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Strain rate–dependent mechanical metamaterials
S. Janbaz1*, K. Narooei2, T. van Manen1, A. A. Zadpoor1

Mechanical metamaterials are usually designed to exhibit novel properties and functionalities that are rare or even 
unprecedented. What is common among most previous designs is the quasi-static nature of their mechanical 
behavior. Here, we introduce a previously unidentified class of strain rate-dependent mechanical metamaterials. 
The principal idea is to laterally attach two beams with very different levels of strain rate-dependencies to make 
them act as a single bi-beam. We use an analytical model and multiple computational models to explore the instability 
modes of such a bi-beam construct, demonstrating how different combinations of hyperelastic and viscoelastic 
properties of both beams, as well as purposefully introduced geometric imperfections, could be used to create 
robust and highly predictable strain rate-dependent behaviors of bi-beams. We then use the bi-beams to design 
and experimentally realize lattice structures with unique strain rate-dependent properties including switching 
between auxetic and conventional behaviors and negative viscoelasticity.

INTRODUCTION
The story of mechanical metamaterials started with researchers 
trying to achieve unusual properties through the rational design of 
architected materials. The quest that started with a relatively limited 
scope has, however, rapidly pullulated and now targets not only such 
well-established behaviors as auxeticity (1–3), negative thermal 
expansion (4, 5), snap-through instability (6, 7), and ultrahigh 
properties (8, 9) but also more novel functionalities including 
shape-morphing (10, 11), nonreciprocity in transferring motions 
(12), and even logic gate–like programmability (13, 14). In a way, 
the boundary between materials and machines is becoming more 
and more blurred, with some researchers even introducing concepts 
like “machine matter” (15, 16).

In this context, flexible metamaterials (2, 17–19) show the most 
promise. On the one hand, the large, reversible, and nonlinear 
deformations exhibited by these materials provide a fertile ground 
for cultivating unique functionalities. On the other hand, flexible 
mechanical metamaterials share multiple organic intersections with 
other current areas of research including soft robotics (9, 20, 21) 
and flexible electronics (22–24). They have, therefore, received the 
most attention during past few years.

Most previous studies have, however, focused on the quasi-static 
response of mechanical metamaterials. In the cases where the dynamic 
response of mechanical metamaterials is studied, the focus is usually 
on their acoustic and wave propagation properties [e.g., see (25–30)]. 
However, the viscoelastic and strain rate–dependent behaviors of 
mechanical metamaterials, particularly those exhibiting substantial 
flexibility, could present many novel opportunities. This is particularly 
important given the fact that most of the present designs of flexible 
mechanical metamaterials either are made from polymers that 
exhibit vastly strain rate–dependent behavior (31) or include other 
energy-dissipating mechanisms that often lead to strain rate dependency. 
For example, there is substantial friction and contact in origami- 
based flexible metamaterials (10, 24, 32) that causes energy dissipation 
and strain rate dependency. It is only natural that the strain rate–
dependent behaviors of flexible mechanical metamaterials are taken 

into the account, or even better exploited to further expand the 
space of achievable properties and functionalities. However, very 
few [e.g., see (31, 33)] major attempts in that direction can be found 
in the literature.

Here, we used the concept of bi-beams to design, analyze, and 
fabricate metamaterials whose mechanical behavior either switches 
(e.g., from conventional to auxetic) depending on the applied strain 
rate or exhibits new types of viscoelastic behavior (e.g., negative 
viscoelasticity). Bi-beams are made by laterally attaching two beams 
made from two different materials of which one is both highly 
deformable and highly strain rate–dependent (i.e., visco-hyperelastic), 
while the other is highly deformable but largely strain rate–independent 
(i.e., hyperelastic) (Fig. 1A). Under quasi-static conditions, the stiffness 
of the hyperelastic beam is higher than that of the visco-hyperelastic 
beam. When subjected to high enough compressive forces, such 
a bi-beam construct will predictably buckle to either the left or 
the right side, depending on the rate of the applied force (strain) 
(Fig. 1, A and B). To study the behavior of a single bi-beam, let us 
assume that the hyperelastic layer is always positioned at the left 
side of a bi-beam that is clamped at its both ends (Fig. 1, A and B).

RESULTS AND DISCUSSION
Analytical and computational models of perfect bi-beams
Neo-Hookean models were used for representing the nonlinear 
elastic behaviors of the hyperelastic (Neo-Hookean constant, C10H) 
and visco-hyperelastic (long-term Neo-Hookean constant,   C 10V  ∞   ) 
beams. A single-term Prony series represented the viscous behavior 
of the visco-hyperelastic beam (dimensionless coefficient of the 
Prony series, g1; relaxation time, 1). We define the nondimensional 
time, t*, as t* = t/1 and the nondimensional strain rate, ′, as  
′= d / d  t   *  =    1    ̇   . There are three material parameters (i.e.,   C 10V  ∞  ,  
C  10H   , and g1) the balance of which determines the threshold of the 
nondimensional strain rate above which the bi-beam buckles to 
the right. We developed an analytical model based on the Euler’s 
buckling theory for beams on elastic foundations and applied it to a 
linearized version of the governing equations of the beams (see 
Materials and Methods for the derivations). According to this model, 
the condition for buckling to the right is that the instantaneous elastic 
modulus of the visco-hyperelastic beam, EV, should exceed the elastic 
modulus of the hyperelastic beam, EH (i.e., EV > EH). Equation 17 
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(see Materials and Methods) can then be used to determine whether 
the bi-beam construct buckles to the left or to the right. The envelope 
of the possible range of parameters for which the bi-beam buckles to 
the right is obtained when the nondimensional strain rate is very large. 
In such a case, Eq. 17 can be simplified as   C 10V  ∞   /  C  10H   +  g  1   > 1  (Eq. 18).

