a two-tailed t-test. For 

each pair of brain regions, the average difference in absolute correlation was calculated by 

comparing the average across all correct trials to all incorrect trials. Similar quantities were 

measured by splitting trials into pre- versus post-learning, as identified by the inflection 

point of the sigmoid function representing the learning curve (described above), instead of 

correct versus incorrect trials.

Identification of the Neurons of Cerebellum and ARTR for Further Analysis—
Due to individual differences in neuroactivity and learning performance, the neurons in the 

cerebellum and ARTR did not always end up in the same locations in the t-SNE neuronal 

spaces across animals. To ensure that the analysis was always performed on the medial 

portion of cerebellum and ARTR across animals (Figure 4–5), the neurons in these regions 

were selected manually based on anatomical landmarks (Dunn et al., 2016; Randlett et al., 

2015; Takeuchi et al., 2015).

Population Dynamics using Demixed PCA (dPCA)—dPCA was performed on 

neuronal populations, following instructions described previously (Kobak et al., 2016). 

Briefly, dPCA decomposes the activity of a neuronal population into a few task-related 

components, such as different stimuli and decisions. Thereby, besides identifying the 

transformation and components that account for the majority of the observed variance in the 
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data as in PCA, dPCA can also reveal the dependence of the neuroactivity on task-related 

parameters such as stimuli states and decisions. The goal of dPCA here was to project 

population dynamics into a small number of dimensions that capture more than 80% of the 

variance and to decode decision-dependent versus decision-independent components.

Briefly, for each neuron in a given recording, the time series was divided into correct and 

incorrect trials based on whether the first turn was in the correct direction. To be able to 

average trials of different decision times (DTs) in dPCA, time series from different trials 

were first aligned relative to two timepoints, 5 s after heat onset and after movement 

initiation, respectively, using a time warping process, with DT defined as 20 (a.u.) after 

alignment (Figure S3A). Note that only trials with DT ≥ 5 s were used for dPCA. The time 

window of each trial started 10 s before heat onset and ended 20 s after the first turn 

initiation. For each neuron in each trial, the average activity during the first 10 s was used as 

the baseline and subtracted from the time series. Because the movements were the only 

differing conditions across trials, two types of components were defined: decision-dependent 

components, from which the correct vs. incorrect trials could be decoded, and decision-

independent components, in which the population dynamics in correct and incorrect trials 

followed the same patterns.

To examine whether individual decision-dependent dPCs could decode correct versus 

incorrect trials with statistical significance, we used each dPC as a linear decoder to assess 

their classification performance (Kobak et al., 2016). Cross-validation (n = 100) was used to 

measure time-dependent classification accuracy of the dPCs. Then a shuffling test (n = 100), 

which shuffled the identity of correct vs. incorrect trials without changing the neuronal time 

series, was used to assess whether the classification accuracy was significantly above 99% of 

the shuffled runs in 10 consecutive timepoints. Timepoints of significant decoding were 

marked with thick horizontal black lines in Figure 3A, 4A, S4B, S4C. The dPCs which were 

able to decode correct vs. incorrect trials before movement initiation were defined as pre-

motor decision-dependent components.

Analysis of Pre-Motor Decision-Dependent Activity—To compare the ability for 

predicting decision directions between learners and non-learners, warped time series with a 

DT of 20 s were used and the same procedure as above was performed.

To measure the real timepoint of successfully predicted decision direction in learners, first 

warped time series were used to obtain the decoder of dPCA and the classification outcome 

from single-trials via cross-validation. Classification outcomes of single trials then went 

through an unwarping process by re-stretching back to the original DTs (Figure S3C). 

