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Abstract

While inter-subject correlation (ISC) analysis is a powerful tool for naturalistic scanning data, 

drawing appropriate statistical inferences is difficult due to the daunting task of accounting for the 

intricate relatedness in data structure as well as handling the multiple testing issue. Although the 

linear mixed-effects (LME) modeling approach (Chen et al., 2017a) is capable of capturing the 

relatedness in the data and incorporating explanatory variables, there are a few challenging issues: 

1) it is difficult to assign accurate degrees of freedom for each testing statistic, 2) multiple testing 

correction is potentially over-penalizing due to model inefficiency, and 3) thresholding necessitates 

arbitrary dichotomous decisions. Here we propose a Bayesian multilevel (BML) framework for 

ISC data analysis that integrates all regions of interest into one model. By loosely constraining the 

regions through a weakly informative prior, BML dissolves multiplicity through conservatively 

pooling the effect of each region toward the center and improves collective fitting and overall 

model performance. In addition to potentially achieving a higher inference efficiency, BML 

improves spatial specificity and easily allows the investigator to adopt a philosophy of full results 

reporting. A dataset of naturalistic scanning is utilized to illustrate the modeling approach with 

268 parcels and to showcase the modeling capability, flexibility and advantages in results 

reporting. The associated program will be available as part of the AFNI suite for general use.

Introduction

Naturalistic scanning provides a window into shared brain responses at the population level 

under scenarios such as watching movies or listening to speech (Hasson et al., 2004, 2008). 

With minimal manipulation and dynamically evolving context, the naturalistic paradigm is 

closer to real-life experiences and more engaging than typical task-related experiments, and 
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less vulnerable to confounds such as head motion and physiological artifacts than resting-

state acquisitions. Under a context closer to the natural environment, neural responses are 

more reproducible and reliable than traditional simple repetitive stimuli (Hasson et al., 2010) 

due to the involvement of extensive cognitive processing (such as working memory, 

judgment, reasoning, social cognition, etc.). Its adoption has been steadily growing in 

investigating various aspects of brain function such as music imagery (Zhang et al., 2017), 

early childhood development (Moraczewski et al., 2018), personality traits (Finn et al., 

2018) and mental illnesses and disorders (Salmi et al., 2013, Guo et al., 2015).

For typical task-related designs, the focus is usually on identifying regions activated by an 

explicit task or condition. In contrast, the interest for naturalistic scanning often hinges on 

the synchronization or similarity between any pair of subjects. For example, one major 

analytical approach is to calculate the inter-subject correlation (ISC) or the Pearson 

correlation between the EPI time series at the same voxel or region of the two subjects. In 

the end, the main issue is to summarize the results at the population level because of the 

complex relatedness among the subject pairs.

Various methods including both parametric and nonparametric approaches have been 

developed over the years to handle the complex relatedness in ISC analysis (Bartels and 

Zeki, 2004; Hasson et al., 2008a; Wilson et al., 2008; Abrams et al., 2013; Kauppi et al., 

2014; Schmälzle et al., 2013; Cantlon and Li, 2013; Schmälzle et al., 2015). For example, a 

popular but problematic approach is to first calculate the ISC value between a voxel’s BOLD 

time course of a subject and the average of that voxel’s BOLD time course among all other 

subjects (Kauppi et al., 2010; Honey et al., 2012; Schmälzle et al., 2013; Schmälzle et al., 

2015), and then perform the typical group analysis (e.g., Student’s t-test) under the false 

assumption that all the ISC values are independent across subjects. Recently, we examined 

the validity of those methods, and proposed more rigorous approaches (Chen et al., 2016; 

Chen et al., 2017a), among which the most flexible one in terms of analytical capability is 

linear mixed-effects (LME) modeling with a crossed random-effects structure (Chen et al., 

2017a).

Preamble

We summarize briefly the background, notations, framework, and structure of the ISC group 

analysis that were introduced in our previous work (Chen et al., 2016, Chen et al., 2017a), 

since some shared concepts apply to the model formulation introduced here. Throughout this 

article, italic letters in lower case (e.g., α) stand for scalars; lowercase, boldfaced italic 

letters (a) and upper (X) cases for column vectors and matrices, respectively. With one group 

of n > 2 subjects S1, S2, …., Sn and m spatial units (voxels or regions), the total number of 

unique ISC values per spatial unit is N = 1
2n n − 1 . For the kth spatial unit (k = 1, 2, …, m), 

the ISC values {rijk} correspond to N subject pairs, and they form a symmetric (rijk = rjik, i, j 

= 1, 2, …, n) n × n positive semi-definite matrix Rk
n  with diagonals riik = 1 (Fig. 1, left). 