The computationally predicted map of the buckling direction (for 
a beam with an aspect ratio of 8) is in agreement with the predictions 
of the analytical model and shows that when   C 10V  ∞   /  C  10H    and g1 are 
both very small, the bi-beam always buckles to the left regardless of 
the applied nondimensional strain rate (blank area, buckling to left; 
color codes, buckling to right; Fig. 1C). When   C 10V  ∞   /  C  10H    or g1 or the 
sum of both is large enough, the bi-beam buckles to the right for 
sufficiently large nondimensional strain rates (Fig. 1C). Regardless 
of how large the strain rate is, it is not possible to overcome the 
effects of low   C 10V  ∞   /  C  10H    or g1 values, as the boundaries of the 
right-buckling region remain largely unchanged despite multiple 
orders of magnitude of increase in the nondimensional strain rate 
(e.g., from 10−6 to 10) (Fig. 1C). The stress-strain curves calculated 
for the corresponding hyperelastic and visco-hyperelastic materials 

using uniaxial loading condition could capture the essence of the 
observations made regarding the effects of the different material 
parameters on the buckling behavior of the bi-beams (Fig. 1D). When 
  C 10V  ∞   /  C  10H    and g1 are both small (i.e., <0.8), the stresses generated in 
the visco-hyperelastic beam are far below those of the hyperelastic 
beam regardless of the value of the nondimensional strain rate (e.g., 
set I, Fig. 1D). For large enough values of   C 10V  ∞   /  C  10H    and g1 or when 
the sum of both is large enough (i.e.,   g  1   +  C 10V  ∞   /  C  10H   ≳ 1 ), high 
enough nondimensional strain rates may cause the stresses generated 
in the visco-hyperelastic beam to saturate to (e.g., set II, Fig. 1D) or 
exceed (e.g., sets II and III, Fig. 1D) those of the hyperelastic beam. It 
is important to note that because buckling happens at relatively low 
strains, the direction of buckling can switch to the right side even 
when the visco-hyperelastic beam is softer than the hyperelastic beam 
at higher levels of strain (Fig. 1D, inset). A combination of high values 
of g1 and   C 10V  ∞   /  C  10H    (i.e.,   g  1   +  C 10V  ∞   /  C  10H   ≫ 1 ) can result in the visco- 
hyperelastic beam being stiffer than the hyperelastic beam even for 
relatively low (i.e., 10−2) values of the applied nondimensional strain 
rate (e.g., set IV, Fig. 1D).
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Fig. 1. Programming the buckling behavior of hyperelastic/visco-hyperelastic bi-beams. (A) A schematic drawing of a bi-beam made of two identical beams with 
limited viscoelasticity (the hyperelastic beam) and substantial viscoelasticity (the visco-hyperelastic beam). Because of the higher stiffness of the hyperelastic beam, the 
bi-beam buckles to the left when loaded slowly in compression. Under high strain rates, the apparent stiffness of the visco-hyperelastic beam may exceed that of the 
hyperelastic beam, causing the bi-beam to buckle to the right. (B) Visualization of the stress distributions corresponding to the three potential states of sufficiently 
compressed bi-beams (i.e., left buckling, no buckling, or right buckling). (C) Maps showing the computationally predicted buckling direction for a bi-beam with an aspect 
ratio of 8 and different values of the mechanical properties of the hyperelastic and visco-hyperelastic beams. The results are presented for different values of the applied 
nondimensional strain rate, and the color code indicates the regions where right buckling occurs. (D) Evolution of the stresses and strains of a visco-hyperelastic material 
as a function of the applied nondimensional strain rate for four different sets of material properties. Analytical relationships are used for drawing the stress-strain curves 
and compared with the corresponding hyperelastic materials.



Janbaz et al., Sci. Adv. 2020; 6 : eaba0616     17 June 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 12

Effects of bi-beam geometry
To study the effects of bi-beam geometry on its buckling behavior, 
we built computational models corresponding to bi-beams with smaller 
and larger aspect ratios (Fig. 2A). For aspect ratios larger than 8, the 
buckling behavior of the bi-beams was found to be less predictable. 
Moreover, the higher modes of buckling appeared in some cases 
(depending on the balance between the material parameters and 
the nondimensional strain rate). According to the Euler’s buckling 
theory, as the length of the beams, l, increases, the critical strain 
decreases quadratically. Because the lateral expansion of the beams 
is related to the axial strain through the incompressibility constraint, 
a quadratically smaller value of the critical strain also means a 
quadratically smaller value of the lateral deformation, w. The force 
exerted by an elastic foundation, Fel, is proportional to the lateral 
deformation of the beam it supports (Fel = kw). A much smaller value 
of the lateral deformation, therefore, decreases the force exerted by 
the elastic foundation. Consequently, the relative importance of other 
minor forces (e.g., the slight forces caused by asymmetric meshes or 
small asymmetries in the numerical solutions) will increase, making 
the prediction of the buckling direction more challenging. In the 
theory of beams on elastic foundations, the parameter  y =  √ 

_
 k  l   4  / EI    

(where k is the elastic modulus of the elastic foundation and E is the 
elastic modulus of the beam itself) could be used to predict the 
occurrence of the higher modes of buckling (34). For sufficiently 
large values of the beam length, y increases enough to cause the ap-
pearance of the higher modes of buckling according to the theory of 
beams on elastic foundations (34). In addition to the beam length, 
the elastic moduli of both beams (i.e., k and E) are also important in 
determining whether the first or higher modes of buckling will ap-
pear. It is, however, important to realize that the theory of beams on 
elastic foundations does not take into account the global buckling of 
the bi-beam. The elastic modulus of the elastic foundations considered 
in the theory of beams on elastic foundation is not corresponding to 
the elastic modulus of the other beam when both beams buckle 
simultaneously. It is, therefore, unlikely that the higher modes of 
buckling predicted by the theory of beams on elastic foundation are 
observed experimentally, as they may be preceded by the global 
buckling of the bi-beam.