Classification accuracy from unwarped single-trial classification outcomes was obtained by 

aligning to the movement initiation time (Figure S3D(i–ii)). Error margins of classification 

accuracy were obtained from a shuffling test (n = 100) using the same procedure and were 

aligned to the movement initiation time after shuffling (Figure S3D(iii)). Time for predicting 

decision directions was defined as the earliest timepoint before movement initiation when 

the classification accuracy was significantly above 99% of shuffled runs in 10 consecutive 

timepoints (Figure S3D(iii)).
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Analysis of Ramping Activity—The first dPC of the cerebellum and ARTR showed a 

temporal ramping activity during the period from heat onset to movement initiation across 

animals. To measure the velocity of the ramping activity, i.e. the ramping rate, dPCA was 

first applied to neurons in the cerebellum and ARTR from both hemispheres to obtain the 

decoder and encoder, and then the decoder from dPCA (Figure S3B) was used to transform 

the neuroactivity (without time warping) into the low-dimensional map space. Then, a linear 

fit was applied onto the first dPC from heat onset to 1 s before movement initiation in each 

trial, thus obtaining the ramping rate at the single-trial level (Figure S5A). Single-trial 

decision time (DT) was predicted at each timepoint t by obtaining the ramping rate (x) of 

dPC1 via a linear fit from 0 to t s after heat onset and utilizing a log-linear model log10(DT) 

= −3.94x + 1.66 (Figure S5B). Subsequently the predicted turn initiation timepoint is 

calculated by using DT – t (Figure S5B).

In order to demonstrate the decrease in prediction accuracy resulting from averaging data 

across multiple trials, we randomly sampled N = 19 trials with replacement from an example 

fish and calculated the average ramping rate and average decision time (Figure S6A). An 

identical log-linear model as above was fit to the trial-averaged ramping rates and decision 

times, which was then utilized to predict the decision time in single trials (Figure S6B).

To investigate the degree to which an increasing pool of active neurons was the driver of the 

observed ramping activity, we first classified the states of activity of each neuron at a given 

timepoint in a binary fashion as “active” or “inactive” depending on whether its activity was 

above or below its own standard deviation (SD). We then determined the degree of neuronal 

participation by calculating the fraction of active neurons at each timepoint and compared 

this to the population activity, as reported by dPC1, as a function of time. We compared this 

to the scenario in which the ramping activity would be explained by an increasing level of 

activity of individual neurons. To do so, we used linear correlation to measure the similarity 

of activity of all individual neurons to the population ramping during the pre-motor period, 

obtained the correlation coefficients for each neuron, calculated the distribution of these 

correlations and compared this distribution to the correlation obtained between the neuronal 

participation and the population ramping.

Analysis of Ipsi-Contra Interaction—To examine whether there existed interaction and 

competition between hemispheres, dPCA was applied to neurons in the cerebellum and 

ARTR from both hemispheres to obtain the decoder and encoder, and then this decoder from 

dPCA was used to transform the neuroactivity (without time warping) into the low 

dimensional space. Since the response of each neuron can in principle be tuned to both 

features of the stimulus and of the motor output, a bilateral differential activity between the 

hemispheres during the pre-motor period may be masked by other stronger signals in the 

cerebellum and ARTR, such as the decision-independent dPC1. Thus, to increase the 

sensitivity of the analysis, neuroactivity containing only the pre-motor decision-dependent 

component was used. To do so, only the pre-motor decision-dependent component with the 

corresponding encoder was used to reconstruct the neuroactivity (Figure S4D). With these 

two linear transformations, neuroactivity was obtained that was predictive for movement 

direction with temporal and spatial information. Then the neurons were pooled according to 

ipsilateral or contralateral location based on their anatomical locations in the fish brain, and 
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their activity was averaged across pools. A time window from −4 to −2 s (note that this was 

the unwarped time) before turn initiation was used, which was within the time window of 5 s 

decision time as the threshold. The separation of 2 s from turn initiation was chosen to avoid 

any influence of post-turn activity from the de-noising process since de-noising by total 

variation regularization leads to a smoothing of the time series. The averaged activity of the 

ipsilateral and contralateral cerebellum and ARTR were then compared at the single-trial 

level.

Two-Photon Imaging in Specific Cerebellar Cell Types—Two-photon imaging 

experiments were performed on a Scientifica Slicescope platform with a 20x/1.0-NA water-

immersion objective (Olympus). The two-photon excitation source (Coherent Chameleon) 

delivered 140-fs pulses at an 80-MHz repetition rate and 960-nm wavelength (measured 

power: 5–12 mW). The beam intensity was controlled via an electro-optical modulator 

(Conoptics) for attenuation and blanking, and fed into a galvo-based scan head (Scientifica). 