Their Fisher transformed version Zk
n  (Fig. 1, right) through z = arctanh(r) is usually 

adopted during analysis so that methods assuming Gaussian distribution may be utilized, as 

Fisher z-values are more likely to be Gaussian-distributed than raw Pearson correlation 
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coefficients. Because Rk
n  and Zk

n  are both symmetric in (i, j), inferences at the population 

level can be made through the N elements in the lower triangular part (i > j, shaded gray in 

Fig. 1).

The general interest of ISC analysis at the population level is the statistical inference about 

the population effect for each spatial unit. However, a complex issue to manage is that each 

ISC matrix element is correlated with some of others (Chen et al., 2017a). Suppose that 

zi1j1k and zi2j2k are two z-values that are associated with the ISC values of the kth spatial 

unit, ri1j1k and ri2j2k, of two subject pairs. When any pair of two elements in the ISC matrix, 

zi1j1k and zi2j2k, involve four separate subjects (i.e., i1 ≠ i2 and j1 ≠ j2), we assume that the 

two elements are unrelated; that is, their correlation is 0. We denote the correlation between 

any two elements, zi1j1k and zi2j2k, that pivot around a common subject (e.g., i1 = i2 or j1 = 

j2) as ρ, with the assumption that the relatedness ρ remains the same across all subjects1. In 

other words, ρ characterizes the inter-relatedness of zi1j1k and zi1j2k among the three 

subjects among which the two subject pairs share a common subject. To consider the group-

wide set of ISCs, we further define zk = vec zijk, i > j  to be the vector of length N whose 

elements are the column-stacking of the lower triangular part of the matrix Z(n) in Fig. 1. 

That is, z is the half-vectorization of Zk
n  excluding the main (or principal) diagonal:

zk = vecℎ Zk
n \diag Zk

n . The variance-covariance matrix of zk can be expressed as the N × 

N matrix,

Σ n = μ2P n , (1)

where µ2 is the variance of zijk, i > j, and P (n) is the correlation matrix that is composed of 1 

(diagonals), ρ and 0. An example of P (5) is shown in Fig. 2. It has been analytically shown 

(Chen et al., 2016) that −1/[2(m − 2)] ≤ ρ ≤ 0.5 (when m > 3), and because of the presence 

of correlations among some elements of Zk
n , it becomes crucial to capture this correlation 

structure P (n) in any modeling framework.

The situation with two groups can be similarly formulated (Chen et al., 2016; Chen et al., 

2017a). Previously both nonparametric and parametric methods have been proposed to 

handle ISC analysis at the population level. Here we briefly summarize those methods, and 

lay out the background and motivations for our current work.

ISC analysis with conventional approaches

Early pioneering work with naturalistic stimuli was conducted either within each subject 

when the natural stimulus was repeated several times (Hasson et al., 2008b) or through ISC 

for each subject pair separately without summarization at the group level (Hasson et al., 

1When no prior information exists to differentiate the subjects, then the statistically parsimonious assumption is to approximate the 
correlation between any two ISC values that share one common subject as being the same, based on the exchangeability or symmetry 
among the subjects. One can also note that having the same correlation is just a corollary from the linear decomposition of ISC values 
in the LME and BML models as shown in the ICC formulas (3), (8), and (14).
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2004), in which case the ISC results were typically verified through seed-based correlation 

analysis (Hasson et al., 2004; Hasson et al., 2008b; Schmälzle et al., 2013). Later on, some 

investigators simply ran one-sample (Bartels and Zeki, 2004; Hasson et al., 2008a; Wilson et 

al., 2008; Abrams et al., 2013; Kauppi et al., 2014), two-sample (Schmälzle et al., 2013; 

Cantlon and Li, 2013) or paired (Abrams et al., 2013; Schmälzle et al., 2015) t-tests on 

Fisher-tranformed z-values {zijk, i > j} of correlation coefficients, while it was generally 

acknowledged that the N elements {zijk, i > j} were not independent, as illustrated in the 

correlation structure of P(n) in (1), thereby violating the independence assumption in the 

Student’s t-test and leading to the inflated degrees of freedom for the t-distribution as well as 

the underestimated standard error for the ISC estimate. The approach was mainly justified 

based on the observation that the null results generated by shifting each pair of time series 

by random steps roughly fitted to a t(N − 1)-distribution curve (Wilson et al., 2008).