Our computational models showed the diminished predictability 
of the buckling direction and the appearance of the higher modes of 
buckling for some higher values of the aspect ratio (i.e., 12 and 16, 
Fig. 2A). Regardless of whether global buckling or the higher modes 
of local buckling occur, we decided to discard aspect ratios above 
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Fig. 2. Effects of aspect ratio and geometric imperfections on the buckling direction of bi-beams. (A) Computationally predicted maps showing the buckling direc-
tion for bi-beams with four different aspect ratios. The color code indicates the regions where right buckling occurs as a consequence of applying the corresponding 
nondimensional strain rate. The gray regions are the regions with conflicting results, while the orange regions highlight the occurrence of some higher modes of buckling. 
(B) Sensitivity of the computational results to geometric imperfections (imp.). The geometric imperfections originating from the first buckling mode (calculated using a 
linear buckling analysis) are applied to the geometry of bi-beams either to the left side (negative values of the buckling mode) or to the right side (positive values of the 
buckling mode). The predictions of buckling to the right direction are presented for different magnitudes of the applied imperfection. (C) Modification of the bi-beams 
design to minimize their sensitivity to geometric imperfections.
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8 for further analysis and the design of cellular structures. For a 
smaller value of the aspect ratio (i.e., 4), the sensitivity of the buckling 
direction to the applied nondimensional strain rate increased, meaning 
that the region within which right buckling occurs enlarges more prom-
inently as a consequence of increasing the applied nondimensional 
strain rate (Fig. 2A). This is a positive development in terms of 
affording greater flexibility in the design of strain rate–dependent 
metamaterials. However, bi-beams with smaller aspect ratios show 
higher critical forces that may not be desirable, as we ultimately aim 
to use the bi-beams for designing cellular structures. If the forces 
required for the local buckling of the bi-beams are too high, the global 
buckling of the entire cellular solid starts to compete with the local 
buckling modes of individual bi-beams, rendering the buckling 
behavior of the cellular structure less predictable. An intermediate 
aspect ratio (e.g., 8 in the case of our simulations) balances the two 
abovementioned aspects to make the buckling behavior of the bi-
beams as predictable as possible.

Imperfect bi-beams and purposefully introduced 
imperfections
Geometric imperfections and equivalent material imperfections are 
the other important parameters influencing the buckling direction of 
the bi-beams. In the buckling analyses presented so far, we assumed 
perfect beam geometries. To analyze the effects of imperfection size 
on the buckling direction predicted by our computational models, 
we performed a sensitivity analysis in which a gradually increasing 
percentage of the eigenvector corresponding to the first buckling 
mode was introduced as a geometric imperfection to the shape of 
the bi-beam. The imperfect geometries were then used to perform 
nonlinear buckling analyses. Only for very small values of the 
imperfection sizes (i.e., ≤0.001 mm or ≤0.02% of the width of the 
bi-beams), the buckling direction predicted by the perfect models 
remained fully valid (Fig. 2B). For an imperfection size of 0.01 mm 
(=0.2% of the width of the bi-beams), the buckling direction was 
already affected for some combinations of the material properties 
and nondimensional strain rates, while the entire switching effect 
was lost for an imperfection size as small as 0.1 mm (Fig. 2B). These 
results show the extremely high degree of sensitivity of the buckling 
direction to geometric (or equivalent material) imperfections. We used 
two strategies to mitigate the effects of imperfection dependency. 
As we aim to compare our computational results with experimental 
observations, we will use the dimensional version of the strain 
rate,    ̇   , in the remainder of the paper.

The first strategy was to change the design of our bi-beams. 
When studying the evolution of the stresses induced in both hyper-
elastic and visco-hyperelastic beams, we found that the nonuniform 
distribution of the stresses caused by geometric imperfections re-
sults in stress concentrations at the interface of both beams (Fig. 2C). 
For example, when the direction of the geometric imperfection is to the 
left (e.g., in a design with   C 10V  ∞   /  C  10H   = 0.2,  g  1   = 0.2,    1   = 100 1 / s ), 
the maximum stress values are close to the interface in the stiffer 
beam (i.e., hyperelastic layer) and the direction of buckling is to the 
left (Fig. 2C). Switching the direction of the introduced imperfection 
results in higher values of stresses developing at the left side of the 
bi-beam, meaning that it buckles to the right. To minimize the 
sensitivity of the bi-beams to geometric imperfections, we modified 
the geometry of our bi-beams by cutting out square-shaped areas 
with side lengths equal to 25% of the width of the bi-beams at the 
either side of their clamped corners (Fig. 2C). This allowed both 

beams to relax the stresses induced at their interfaces and enhanced 
the overall uniformity of the stress distributions in both hyperelastic 
and visco-hyperelastic beams (Fig. 2C). As a consequence of this 
design modification, the bi-beam buckled to the left regardless of 
the direction of the applied imperfection even when the imperfection 
size was 0.1 mm (Fig. 2C).