Fluorescence from the sample was detected by a non-descanned photomultiplier tube 

(PMT), which consisted of an infrared blocking filter, collection lens, 565LP dichroic, 

525/50-nm and 620/60-nm emission filters, and Scientifica GaAsP (green channel) and 

alkali (red) PMT modules. Experiments were controlled with Scanimage (Vidrio 

Technologies). Typical cerebellar recordings imaged ~430 × ~215 × 80 μm with 6–8 z-

planes at a volume rate ~0.8 Hz. Neuron ROIs and activity were detected using CaImAn-

MATLAB (Giovannuci et al., 2019).

Granule cells of the cerebellum were imaged using Tg(gSA2AzGFF152B; UAS:GCaMP6s) 
(Filosa et al., 2016; Knogler et al., 2017; Takeuchi et al., 2015). Purkinje and eurydendroid 

cells were imaged using Tg(Huc:H2B-GCaMP6s; GAD1b:RFP) (Freeman et al., 2014; 

Satou et al., 2013). Purkinje cells were isolated by manually selecting identified neurons 

expressing Gad1b:RFP in FIJI, and the remainder of the GCaMP-expressing cells in the 

dorsal cerebellum represented the eurydendroid cell population. Decision-dependent cells 

were identified by performing a t-test between their distribution of single-trial pre-motor 

activity in correct versus incorrect trials. Single neuron average activity traces were 

calculated for representative fish by aligning the activity to heat onset and movement 

initiation and then averaging over correct or incorrect trials. The difference in average 

activity between correct and incorrect trials was calculated as a function of time for each 

neuron in order to highlight any pre- and post-motor decision-dependent changes.

Two-Photon Lesions in Targeted Brain Regions—Two-photon lesions of the 

telencephalon and habenula were performed using our Scientifica two-photon platform on 

fish that had learned (see criterion below) in the first training block. An area of ~25 × 25 μm 

was lesioned with a power of ~60 mW for ~1.2 seconds. If necessary, lesions in the same 

area were repeated until a hole in the tissue was observed. An identical procedure was 

performed on both hemispheres. After lesioning, the second training block was performed 

with the reversed reward direction. In the control group, fish that had learned (see criterion 

below) in the first training block were trained in the second training block, without lesion.

Lesions of the cerebellum were performed on fish that had learned (see criterion below) in 

the two training blocks. The same protocol for lesion was performed. Ipsilateral lesion 

Lin et al. Page 19

Cell. Author manuscript; available in PMC 2020 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



referred to a lesion in the training side, while contralateral lesion referred to a lesion in the 

opposite side of the training direction, and bilateral lesion was the same procedure for both 

hemispheres.

Analysis of Spontaneous Freely Behaving Swimming Behaviors—Analysis of 

spontaneous turn preference before and after unilateral cerebellum lesions was performed by 

recording turn direction in freely behaving zebrafish in 3.5cm circular chambers for 1 hour. 

Behavioral tracking was performed using DeepLabCut 2.0 (Nath et al., 2019) and the 

number of left and right turns, identified by measuring a leftward or rightward change in 

orientation between the start and end of each swim bout, were counted for each fish.

QUANTIFICATION AND STATISTICAL ANALYSIS

A total of 26 larvae were trained under the ROAST assay and 5 larvae went through 

spontaneous movement with LFM imaging. LFM data from two-block learners, non-learners 

and fish exhibiting spontaneous movements – but not the data from intermediate learners – 

went through the 3D reconstruction. Subsequently, our signal extraction pipeline was 

applied to the reconstructed LFM images. We found imaging results and data quality to be 

reliably reproducible and consistent, both across imaging sessions with the same animal, and 

across animals. All statistical tests and sample sizes in the imaging and lesion studies are 

described in the corresponding figure captions.

