Skip to main content
. 2020 Jun 17;6(25):eaba0616. doi: 10.1126/sciadv.aba0616

Fig. 1. Programming the buckling behavior of hyperelastic/visco-hyperelastic bi-beams.

Fig. 1

(A) A schematic drawing of a bi-beam made of two identical beams with limited viscoelasticity (the hyperelastic beam) and substantial viscoelasticity (the visco-hyperelastic beam). Because of the higher stiffness of the hyperelastic beam, the bi-beam buckles to the left when loaded slowly in compression. Under high strain rates, the apparent stiffness of the visco-hyperelastic beam may exceed that of the hyperelastic beam, causing the bi-beam to buckle to the right. (B) Visualization of the stress distributions corresponding to the three potential states of sufficiently compressed bi-beams (i.e., left buckling, no buckling, or right buckling). (C) Maps showing the computationally predicted buckling direction for a bi-beam with an aspect ratio of 8 and different values of the mechanical properties of the hyperelastic and visco-hyperelastic beams. The results are presented for different values of the applied nondimensional strain rate, and the color code indicates the regions where right buckling occurs. (D) Evolution of the stresses and strains of a visco-hyperelastic material as a function of the applied nondimensional strain rate for four different sets of material properties. Analytical relationships are used for drawing the stress-strain curves and compared with the corresponding hyperelastic materials.