The second strategy was the purposeful introduction of geometric 
imperfections into the shape of the bi-beams to predispose them such 
that they tend to buckle to the left (i.e., the side of the hyperelastic 
beam) under low strain rates. This predisposition ensures that the 
buckling direction of a bi-beam is robustly predictable under low 
strain rates, regardless of any random imperfections that may result 
from the applied fabrication process. However, the purposefully 
introduced imperfections change the shape of the regions within 
which switching to right buckling could take place (Fig. 3). There 
are two changes in the shape of the switching zones. First, the size of 
the switching zones decreases as the imperfection size increases 
from 0.1 to 0.5 mm (corresponding to 2 to 10% of the width of the 
bi-beam) (Fig. 3). A smaller size of the switching zone is caused by 
the fact that the elevated stiffness of the visco-hyperelastic beam 
should overcome not only the higher stiffness of the hyperelastic beam 
but also the forces created because of the presence of the purpose-
fully introduced geometric imperfections. Second, the boundary 
between both zones of left and right buckling, which was initially 
diagonal, starts to rotate and becomes fully horizontal for the larger 
sizes of the geometric imperfection (e.g., a left imperfection size of 
0.5 mm) (Fig. 3). This indicates the increased relative importance of 
the properties of the visco-hyperelastic beam in determining the 
switching behavior of the bi-beam as compared to those of the 
hyperelastic beam (Fig. 3). In addition to the effects of the imperfection 
size, it is important to note that higher values of 1 minimize the size 
of the switching zone, because, at lower strain rates, the incidence of 
right buckling for high 1 values is high.

A combined experimental and computational study 
of imperfect bi-beams
To experimentally evaluate our predictions, we fabricated four 
bi-beams from a hyperelastic silicone rubber and a 3D (three- 
dimensional)–printed visco-hyperelastic rubber and introduced geo-
metric imperfections to predispose the bi-beams to left buckling 
(Fig. 4A). The dimensions of the purposefully introduced imperfections 
were measured to be <5% of the width of the bi-beams (visible in 
Fig. 4A). For low rates of the applied deformation (e.g., 100 mm/min, 
strain rate = 1.7 1/s), all four specimens reliably buckled to the 
left (Fig. 4A). For a higher rate of the applied deformation (e.g., 
500 mm/min, strain rate = 8.3 1/s), all four specimens reliably buckled 
to the right (Fig. 4A). The experiments were repeated more than 
10 times, and the buckling direction was consistent between all 
experiments and all four beams. The effects of the applied strain 
rate are demonstrated in movie S1. The measured stiffness values of 
the bi-beams clearly increased with the applied strain rate (Fig. 4A).

To assess the validity of our computational predictions, we com-
pared the buckling directions predicted by our computational models, 
where single-term Prony series were used for capturing the visco-
elastic behavior of the bi-beams, with those predicted by more 
complex computational models (i.e., with seven-term Prony series) 
and experimental observations (Fig. 4B). For all considered design 
variations (i.e., different aspect ratios and a variation in the geometrical 
design of bi-beams), the strain rate–dependent buckling directions 
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predicted by both types of computational models agreed with each 
other and with experimental observations (Fig. 4B). Moreover, the 
stress-strain curves predicted by the different types of computational 
models largely overlapped and were in reasonable agreement with 
the experimentally measured stress-strain curves (Fig. 4B). These 
observations confirm that the results presented in Figs. 1 to 3, which 
were predicted using a single-term Prony series, are predictive of 
the actual buckling direction of the bi-beams. Despite the general 
agreement between the computational and experimental results, there 
were some differences between the stress-strain curves predicted by 
our numerical models and those obtained experimentally. It is 
important to note that the estimated and measured stress-strain 
curves and their corresponding stiffness values highly agreed 
with each other at the beginning of the loading (i.e., for small 
strains) (Fig. 4B). For large strains, however, the experiments 
consistently showed a softer response than what was predicted 
by our computational models (Fig. 4B). This softer response could 
be attributed to imperfections, such as air bubbles and imperfect 
curing and some omissions in the computational models, such as 
the effects of the adhesive used for attaching the two beams on 
the mechanical response of the materials from which the beams 
are made.

Application of bi-beams for the design of strain  
rate–dependent metamaterials
The reliable and highly predictable switching of the buckling direction 
opens up many opportunities for the design of strain rate–dependent 
mechanical metamaterials whose structural elements are bi-beams. 
We designed and created two such types of cellular structures with 
the following properties: (i) strain rate–dependent switching be-
tween auxetic and conventional (i.e., nonauxetic) behaviors and (ii) 
negative viscoelasticity. We also explored the possibility of applying 
bi-beams for the design of soft mechanisms.

To achieve strain rate–dependent switching between a positive 
(i.e., conventional behavior) and a negative (i.e., auxetic behavior) 
value of the Poisson’s ratio, we connected two parallel but mirrored 
bi-beams (with purposefully introduced geometric imperfections) 
to each other through two highly stiff connectors to create the basic 
unit cell Fig. 5A, i). The unit cell was then repeated in different 
directions to create a lattice structure (Fig. 5A, iii). We created non-
linear finite-element models of the lattice structures with three 
different sets of material properties (  C 10V  ∞   /  C  10H   = 0.7,  g  1   = 0.7,    1   = 
0.01 1 / s ;   C 10V  ∞   /  C  10H   = 0.9,  g  1   = 0.6,    1   = 1 1 / s ; and   C 10V  ∞   /  C  10H   = 0.5,  
g  1   = 0.8,    1   = 1 1 / s ) that were chosen to demonstrate some of 
the possible choices of the material properties that lead to a strain 
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rate–dependent switching behavior (Fig. 5A, ii and iii). The evolution 
of the Poisson’s ratio, , with the applied strain was calculated for all 
the three combinations of the material properties and for some 
different values of the applied strain rate (Fig. 5A, ii). In all cases, 
the Poisson’s ratio of the lattice structure was calculated to be ini-
tially close to zero, which is expected given the near-orthogonal an-
gles of the struts constituting the unit cell. As the strain increased, 
however, all three lattice structures exhibited either a positive or 
negative value of the Poisson’s ratio depending on the applied strain 
rate (Fig. 5A, ii). The switching from an auxetic to a conventional 
behavior with the applied strain rate was also observed in our exper-
iments on lattice structures [Fig. 5A (iv) and movie S2]. In practice, 
a fivefold increase in the deformation rate (from 100 to 500 mm/s) 
was sufficient to trigger the desired switching from an auxetic 
behavior to a conventional one (Fig. 5A, iv). If an opposite switching 
behavior (i.e., from conventional to auxetic) with the applied strain 
rate is desired, the bi-beams that constitute the repeating unit cell 
simply need to be flipped. There are many potential applications 
for such a switching behavior among which protection against 
impact or other types of sudden movements is an important area. 
In particular, the Poisson’s ratio of soft wearable devices may be 
chosen such that, under small strains, they morph the contours of 
the human body [e.g., similar to (35)], while all of the constituting 

unit cells should turn auxetic for high enough strain rates (e.g., 
in the event of a patient’s fall) to increase the energy absorption 
capacity of the wearable device and protect the patient against 
low-energy bony fractures that are a major complication associated 
with osteoporosis (36).