DATA AND SOFTWARE AVAILABILITY

Our custom data-processing pipeline for LFM data is available for download. Software for 

data analysis, as well as data, is available from the corresponding author upon reasonable 

request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Whole-brain Ca2+imaging and decision making in larval zebrafish on the 

single-trial level

• Pre-motor bifurcation and trial-by-trial changes of functional connectivity

• Cerebellar activity predicts decision outcome and decision time >10 s before 

movement

• Hemisphere difference encodes decision; joint hemisphere activity encodes 

timing
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Figure 1. An operant conditioning assay for larval zebrafish combined with whole-brain calcium 
imaging.
(A) Relief of Aversive Stimulus by Turn (ROAST). Head-fixed larval zebrafish receive a 

mildly aversive heat stimulus by an infrared laser (red trapezoid) at the beginning of a trial. 

The laser is turned off if the fish makes a tail movement in the reward direction and remains 

on otherwise. In the second training block the reward direction is switched, with each block 

consisting of 20–25 trials (see STAR Methods).

(B) The learning progress (two blocks) of an example learner (8 dpf). Black traces indicate 

tail positions over time, magenta and green rectangles indicate the duration of the heat 

stimulus for each incorrect and correct trial, respectively.

(C) Averaged performance as a function of trial number (mean ± SEM, n = 10). The correct 

rate in the first 10 trials is significantly below 0.5, **p = 0.001 for block 1 and *p = 0.012 

for block 2; the correct rate in the last 10 trials is significantly above 0.5, ***p < 0.001 for 

both blocks (bootstrapping, n = 5000).

(D) (i) Heat map of brain-wide neuronal time series (Z-scored) from a learner with top 2% 

most active voxels extracted and segmented, resulting in 4124 neurons. Neurons sorted by 

their correlations with heat stimuli, from highly positive to highly negative. Upper red bars: 

heat stimuli; superimposed black trace: tail position of the fish; lower panel: zoom into the 

dashed rectangular area.

(ii) Anatomical map of same extracted neurons as in (i), displayed in random colors for 

clarity. Scale bar, 50 μm.
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Figure 2. Decision making relies on coordination and integration of distributed information 
across the whole brain.
(A) Brain states for a given trial type (correct or incorrect) converge into a smaller region of 

the t-SNE space before turn initiation (diamonds; incorrect (incorr.): magenta, correct 

(corr.): green) and are well-separated post turn, i.e. 0–10 s after movement initiation (circles; 

incorrect: magenta, correct: green). See also Figure S2C,D.

(B) Temporal evolution of brain states during correct versus incorrect trials lie on separate 

cyclic manifolds, visualized in a 2D map; single trials (thin lines) and trial averages (thick 

lines); arrow: direction of temporal evolution. Manifold separation measured with Hausdorff 

distance (Bruno et al., 2017), ***p < 0.0001, Wilcoxon rank sum test.

(C) Performance-dependent bifurcation of brain states before turn initiation. See STAR 

Methods.

(i) After heat onset, brain states exhibit similarity along the “Heat ON” dimension (vertical 

axis), followed by a pre-turn bifurcation towards the correct or incorrect state. Similarity is 

measured by partial correlation between a given brain state and the average correct, incorrect 

or “Heat ON” state.

(ii) 2D representation of single-trial bifurcation process. Individual correct and incorrect 

trials are highlighted during the pre-motor period (Black diamonds: heat onset, green and 

magenta dots: turn initiations for correct and incorrect turns, respectively). See also Movie 

S2.

(D) Application of t-SNE on neuron space reveals six distinct functional clusters of neurons 

(different colored circles) with behavior and stimulus regressors embedded in a 2D t-SNE 

map (triangles and squares). The t-SNE map is partitioned by hierarchical clustering (see 
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STAR Methods). The “Heat ON” regressor (red triangle) is located in Cluster 1, “Heat OFF” 

in Cluster 6 (black triangle), “Turn R” in Cluster 4 (green square) and “Turn L” in Cluster 2 

(magenta square).