Previous studies have also proposed nonparametric methods. For example, one popular 

approach with one group of subjects is to construct a null distribution for the whole brain by 

randomizing the time series across voxels and time points (e.g., circularly shifting each 

subject’s time series by a random lag so that they were no longer aligned in time across the 

subjects), as implemented into an analytical package ISC toolbox in Matlab (Kauppi et al., 

2014; https://www.nitrc.org/projects/isc-toolbox/). Alternatively, phase randomization of EPI 

time series has also been adopted to construct a sampling distribution (e.g., Lerner et al., 

2011). However, a recent study has shown that all of these methods lead to largely inflated 

false positive rate (FPR) (Chen et al., 2016). One variation of these ISC analytical 

approaches is called leave-one-out: first calculate the ISC value between a voxel’s BOLD 

time course in one subject and the average of that voxel’s BOLD time course in the 

remaining subjects (Honey et al., 2012; Schmälzle et al., 2013; Schmälzle et al., 2015); then, 

perform Student’s t-test at the group level. The step of averaging time series across subjects, 

as smoothing process, adds more complexity besides the issue of relatedness in the ISC data. 

As a result, the ISC estimates get substantially inflated without proper adjustment at the 

group level and the FPR controllability remains problematic (Fig. 5 in Appendix A).

A new set of nonparametric approaches, based on subject-wise resampling at the population 

level, has been proposed recently (Chen et al., 2016). In addition to satisfying 

exchangeability and independence assumptions and accounting for the correlation structure 

in P(n), it was shown that proper FPR controllability under the conventional null hypothesis 

significance testing (NHST) can be achieved with subject-wise bootstrapping for ISC 

analysis with one group and with subject-wise permutation testing for the ISC comparison 

between two groups.

However, nonparametric methods are limited in terms of modeling flexibility. For instance, 

they have difficulty in incorporating explanatory variables; in addition, they are deficient, 

unwieldy and unconducive to data structure characterization and model comparisons. To 

counter these limitations, a linear mixed-effects (LME) modeling approach has been adopted 

(Chen et al., 2017a) with the benefit that the LME platform offers wider adaptability, more 

powerful interpretations, and greater quality control capability than nonparametric methods. 

Specifically, the LME model with crossed random effects is applied with a data-doubling 

step that further conveniently tracks the subject index in easy implementations.
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ISC analysis with univariate linear mixed-effects modeling

Our previous work (Chen et al., 2017a), as implemented in the AFNI (Cox, 1996) program 

3dISC, adopts a linear-effects model by decomposing an ISC effect zijk into multilevel 

components associated with subjects i and j at the kth voxel (k = 1, 2, …, m),

zijk = b0k + ξik + ξjk + ϵijk, i, j = 1, 2, .., n i > n , (2)

where b0k is the fixed effect (an unknown constant) under LME, representing the population 

ISC effect at the kth voxel or region; ξik and ξjk are additive and independent random effects 

attributable to subjects i and j, respectively, that are deviations from the population ISC 

effect b0k; and ϵijk is the residual or error term for each subject pair (i, j). Due to the 

symmetry of the data in Zk
n , only half of the elements excluding the diagonals (either the 

lower or upper triangular part) are utilized in the model (2), and thus the index inequality of i 
> j is placed for the input data. As a special LME model, the formulation (2) can actually be 

conceptualized as a two-way random-effects ANOVA with the two subject-specific terms 

serving as random-effects factors. The two random effects ξik and ξjk form a stratified or 

crossed structure with a factorial (or combinatorial) layout among the levels (or indices) i 
and j of the two subject-specific factors.