A circular arrangement of the bi-beams was then used to transform 
axial (compressive) loads to either clockwise or counterclockwise 
rotation, depending on the applied strain rate (Fig. 5B and movie 
S3). Together with the direction of rotation, the stiffness of the 
mechanism changed as well (Fig. 5B), meaning that the characteristic 
curve of such a mechanism would be also dependent on the applied 
strain rate. Such possibilities in transforming axial deformation to 
rotation, in switching between clockwise and counterclockwise 
rotation depending on the applied strain rate, and in adjusting the 
characteristic curve of a soft mechanism could be instrumental in 
the development of dedicated powertrains for soft machines.

A third application of bi-beams is in creating mechanical meta-
materials with negative viscoelastic behavior. We defined negative 
viscoelasticity as the property of a material that shows lower instan-
taneous stiffness under higher strain rates. Solid materials usually only 
show positive viscoelasticity, meaning that their stiffness increases 
with the strain rate. In some ways, negative viscoelasticity is similar 
to “thixotropy” (37) in non-Newtonian fluids where the viscosity 
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and, thus, the stiffness of the viscoelastic fluid decrease upon the 
application of a high–strain rate load. Negative elasticity is, however, 
distinct from thixotropy, as it is defined for permanently solid 
materials and is not associated with large changes in the viscosity of 
the material. To achieve negative viscoelasticity, we changed the 
structural element of our cellular structure from one single bi-beam 
to two bi-beams that were positioned with a small distance, a, 
between them (Fig. 6A). The applied strain rate determines the 
buckling direction of each of the constituting bi-beams, creating 
three types of contact situations between them (Fig. 6A). The direction 
of the bi-beams and the material properties can be selected such 

that for very small strain rates (e.g., 10−4 1/s), both constituting 
bi-beams buckle toward each other, thereby giving rise to rapidly 
increasing contact forces that increase the stiffness of the cellular 
structure (Fig. 6A). For intermediate strain rates (e.g., 1 1/s), both 
bi-beams initially buckle toward each other followed by a deforma-
tion to the same direction after a second instability (Fig. 6A). For 
high strain rates (e.g., 103 1/s), the bi-beams buckle toward opposite 
directions and away from each other, avoiding any contacts and the 
associated increase in the stiffness (Fig. 6A). The stress-strain curves 
and instantaneous stiffness values calculated for all the three ranges 
of the applied strain rates showed that, for large enough strains (e.g., 
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>0.15), the stiffness associated with a high strain rate is many times 
smaller than that of a low–strain rate case (Fig. 6A). When such 
double bi-beams were arranged in a cellular structure using highly 
stiff connecting elements, the same type of negative viscoelasticity 
was observed (Fig. 4B and movie S4). We also performed experiments 
with double bi-beams to explore their response to different rates of 
the applied strain (Fig. 6C). For a deformation rate of 500 mm/s, the 
bi-beams buckled away from each other, similar to what was predicted 
by the computational models (Fig. 6C). For a deformation rate of 
100 mm/s, the expected stiffening behavior takes place where the 
bi-beams buckle toward each other (Fig. 6C). With an increasing 
level of the applied strain, a second instability mode is activated, 
where one of the bi-beams pushes the other bi-beam to straighten 
and buckle to the other side, ultimately resulting in the separation 
of the bi-beams (Fig. 6C). For high enough deformations (e.g., 
>7 mm), the instantaneous stiffness and the maximum force were 
much lower for a deformation rate of 500 mm/s as compared to 
100 mm/s (Fig. 6C). Of course, the negative viscoelasticity described 
here is a post-buckling phenomenon. For infinitesimal strains, the 
stiffness of a double bi-beam is slightly higher in the case of higher 
strain rates, as a higher strain rate initially increases the stiffness of 
the visco-hyperelastic beam present in the construction of each of 
the bi-beams (Fig. 6C). Because such post-buckling behaviors are 
highly dependent on the contact between the bi-beams, geometric 
parameters such as the distance between both bi-beams, a, could be 
used to adjust the observed properties and their strain rate depen-
dency to befit the specific application at hand.

Practical consideration: Imperfect loading conditions 
and scalability
In the last step of the study, we examined a few aspects that are 
expected to be of importance for the practical applications of bi-
beams. First, the real-world applications of bi-beams are likely to be 
associated with imperfections in the way the loads are applied even 

when the design of the metamaterials is based on fully orthogonal 
loading conditions. Moreover, the design of strain rate–dependent 
mechanical metamaterials or the devices that incorporate them may 
necessitate loading conditions that are not fully axial. We, therefore, 
examined the effects of two different types of deviations from the 
previously discussed loading conditions on the strain rate–dependent 
buckling behavior of bi-beams. In the first experiment, we applied 
20-mm offsets to the left and to the right (Fig. 7A and movie S5). 
Compressive loads with different rates (corresponding to the same 
approximate strain rates as applied to the bi-beams tested in the 
previous experiments) were then applied to the bi-beams. The 
bi-beams continued to exhibit the desired strain rate–dependent 
behavior despite the applied offset (Fig. 7A and movie S5). In the 
second experiment, we applied ≈45° rotation to the bi-beams be-
fore applying the compressive loads (Fig. 7A and movie S5). Once 
more, the bi-beams continued to exhibit the desired strain rate– 
dependent behavior despite the applied rotation (Fig. 7A and movie S5). 
These experiments show the robustness of the strain rate– dependent 
buckling behavior of the bi-beams that remain unchanged despite 
such large deviations from the axial loading conditions and under-
score the potential of the bi-beam concept for practical applications.