(E) Mapping of functional neuronal t-SNE clusters onto brain anatomy reveals distinct 

overlap with specific anatomical regions. Cluster 1 is mainly in the telencephalon (Te); 

Cluster 2 in the left hindbrain contains “Turn L” regressor and overlaps with the left ARTR; 

Cluster 3 overlaps with the habenula (Hb) and the raphe (Ra); Cluster 4 contains “Turn R” 

regressor and overlaps with right (ipsilateral) cerebellum (Cb) and ARTR; Cluster 5 overlaps 

with the left (contralateral) cerebellum (Cb); Cluster 6 overlaps mainly with thalamus (Th) 

and parts of the Te and contains the “Heat OFF” regressor. Scale bar, 50 μm.

(F) Performance-dependent trial-by-trial changes in correlation between pre-motor 

neuroactivity across brain regions. The absolute correlation of activity within the ipsilateral 

cerebellum (ipsi Cb) and between the ipsi Cb and other brain regions (Hb) increases in 

correct trials (green circle) compared to incorrect trials (magenta circle). Between other 

brain regions (e.g. between Te and contra Cb), correct trials exhibit a lower degree of 

correlation than incorrect trials. In particular, the difference in correlation between the ipsi 

Cb and Hb for correct versus incorrect trials is highly significant. Two-tailed t-test, *p < 

0.05, **p<0.01. See also Figure S2F.

(G) Lesions in the habenula and telencephalon affect the correct rate and learning. Larvae 

that were lesioned in the Hb or Te exhibited a significant decrease in correct rate post-lesion 

compared to unlesioned larvae. n = 15 for the control group without lesion; n = 9 for the Te 

lesion group; n = 10 for the Hb lesion group. Wilcoxon rank sum test, one-tailed.
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Figure 3. Preparatory activity in the cerebellum is highly predictive of decision outcome and 
emerges through training.
(A) Top demixed principal components (dPCs) from each functional neuronal cluster. 

Population activity from each cluster was projected onto individual dPCs and averaged over 

trials (lines and shaded bands: mean ± 1.96 SEM). Explained variance for each dPC is given 

at the top right of each panel. Horizontal black bars on x-axis mark timepoints when correct 

versus incorrect trials can be reliably decoded (see STAR Methods). Pre-motor decision-

dependent signal (in which the time of decoding precedes and lasts until turn initiation time) 

is observed from dPC2 of Cluster 4, the ipsi Cb and ARTR. Post-turn decoding is reliably 

possible from the dPC2 of all functional clusters, but only Cluster 4 allows for reliable pre-
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motor decoding. Time series were processed for co-alignment from heat onset to turn 

initiation, i.e. the decision time (see STAR Methods).

(B) Ipsilateral cerebellum and ARTR display strong pre-motor ramping activity in correct 

trials that emerges through training.

(i) & (ii). Pre-motor activity of individual neurons in ipsi Cb and ARTR averaged over 

correct or incorrect trials. Neurons in both panels are sorted according to onset timing of 

pre-motor activity during correct trials. Red dashed lines, heat onset; black dashed lines, turn 

initiation.

(iii). Anatomical locations of ipsilateral neurons color-coded according to the onset time of 

their pre-motor activity. Onset time of activity increases from anterior (Cb) to posterior 

(ARTR) in the ipsilateral hindbrain. Background: anatomical reference. Scale bar: 50 μm.

(iv). Pre-motor activity, averaged from individual neurons, significantly increases with 

training. Each dot represents pre-motor activity from a single trial. Trials are combined 

across 7 datasets. *p < 0.05, **p < 0.01, ***p < 0.001, two-tailed Wilcoxon rank sum test.

(C) Contralateral cerebellum and ARTR show little pre-motor activity.

(i) & (ii). Pre-motor neuroactivity of individual neurons in contra Cb and ARTR averaged 

over correct or incorrect trials. Neurons in both panels are sorted according to the onset time 

of pre-motor activity during correct trials.

(iii). Anatomical distribution of contralateral neurons, which are color-coded according to 

the onset time of their pre-motor activity. Onset time of activity increases from posterior 

(ARTR) to anterior (Cb) in the contralateral hindbrain. Background: anatomical reference. 

Scale bar, 50 μm.