One important aspect of the LME framework, which nonparametric methods lack, is that the 

interrelationships among the ISC values, as characterized in the correlation matrix P(n), can 

be quantitatively captured. With the assumption of independent Gaussian distributions, ξik, 

ξjk
iidN 0, λk

2  and ϵjk
iidN 0, σk

2 , the model (2) can be solved under LME. A big advantage 

of the LME model (2) over the nonparametric methods is the capability of characterizing as 

well as maintaining the integrity of the data structure. For example, the correlation ρ, as 

captured in P(n) of (1), between any two ISC effects that pivot around a common subject is 

related to intraclass correlation (ICC) and can be expressed as (Chen et al., 2017a),

0 ≤ ρ = λk
2

2λk
2 + σk

2 ≤ 0.5. (3)

The LME model (2) can be easily extended to scenarios where the investigator would like to 

incorporate one or more subject-specific explanatory variables, either categorical (e.g., sex) 

or quantitative (e.g., age). For example, a model with one explanatory variable x can be 

formulated as,

zijk = b0k + b1kxi + b2kxj + ξik + ξjk + ϵijk, i > j, (4)

where xi and xj are the x values for subjects i and j, respectively. Their corresponding effects 

b1k and b2k are presumably equal, but in the practical implementation of subject-specific 

effects through two separate components, the two fixed effects of b1k and b2k that are 

associated with the explanatory variable x would also have to be estimated separately 

through data duplication. The situation with more than one explanatory variable would be 
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similar, and this modeling strategy has been applied at the whole-brain voxel level to a few 

studies (e.g., Moraczewski et al., 2018; Finn et al., 2018).

Nevertheless, the LME framework faces a few challenges. First, input data has to be 

duplicated in currently available implementations. Even though the random effects, ξik and 

ξjk, are assumed to follow the same Gaussian distribution N 0, λ2 , they would have to be 

treated as two separate components in practice through implementations (e.g, function lmer 
in the R package lme4 ). Furthermore, due to the fact that only half of the off-diagonal 

elements in Zk
n  are utilized as input, ξik and ξjk are generally not evenly arranged among 

all the subject pairs, leading to unequal estimation of the two components. On the one hand, 

ξik and ξjk are basically cycled through those random effects from the n subjects, 

ξ1k, ξ2k, … , ξnk, and the order of ξik and ξjk can be rearranged without any impact on the 

model formulation. On the other hand, balance cannot be achieved under all scenarios. For 

example, when n is odd, a balance between the two factors can be achieved through the 

following: if the difference between i and j is odd, switch their order (i.e., zij effectively 

changes to zji); otherwise, no change is made. However, when n is even, balance cannot be 

reached but can be approximated with the first index alternatively one more (or less) than the 

second one2. Nevertheless, even if balance can be established between the two sets of 

indices (i.e., n is odd), simulations indicate unsatisfying FPR control for the population 

effect. Because of this limitation, a data doubling strategy (i.e., i ≠ j) was used with both the 

lower (i > j) and upper (i < j) triangular parts of Zk
n  as input to achieve the balance and 

proper FPR control (Chen et al., 2017a). As a result, in practice two copies of the variance 

λk
2 are estimated in (2) and (4) with the currently available implementation in the R package 

lme4, and inferences have to be properly adjusted to compensate for the inflated standard 

error (Chen et al., 2017a).

The second challenge is multiplicity. The LME model is analyzed through a massively 

univariate approach in which the same model is applied as many times as the number of 

voxels and with the presumption that all the voxels or regions are isolated and unrelated. 

Therefore, just as the typical neuroimaging data analysis with the massively univariate 

approach has to correct for multiple testing, so does such an ISC analysis face the issue of 

multiple testing, and has to be followed by an extra step: paying the price of multiplicity for 

the false assumption that no common information exists among voxels or regions. One 

approach is to control the overall FPR at the cluster level by leveraging the spatial extent 

among the neighboring voxels (“clustering”). Currently, permutation-based correction 

approaches through the integration of statistical evidence and spatial extent (e.g., Smith and 

Nichols, 2009) would be impractical due to the prohibitively high computation cost. On the 

other hand, cluster-based methods are purely based on leveraging spatial extent (e.g., Monte 

Carlo simulations, random field theory), thus it remains challenging to estimate the spatial 