The other important aspect is the size of the bi-beams and how 
that may affect their buckling behavior. To examine the effects of 
specimen size, we manufactured two smaller versions of bi-beams 
(i.e., 5.5 and 3.8 times smaller) with different aspect ratios (i.e., 3.7 
and 5.3) (Fig. 7B and movie S6). Both smaller versions of the bi-
beams exhibited the expected strain rate dependency in their buckling 
behavior (Fig. 7B and movie S6). This confirms the scalability of the 
presented approach at least in the range of the sizes considered here. 
However, the concept of bi-beams and their strain rate–dependent 
behavior could be of interest for a wide range of practical applica-
tions. While structural application in which the length scales of the 
bi-beams is larger and in the range of those demonstrated here are 
relatively straightforward to realize, many other applications particularly 
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in microelectromechanical systems, (steerable) medical instruments, 
and microrobots will require manufacturing of (a large number of) 
bi-beams at much smaller length scales. While the mechanical 
principles that are used in the design of bi-beams and the demon-
strated strain rate–dependent behavior are highly scalable, the 
realization of such bi-beam constructs at smaller scales could pose 
some challenges. In terms of manufacturing, the microscale fabrication 
techniques required for such applications are already available. In 
principle, (multi-material) additive manufacturing techniques such 
as material jetting (9) and direct laser writing (38) can be used to 

manufacture similar constructs at the microscale and submicrometer 
scale, respectively. The main challenge, however, is in finding 
photopolymerizable materials that can be processed using the currently 
available techniques and exhibit the differential viscoelastic properties 
required for creating bi-beams. Moreover, the adhesion between 
both types of polymers (i.e., visco-hyperelastic and hyperelastic) 
should be very strong so as to support the transfer of forces between 
them. These are very specific requirements that, according to our 
preliminary screening of the currently available materials, are difficult 
to simultaneously satisfy. Alternatively, the differential strain-rate 
response of the beams of a bi-beam construct could be created in 
other ways of which inertia forces are a prime example. The use of 
inertia forces is much easier to realize in practice, and such types of 
bi-beams would be highly scalable. However, there is a limit (i.e., 
the difference between the range of the density of processable materials 
and voids) that determines the maximum amount of the differential 
behavior achievable using inertia forces. The application of additive 
manufacturing techniques would also mean that it is, at least in 
principle, relatively easy to fabricate 3D version of bi-beam arrays. 
This is likely to constitute a worthy avenue for further research, as 
the mechanical behavior of such bi-beam arrays is expected to be 
quite rich.

CONCLUSIONS
In summary, we demonstrated how strain rate–dependent mechanical 
metamaterials can be realized using bi-beams, which consist of two 
laterally attached beams of which one is hyperelastic and the other 
is visco-hyperelastic. Our computational models show the importance 
of geometrical design including the shape of the bi-beams (e.g., cut-out 
patterns), aspect ratio, and purposefully introduced imperfections 
in the reliability of the strain rate–dependent control of their buck-
ling direction. We also showed how cellular structures and soft 
mechanisms exhibiting novel strain rate–dependent behaviors could 
be realized using (double) bi-beams as their structural elements. 
The strain rate–dependent switching between auxetic and conven-
tional behaviors, negative viscoelasticity, and strain rate–dependent 
transformation of axial deformation to (counter) clockwise rotation 
are expected to find potential applications in various areas, includ-
ing soft robotics, the development of wearable medical devices, and 
flexible electronics.

MATERIALS AND METHODS
Nonlinear buckling analysis was performed using an implicit non-
linear solver (Abaqus 2016. Simulia, USA) to study the effects 
of material parameters on the buckling behavior of bi-beams. 
Quadrilateral elements (type CPE4H) were used for the discretiza-
tion of the bi-beam geometries (length, 40 mm; width, 5 mm; 
thickness, 25 mm). On the basis of the results of a mesh convergence 
study, at least 12 elements were seeded through the width of the bi-
beams. The aspect ratio of the beams was between 4 and 16 (varied 
in steps of 4). The bi-beams were clamped at both their ends, and a 
reference point was created to apply the loads to the top side of the 
bi-beams. A series of simulations were performed for applied strain 
rates ranging between    ̇   =  10   −4   and    ̇   =  10   3   1/s. The Neo-Hookean 
material model was used to define the nonlinear elastic behavior of 
both beams. Prony series were used to describe the viscous be-
havior of the visco-hyperelastic beam. The strain rate–dependent 
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constant that defines the Neo-Hookean material model can be 
expressed as

    C 10  R  (t ) =  C 10  0   (  1 −  ∑ i=1  n     g  i   (  1 −  e    −t ⁄   i     )   )     (1)

in which the instantaneous modulus is determined from

    C 10  ∞   =  C 10  0   (  1 −  ∑ i=1  n     g  i   )     (2)

where n, t, i, gi,   C 10  0   , and   C 10  ∞    are the number of the series terms, real 
time, relaxation time, dimensionless coefficients of the Prony series, 
instantaneous modulus, and long-term modulus, respectively. The 
strain energy functions of the visco-hyperelastic, WV, and hyper-
elastic, WH, beams are, respectively, given as (39)

   
  W  V   =  C 10V  0  ( I  1   − 3 )  (  1 −   ∑ 

i=1
  

n
     g  i   (  1 −  e    −t ⁄   i     )   )   +  p  V  ( I  3   − 1) 