(iv). Preparatory activity, averaged from individual neurons, shows no significant change as 

training progresses. Each dot represents pre-motor activity from one trial. Trials are 

combined across the same animals as in B. Two-tailed Wilcoxon rank sum test.
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Figure 4. Bilateral ipsi-contra competition in the cerebellum determines decision outcome.
(A) Bilateral dPCA analysis of joint neuroactivity of cerebellum (Cluster 4 and Cluster 5). 

Decision-independent dPCs: dPC1 displays pre-motor ramping and post-turn peak; dPC3 

displays a plateau shape for most of the decision time, representing the heat- and motor-

evoked signals. Decision-dependent dPCs: dPC2 shows post-turn separation, which could 

serve as a feedback signal; dPC4 displays pre-motor separation, the signal to plan and drive 

action selection. Data from a representative fish.

(B) Decision direction can be predicted as early as 10 seconds before movement initiation 

with an average accuracy of 80%.

(i) Prediction accuracy for correct versus incorrect turns extracted from decision-dependent 

dPCs. dPC2 displays post-turn classification of correct versus incorrect trials while dPC4 

allows for pre-turn prediction of turn direction, with an average accuracy as high as 80%. 

Prediction accuracy from n = 8 training blocks of 5 learners, mean ± 1.96 SEM.

(ii) The prediction timepoint (red dot) in an example learner. Dark blue line and shaded 

band: mean and SD of shuffling tests (n = 100). See STAR Methods and Figure S3D.

(iii) Earliest prediction times from 7 learner datasets, in 5 of which prediction precedes 

movement initiation (mean prediction time: 10.4 s).

(C) Pre-motor difference neuroactivity between the ipsi and contra Cb as a function of time. 

Data are constructed from the pre-motor decision-dependent activity from an example 

learner (see Figure S4D).

(D) Trial-by-trial comparison of pre-motor neuroactivity between ipsi and contra sides for 

correct versus incorrect trials of an example learner. Wilcoxon signed rank test, one-tailed. 

See STAR methods.
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(E) Trial-by-trial comparison of pre-motor neuroactivity between ipsi and contra sides for 

correct versus incorrect trials. Data pooled across 5 learners, with 144 correct trials and 56 

incorrect trials. Wilcoxon signed rank test, one-tailed.

(F) Post-training lesions in the cerebellum affect the distribution of turn directions. Laser-

induced lesions in the ipsi Cb (n = 6) result in a significant decrease of the correct rate, while 

lesions in the contra Cb result in a mild increase of the correct rate (see discussion, n = 5). 

Each gray line represents one two-block learner animal. Only trials with behavioral 

responses are used for calculating the correct rate. One-tailed t-test.

(G) Lesions in naïve animals do not affect the distribution of turn directions. The fraction of 

left turns before and after lesion was counted in freely behaving zebrafish without exposure 

to any heat stimulus. n = 6 for lesions in each side, two-tailed t-test.
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Figure 5. Bilateral cooperation of cerebellar neuroactivity determines decision time.
(A) Monotonic ramping of bilateral cerebellar population activity grouped by decision time 

(DT). Turns appear to be initiated when ramping activity reaches a common decision-time-

independent threshold. Population activity (dPC1) is grouped in 4 categories of DTs and 

then averaged across trials. Each trace is from the heat onset (red dashed line) to the 

initiation of the first turn. Black dashed line indicates arbitrarily chosen threshold. Data from 

a representative learner.

(B) Ramping rate of population dynamics (dPC1) as a function of the DT at the single-trial 

level. Ramping rate is calculated by linear fit of pre-motor ramping activity (from heat onset 

to 1 s before turn initiation, see Figure S5A). Data points are single trials from a 

representative learner.

(C) Bilateral cerebellar ramping rate of population activity is inversely correlated with the 

DT at the single-trial level across multiple animals. 114 trials from 8 training blocks are 

shown in different colors from 5 animals.

(D) The accuracy of the prediction time of the movement initiation versus time. The 

accuracy of the prediction time of movement initiations increases with time after heat onset 

and approaches the actual movement initiation time ~20 seconds before turn initiation (22.3 

s ± 2.5 s when t = 20 s, mean ± SEM). Single-trial predicted values (mean ± 1.96 SEM, see 

also Figure S5B) from 5 fish are plotted against actual values.