2The phenomenon is due to the following fact: with N = 1
2n n − 1  pairs of indices, there are totally 2N = n(n − 1) indices. When n 

is odd, each index repeats n − 1 times, thus they can be evenly distributed between the two sets after rearrangement because n − 1 is 
even; in contrast, when n is even, balance cannot be established because n − 1 is odd.
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correlation due to the difficulty in separating the pure noise from the signal. Specifically, 

cluster-size thresholds are determined based on the intrinsic smoothness of the data, which is 

estimated using the model residuals. However, it is not clear how to implement this method 

for naturalistic scanning with ISC-based methods, since there is no explicit (i.e., forward) 

model of the task, and therefore no residuals from which to estimate smoothness. Specific 

correction methods aside, the penalty is usually severe so that smaller brain regions may fail 

to survive the correction, in addition to other disadvantages of the massively univariate 

approach (Chen et al., 2019a; Chen et al., 2019b).

There are a few other limitations with the LME approach. For example, it remains difficult 

or even impossible to assign accurate degrees of freedom for each testing statistic under 

LME. In addition, the typical correction methods for multiple testing through spatial extent 

tend to dichotomize the statistical evidence and result in spatial clusters that are not 

necessarily aligned with anatomical structures in the brain, leading to interpretation 

ambiguities about spatial specificity. Lastly, correction for multiplicity tends to be over-

penalizing (Chen et al., 2019a), and dichotomous decisions under NHST through 

thresholding are controversial in general (McShane et al., 2017; Amrhein and Greenland, 

2017) and equally problematic in neuroimaging as well (Chen et al., 2019a). For instance, 

the popular practice of only reporting “statistically significant” results in neuroimaging not 

only wastes data information, but also distorts the full results as well as perpetuates the 

reproducibility crisis because of the fact that the difference between a “significant” result 

and a “non-significant” one is not necessarily significant (Cox et al., 1977).

To address those limitations, here we propose a Bayesian multilevel (BML) framework that 

integrates all the spatial elements (i.e., regions of interest) into one model. Such a framework 

has been applied to typical task-related FMRI experiments (Chen et al., 2019a; Xiao et al., 

2019) as well as matrix-based data analysis (Chen et al., 2019b; Yin et al., 2019). We use 

dataset of naturalistic viewing to illustrate the modeling approach and to showcase the 

modeling capability, flexibility and advantages in reporting results. This paper is a sequel 

(i.e., Part III) to our previous work of Part I (Chen et al., 2016) and Part II (Chen et al., 

2017a).

Structure of the work

In light of the aforementioned backdrop, we believe that the univariate LME approach can 

be further improved, because its current formulation ignores the common information shared 

across the brain. Here we propose a more integrative and efficient approach through 

Bayesian multilevel (BML) modeling that could be used to confirm, complement or replace 

the LME method. As a first step, we adopt an LME strategy by incorporating ROIs as 

crossed random effects relative to each subject pair. Then we translate the LME model to a 

Bayesian platform, resolving two issues: input data doubling and multiple testing. Those 

ROIs can be either determined independently from the current data at hand, or selected 

through various methods such as previous studies, an anatomical/functional atlas or 

parcellation. The proposed BML approach improves inference efficiency by dissolving 

multiple testing through a multilevel model that more accurately accounts for data structure 

as well as shared information.
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The paper is structured as follows. In the next section, we first extend the region-wise LME 

model (2) to another LME by pivoting the ROIs as random effects, and then convert the 

extended LME to a full BML. The BML framework does not make statistical inferences for 

each region in isolation, but rather weights and borrows information based on the precision 

information across the full set of regions, striking a balance between local and global 

information; in a nutshell, the crucial feature here is that the ROIs, instead of being treated 

as isolated and unrelated with the univariate approaches, are associated with each other 

through a Gaussian distribution under BML. As a practical exemplar, we apply the modeling 

approach to an ISC dataset with 68 subjects at 268 ROIs. In the Discussion section, we 

elaborate the advantages and limitations of BML modeling for ISC data analysis.