     
 W  H   =  C  10H  ( I  1   − 3 ) +  p  H  ( I  3   − 1)

    

  (3)

where I1 and I3 are the first and third invariants of the left Cauchy- 
Green deformation tensor, B, respectively. The terms pV and pH 
represent the arbitrary hydrostatic pressures that are defined such 
that the imposed incompressibility conditions are satisfied. The Cauchy 
stress, , could be derived from the strain energy function as

   =   2 ─ 
 √ 
_

  I  3    
   B   ∂ W ─ ∂ B    (4)

Given that   ∂  I  1   _ ∂ B   = I  and   ∂  I  3   _ ∂ B   =  I  3    B   −1  , the Cauchy stresses of the visco- 
hyperelastic and hyperelastic beams can be calculated as

   
    V   =   2 ─ 

 √ 
_

  I  3    
   {    C 10V  0   (  1 −   ∑ 

i=1
  

n
     g  i   (  1 −  e    −t ⁄   i     )   )  B +  p  V    I  3   I }   

     
   H   =   2 ─ 

 √ 
_

  I  3    
    {  C  10H   B +  p  H    I  3   I}

    
(5)

where I is the second-order identity tensor. The eigenvalues of the 
left and right Cauchy-Green deformation tensors are called the 
principal stretches, i (i = 1, …,3). By imposing the incompressibility 
condition (i.e., I3 = 123 = 1) and considering uniaxial deforma-
tion in the direction 1, the left Cauchy-Green deformation tensor is 
obtained as

   B =  
[

   
    2 

  
0

  
0

  0      −1   0  
0

  
0

  
    −1 

  
]

     (6)

The incompressibility condition and uniaxial loading conditions 
(i.e., 22 = 33 = 0) could then be used to determine the arbitrary 
pressures pV and pH. The stress in the direction 1 can be determined 
by combining Eqs. 5 and 6 as

   
    V,11   = 2  C 10V  0   (  1 −   ∑ 

i=1
  

n
     g  i   (  1 −  e    −t ⁄   i     )   )   (       2  −   1 ─ 


   )   

     
    H,11   = 2  C  10H   (       2  −   1 ─ 


   )   

    

  (7)

Assuming a single-term Prony series, the instantaneous elastic 
modulus in the direction 1 is given by

   
  E  V,11   =   

∂    V,11  
 ─ ∂     =   

∂    V,11  
 ─ ∂     = 2  C 10V  0   (  1 −  g  1   (  1 −  e    −t ⁄   1     )   )   (  2 +   1 ─ 

    2 
   )   

      
  E  H,11   =   

∂    H,11  
 ─ ∂     =   

∂    H,11  
 ─ ∂     = 2  C  10H   (  2 +   1 ─ 

    2 
   )   

    

  (8)

For the small axial deformations preceding buckling, we have 
 ≅ 1. The elastic moduli of the visco-hyperelastic and hyperelastic 
beams could then be written as

     E  V   = 6  C 10V  0   (  1 −  g  1   (  1 −  e    −t ⁄   1     )   )      
 E  H   = 6  C  10H  

    (9)

To study the buckling behavior of the bi-beams, each of the beams 
(i.e., visco-hyperelastic and hyperelastic beams) can be modeled as 
a beam on an elastic foundation with each beam acting as the elastic 
foundation of the other beam. The buckling load for a clamped-
clamped beam on elastic foundation, Pcr, is higher than the Euler’s 
buckling load for an equivalent unsupported beam, Pe, and can be 
obtained from the solution to the following implicit equation (34)

    
sin  1 _ 2   √ 
_

     2  x + 2y  
  ─  

sin  1 _ 2   √ 
_

     2  x − 2y  
   = ∓    

 √ 
_

     2  x + 2y  
 ─ 

 √ 
_

     2  x − 2y  
    (10)

where  x =   P  cr   _  P  e  
   ,  y =  √ 

_
  k  l   4  _ EI     , k is the modulus of the elastic foundation, l is 

the length of the Euler beam, E is the elastic modulus of the materi-
al from which the beam itself is made, and I is the second moment 
of area of the cross section of the beam. This implicit equation can 
be numerically solved [e.g., see (34)]. The resulting solutions show 
relatively small deviations from the line  y =      2  _ 2  (x − 4)  (or  x =  2y _ 

    2 
   + 4 ). 

For the sake of the approximate analysis performed here, we use 
this line to estimate the buckling loads of the beams. In a bi-beam 
construct, both beams undergo the same strain but different forces. 
Therefore, to determine which beam buckles first, we need to do the 
analysis in terms of the critical strains cr,H and cr,V

   
    cr,H   =   

 P  cr,H  
 ─  A  H    E  H     =   

x  P  e,H  
 ─  A  H    E  H     =   

 P  e,H  
 ─  A  H    E  H     (     

2  y  H  
 ─ 

    2 
   + 4 )   

     
    cr,V   =   

 P  cr,V  
 ─  A  V    E  V     =   

x  P  e,V  
 ─  A  V    E  V     =   

 P  e,V  
 ─  A  V    E  V     (     

2  y  V  
 ─ 

    2 
   + 4 )   

    (11)

where A stands for the cross-sectional areas of the beams and sub-
scripts H and V refer to the hyperelastic and visco-hyperelastic 
beams. Assuming that the visco-hyperelastic and hyperelastic beams 
are geometrically identical, we have

    
 P  e,H  

 ─  A  H    E  H     =   
 P  e,V  

 ─  A  V    E  V      (12)

The condition for buckling to the right side (i.e., the side of the 
hyperelastic beam) can then be simplified from cr,H> cr,V to

   y  H   >  y  V    (13)
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Because the beams are geometrically identical and given that  y =  
√ 
_

  k  l   4  _ EI     , Eq. 13 can be rewritten as

   √ 

_

    E  V    l   4  ─  E  H   I     >  √ 

_

    E  H    l   4  ─  E  V   I      (14)

or simply

   E  V   >  E  H    (15)