(E) Post-training cerebellar lesions increase DT. One-tailed Wilcoxon rank sum test, n = 6 

for ipsi Cb lesions, 5 for contra Cb lesions, and 7 for bilateral lesions.
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Figure 6. Proposed model for decision-making network in cerebellum, and the interaction with 
brain-wide neurodynamics.
(A) Trial-averaged ipsilateral cerebellar activity for different cell types (granule, Purkinje 

and eurydendroid cells). Dashed line: red for heat onset; black for turn initiation. Only cells 

showing a significant difference in activity between correct and incorrect trials (p<0.001, t-

test) are displayed, which accounted for >70% of the total recorded cells within each cell 

type. Left panels: correct trials. Middle panels: incorrect trials. Right panels: difference in 

average activity between correct and incorrect trials.

(i). The granule cells display the strongest observed pre-motor activity, as well as post-turn 

activity both in correct and incorrect trials.

(ii). The Purkinje cells display weaker pre-motor activity, especially in correct trials, 

compared to the granule cells. However, post-turn activity averaged across neurons is 

significantly higher in incorrect trials (p < 0.05, one-tailed Wilcoxon rank sum test).

(iii). The eurydendroid cells display some pre- and post-motor activity, driven by input from 

granule cells.

(iv). Diagram of the cerebellar microcircuitry. The main cerebellar inputs are the mossy 

fibers from various brain regions and the climbing fibers from the inferior olive. The activity 

of the granule cells (Figure 6A (i)) provides excitatory input via the parallel fibers to the 

Purkinje and eurydendroid cells, as well as inhibitory interneurons, which can suppress 

Purkinje cells and thus enable excitation of eurydendroid cells via the parallel fibers.

(B) Schematic overview of the proposed neurocircuitry underlying sensory information 

integration, learning, motor planning and action selection in our task: The heat stimulus 

activates the telencephalon, which inhibits thalamic activity and activates the habenula, 

which can regulate learning, reward prediction and the brain state. The cerebellum integrates 
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this multimodal information, as well as that of various precerebellar nuclei, via the mossy 

fibers to prepare and generate movements. Cerebellar dynamics are relayed to the ARTR via 

the eurydendroid cells, initiating a motor command. Following movement initiation, the 

cerebellum receives feedback from the inferior olive and sends motor information back to 

the thalamus, thereby forming a closed loop for learning.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Tg(elavl3:H2B-GCaMP6s) (Vladimirov et al., 2014) N/A

Tg(gSA2AzGFF152B) (Takeuchi et al., 2015) N/A

Tg(Huc:H2B-GCaMP6s; 
GAD1b:RFP)

(Freeman et al., 2014; Satou 
et al, 2013) N/A

Tg(UAS:GCaMP6s) (Filosa et al, 2016) N/A

Software and Algorithms

μManager Open Imaging https://micro-manager.org/

MATLAB (Behavioral and imaging 
analysis, modeling) MathWorks https://www.mathworks.com/products/matlab.html

FIJI (ImageJ) (Image Processing) NIH http://fiji.sc

Custom data-processing pipeline for 
LFM data (Prevedel et al, 2014)

https://static-content.springer.com/esm/art
%3A10.1038%2Fnmeth.2964/MediaObjects/
41592_2014_BFnmeth2964_MOESM189_ESM.zip

Demixed Principal Component 
Analysis (dPCA) (Kobak et al, 2016) https://github.com/machenslab/dPCA

t-Distributed Stochastic Neighbor 
Embedding (t-SNE) (Maaten and Hinton, 2008) https://lvdmaaten.github.io/tsne/

Independent Component Analysis 
(FastICA) (Hyvarinen and Oja, 2000) https://research.ics.aalto.fi/ica/fastica/

Scanlmage (Pologruto et al, 2003) http://scanimage.vidriotechnologies.com/display/SIH/ScanImage
+Home

CalmAn-MATLAB (Giovannucci et al, 2019) https://github.com/flatironinstitute/CaImAn-MATLAB

DeepLabCut 2.0 (Nath et al, 2019) https://github.com/AlexEMG/DeepLabCut
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