Theory: ISC analysis through Bayesian multilevel modeling

Herein Roman and Greek letters, respectively, differentiate fixed and random effects in the 

conventional statistics context such as ANOVA and LME on the righthand side of a model 

equation. Although the terms of “fixed” and “random” effects are non-Bayesian, we expect 

most readers to be familiar with the conventional terminology. For instance, a fixed-effects 

parameter under ANOVA and LME is treated as constant (e.g, population mean), and a 

random-effect parameter as variable because it differs from one entity (e.g., subject, ROI) to 

another. The conventional distinction of fixed- vs. random-effects is replaced by one that 

separates the modeling decision (a parameter as varying or non-varying) under the Bayesian 

framework from the inference decision (e.g., prior choices or partial pooling) (Gelman, 

2005).

Bayesian modeling based on three-way random-effects ANOVA

We start with with the simple LME model (2), without the complication of explanatory 

variables, for ISC analysis at m ROIs instead of whole brain voxel-wise modeling. With the 

Gaussian assumptions for ξik, ξjk, and ϵijk, the m univariate LME models in (2) can be 

solved independently, but for the sake of model comparisons, the m separate LMEs can be 

merged into one by pooling the residual variances across the m ROIs with the ROI index k 
incorporated into the conventional LME formulation (2),

zijk = bk + ξik + ξjk + ϵijk, i, j = 1, 2, … , n i ≠ j , k = 1, 2, … , m . (5)

The essential difference between the two approaches, (2) and (5), lies in the assumption 

about the residuals. Under (2) each ROI is assumed to have its own residual distribution 

ϵijk
iidN 0, σk

2 , k = 1, 2, .., m; in contrast, all the regions share the same residual distribution 

ϵijk
iidN 0, σ2  under (5). The two approaches usually render similar inferences unless the 

sampling variances are dramatically different across the m ROIs. To compare different 

models through leave-one-out information criteria3 (LOOIC) (Vehtari et al., 2017), we can 

solve the LME (5) in a Bayesian fashion,

3Conventional predictive accuracy indices such as the Akaike information criterion (AIC) and the deviance information criterion 
(DIC) condition on the point estimate. In contrast LOOIC uses the log-likelihood evaluated at the whole posterior distribution. The 
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zijk bk, ξik, ξjk N bk + ξik + ξjk, σ2 , ξik, ξjk N 0, λ2 , ϵijkN 0, σ2 , i, j = 1,
2, … , n k = 1, 2, … , m,

(6)

where bk are assigned with a noninformative prior (i.e., uniform distribution) so that no 

information is shared among the ROIs, leading to virtually identical inferences as the LME 

(5). In fact, all the three LME models, (2), (5), or (6), share the same feature of no pooling: 

the information at one ROI reveals nothing about any other ROIs. Therefore, these three 

LME models all face the same multiplicity issue and may potentially lead to overfitting.

To improve model fitting and achieve higher efficiency, we first adopt a three-way random-

effects ANOVA or LME by adding ROIs as random effects, and formulate the following 

platform,

LME0:zijk = a0 + ξi + ξj + π0k + ϵijk, i, j = 1, 2, … , n i ≠ j , k = 1, 2, … , m, (7)

where a0 represents the population ISC effect across all ROIs and all subjects; ξi and ξj code 

the random effect of the ith and jth subject, respectively, and both share the same iid 

Gaussian distribution N 0, λ2  embodies the random effect at the kth ROI, and is assumed to 

be iid with N 0, τ2 ; and ϵij is the residual term that follows N 0, σ2 .

One essential feature of the extended LME model (7) lies in information sharing or partial 

pooling among the ROIs. Just as we typically assume a Gaussian distribution for cross-

subject variability in linear models, so too we make a Gaussian assumption for the cross-

region variability π0k in (7), playing the role of global calibration. In contrast, with the 

conventional approach of no pooling, one implicitly assumes a uniform distribution of 

variabilities across voxels or regions in the brain, and it is this assumption that leads to the 

multiplicity issue, as shown in the no-pooling model (2), (5), or (6).

Under the extended LME model (7), the correlation between two subject pairs, (i1, j) and (i2, 

j) (i1 ≠ i2), that share a common subject Sj can be derived as,

LME0:ρs = corr zi1jk, zi2jk =
cov a0 + ξi1 + ξj + π0k + ϵi1jk, a0 + ξi2 + ξj + π0k + ϵi2jk

var b + ξi1 + ξj + π0k + ϵijk var b + ξi2 + ξj + π0k + ϵijk

= λ2 + τ2

2λ2 + τ2 + σ2 , i1, i2 = 1, 2, .., n i1 ≠ i2, i1 ≠ j, i2

≠ j , k = 1, 2… , m

.