Combining Eqs. 9 and 15 gives the condition for buckling to the 
right as

    
 C 10V  0  

 ─  C  10H     >   1 ─  
1 −  g  1   (  1 −  e    −t ⁄ τ  1     )  

    (16)

Using Eq. 2, Eq. 16 could be rewritten as

    
 C 10V  ∞  

 ─  C  10H     >   
1 −  g  1  
 ─  

1 −  g  1   (  1 −  e    −t ⁄   1     )  
    (17)

For extremely high strain rates (i.e., t/1 → 0), the condition for 
buckling to the right can be simplified as

    
 C 10V  ∞  

 ─  C  10H     +  g  1   > 1  (18)

One of the limitations of the beams on elastic foundation theory 
as applied here is that it neglects the global buckling of the beams. 
When both beams buckle simultaneously, the modulus of the elastic 
foundation, k, is different from the elastic modulus of the other 
beam. One way to estimate the elastic modulus of the elastic foun-
dation would be to impose the requirement that the critical load 
predicted by the beams on the elastic foundation theory equals that 
of the Euler’s theory for a bi-beam made from two identical beams 
(i.e., with identical geometries and material properties). Such an 
approach would suggest that the modulus of the elastic foundation 
is a function of not only the elastic modulus of the beams but 
also their geometry, particularly their slenderness. This additional 
geometry-dependent coefficient will, however, not change the main 
requirement for buckling to the right (i.e., EV > EH).

In our computational analyses, we varied the ratio of the Neo-
Hookean coefficient of the visco-hyperelastic layer (  C 10V  ∞   ) to the 
hyperelastic layer (C10H) between 0.1 and 1. To be able to study the 
effects of the parameters of Prony series, we initially used only a single 
term. The predictions of a single-term model were later compared 
with those of a seven-term model. The dimensionless coefficient (g1) 
was varied in the range of 0.1 to 0.99, and the relaxation time (1) 
was 0.01, 0.1, 1, 10, or 100 s. A MATLAB (MathWorks, USA) code 
that computed the instantaneous stiffness of the visco-hyperelastic 
material as a function of the applied strain rate was used to explore 
the reason for the switching behavior in the buckling direction.

To evaluate the effects of geometric imperfections on the buck-
ling direction of bi-beams, we used an eigenvalue buckling analysis 
to predict the first mode of buckling for a single-material beam. 
Having added positive and negative values of the buckling mode 
as a geometric imperfection to the geometry of our bi-beams, we 
performed nonlinear buckling analyses. In the context of these anal-
yses, the imperfection size refers to the maximum size of the offset 

from the centerline of the bi-beam geometry presented (dimen-
sion, mm).

To manufacture the bi-beams used in the experiments, visco- 
hyperelastic beams were separately fabricated using an advanced 
multi-jet printer (Stratasys Objet350 Connex3, USA) by using a 
ultraviolet-curable polymer (Agilus, Stratasys, USA). The surface of 
the visco-hyperelastic beams was then fully covered with a thin layer 
of a rubber silicone adhesive (Sil-Poxy, Smooth-On) to ensure good 
adhesion between Agilus layer and silicone rubber. We used a sili-
cone rubber (Dublisil 30, Dreve Dentamid GmbH, Germany) to 
mold the hyperelastic part of the bi-beams. To fabricate the other 
half of the bi-beams, we printed PLA (poly lactic acid) molds using 
a fused deposition modeling (FDM) 3D printer (Ultimaker 3, the 
Netherlands). We then positioned the visco-hyperelastic beam in the 
PLA molds and used the same rubber silicone adhesive to ensure that 
they remained attached to the walls of the molds during the curing 
process of the silicone rubber used for creating the hyperelastic beam. 
Subsequently, we filled the empty parts of the molds with silicone 
rubber. The bi-beams were kept in the molds for 8 hours at room 
temperature after which they were removed from the molds. We char-
acterized the Neo-Hookean parameter, C10H, of the hyperelastic rubber 
based on the compression tests of rubber disks (D = 28.5 mm and 
h = 12.5 mm) under quasi-static conditions, while the Neo-Hookean 
parameter,   C 10V  ∞   , and the Prony series parameters (i and gi) were 
obtained on the basis of the relaxation tests performed for the visco- 
hyperelastic material using a previously described methodology 
(see the Supplementary Materials) (40). A Lloyd mechanical testing 
machine (LR5K) equipped with a 5-kN load cell was used for the 
compression and relaxation tests of the materials. In the case of the 
pretwisted bi-beams (Fig. 7), we used a plexiglass piece to maintain 
the pretwisting of the specimens throughout the duration of the 
mechanical tests.

To ensure well-defined clamping conditions during compression 
tests, the bi-beams were placed in a compression test setup, which 
was 3D-printed from PLA using the same FDM printer. The speed 
of the crosshead of the testing machine was allowed to stabilize 
before compressing the bi-beams by introducing a gap (10 mm) 
between the moving crosshead and the test setup. Before placing the 
bi-beams in the test setup, their end parts were cut in such a way 
that a small geometric imperfection toward the hyperelastic side was 
materialized once they were clamped in the test setup. The lattice 
structures and parallel bi-beams were fabricated by printing the 
additional parts from PLA using the same FDM 3D printer (Figs. 5 
and 6). The bi-beams and the cellular designs were compressed 
using the same Lloyd test bench equipped with a 100-N load cell. A 
digital camera (Sony A7R with a Sony FE 90 mm f/2.8 macro OSS 
lens) was used to record the deformation patterns of the bi-beams 
and the cellular designs during the compression tests.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/25/eaba0616/DC1
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