(8)

Similarly, the correlation of the same subject pairs between two ROIs, k1 and k2, can be 

derived as,

availability of the standard error for LOOIC provides another advantage over conventional criteria when comparing models (Vehtari et 
al., 2017). Similar to the conventional criteria, models with lower LOOIC values are expected to have higher predictive accuracy.
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LME0:ρr = corr zijk1, zijk2 =
cov a0 + ξi + ξj + πk1 + ϵijk1, a0 + ξi + ξj + πk2 + ϵijk2
var b + ξi + ξj + ξk1 + ϵijk1 var b + ξi + ξj + ξk2 + ϵijk2

= 2λ2

2λ2 + τ2 + σ2 , j1, j2 = 1, 2, .., n i ≠ j , k1, k2 = 1,

2, … , m k1 ≠ k2

.

(9)

Due to the incorporation of ROI effects into the extended LME model (7), a slightly 

different formulation (8) at the group level for the correlation between two subject pairs that 

share a common subject exists from the interrelationship (3) at the individual subject level. 

Because of this difference, the upper bound of 0.5 in (3) does not hold for ρs in (8) and is 

replaced by 1, which is reached when both cross-subject and residual variances λ2 and σ2 

are 0.

In addition to the challenge of input data redundancy discussed in the Introduction, now we 

have a different hurdle in place of multiplicity. Under this new LME framework (7), we need 

to refocus on the effects of interest. The overall ISC effect a0 across all ROIs is usually not 

our focus; instead, it is the ISC effect at each ROI,

b0k = a0 + π0k, k = 1, 2, , …, m, (10)

that is typically of research interest. However, the LME formulation (7) cannot offer a 

solution in making inferences regarding the ROI effects b0k: to estimate b0k, the LME (7) 

would become over-parameterized or overfitting.

To proceed, a shift of modeling framework is needed here. We adopt a Bayesian approach 

that extends the LME model (2) from our previous work using LME modeling for voxelwise 

ISC analysis (Chen et al., 2017a) and utilizing region-based group analysis for neuroimaging 

data (Chen et al., 2019a) as well as the BML approach for matrix-based analysis (Chen et 

al., 2019b),

BML0:zijk ξi, ξj, π0k N a0 + ξi + ξj + π0k, σ2 , ξi, ξj N 0, λ2 , π0k N 0, τ2 ,
ϵijk N 0, σ2 , i, j = 1, 2, …, n i > j , k = 1, 2, …, m .

(11)

In fact, the effect decomposition of zijk under the BML framework (11) is basically the same 

as its LME counterpart (7). The different model expression here is formulated to accentuate 

the paradigm shift and to emphasize the fact that the responses zijk under BML are 

conditional on the parameters and priors. One crucial aspect of this paradigm shift is that the 

distinction between fixed- vs. random-effects in conventional statistics is fundamentally 

dissolved under the Bayesian framework (Chen et al., 2019c), enabling a new approach to 

making statistical inferences. For example, the component π0k associated with the kth region 

is considered a random effect under the LME model (7); thus, we would be able to estimate 

the cross-region variance τ 2, but nothing about the effect estimate at that region. In contrast, 

the BML model (11) can directly make inferences at each region as elaborated below.
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Both of the aforementioned challenges under the LME model (2) can be resolved now under 

the BML framework (11). First, only half of the off-diagonal elements (e.g., the lower 

triangular part) in Z(n) are required as input under BML through a numerical implementation 

of multi-membership modeling scheme4 (Bürkner, 2018). Second, with a prior (e.g., 

noninformative uniform distribution) for a0, the posterior distribution for each ROI can be 

obtained through the formulation (10). In addition, the ISC effect that is attributable to each 

subject can be similarly derived through the corresponding posterior distribution with

si = 1
2a0 + ξi, i = 1, 2, …, n . (12)

The factor of 1
2  in the subject-specific effect formula for si in (12) reflects the fact that the 

effect of each subject pair is evenly shared between the two associated subjects. The subject-

specific effects si can be utilized to assess the contribution or importance of a subject relative 

to all other subjects, which might provide some auxiliary information for further association 

with, for example, subject-level effects such as sex, disease, age or behavioral data.

Recently we applied the BML modeling approach to matrix-based analyses (Chen et al., 

2019b) when the input data are either functional (e.g. inter-region correlation) or structural 

(e.g., white matter properties among gray matter regions) attribute matrix from each subject. 

In that case, the intricacy lies in the interrelationships among the brain region pairs while the 

summarization or generalization hinges upon the subjects, and three basic entity-level 

components are specified in the corresponding BML model: subject and the two regions that 

are associated with each region pair. In contrast, ISC analyses deal with the 

interrelationships among subject pairs while at the same time the summarization or 

generalization is made across subjects; the regions under BML are pooled together among 

each other through the shrinkage effect of the Gaussian distribution (Chen et al., 2019a; 

Chen et al., 2019c). In fact, the theoretical aspects of BML application for ISC analyses can 

largely be borrowed from our previous work for matrix-based analysis (MBA; Chen et al., 

2019b) by swapping the entities between subject and region. Therefore, here we only present 

the modeling framework directly related to the ISC context. Refer to our previous work 

(Chen et al., 2019a; Chen et al., 2019c) for the coverage of common issues such as partial 

pooling, prior selection, model validation and multiplicity handling.

Further extensions of BML for ISC analyses

The LME0 model in (7) can be expanded by including two types of random-effects 

interaction components - one component is the subject-pair-specific term (i.e., the 

interaction between two subjects), and the other component is the interaction between a 

region and a subject:

4A multi-membership model accounts for the hierarchical structure embedded in the data, where lower level effects (e.g., two subjects 
i and j forming a pair) from the members of the same group are nested within a higher level effect (e.g., ISC value zijk); this is in 
contrast to a general hierarchical model, in which the lower level effects are not necessarily from the same group (e.g., subject and 
region in the current context).
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LEM1:zijk = a0 + ξi + ξj + ηij + ζik + ζjk + π0k + ϵijk, i, j = 1, 2, …, n i ≠ j
, k = 1, 2, …, m,

ξi, ξj
iidN 0, λ2 , ηij N 0, μ2 , ζik, ζjk N 0, ν2 , πk

iidN 0, τ2 , ϵijk
N 0, σ2 ,

(13)

where ηij is the effect of the subject pair that is associated with subjects i and j (i.e., the 

interaction effect between two subjects i and j) relative to the overall effect a0 and the two 

subject effects, ξi and ξj, while ζik and ζjk are the interaction effects between subject i and 

region k as well as the interaction between subject j and region k, respectively. We note that 

the subject-pair-specific effect ηij captures the unique global (i.e., brain-wide) effect of each 

subject pair in addition to the overall population effect a0 and the common effects from the 

two involved subjects, ξi and ξj; the same subtlety applies to the subject-region interactions 

ζik and ζjk. The two ICC measures in (8) and (9) can be correspondingly updated to,

LEM1:ρs = λ2 + ν2 + τ2

2λ2 + μ2 + 2ν2 + τ2 + σ2 , ρr = 2λ2 + μ2

2λ2 + μ2 + 2ν2 + τ2 + σ2 . (14)

We further consider two types of BML extension based on the primary model BML0 in (11). 

The first type involves all potential interaction effects, in parallel with the three LME 

expansions from LME0. Specifically, we incorporate the interaction effect between the two 

subjects of each subject pair as well as the interaction effect between each region and each 

subject:

BML1:zijk a0, ξi, ξj, ηij, ζik, ζjk, π0k N a0 + ξi + ξj + ηij + ζik + ζjk + π0k, σ2 ,
ξi, ξj

iidN 0, λ2 , ηij
iidN 0, μ2 , ζik, ζjk

iidN 0, ν2 , πk
iidN 0, τ2 ,

i, j = 1, 2, …, n i > j , k = 1, 2, …, m,
(15)

where ηij is the subject-pair-specific effect or the interaction between subjects i and j, while 

ζik is the interaction effect between subject i and region k and ζjk, between subject j and 

region k. The two interaction effects, ζik and ζjk, are considered as two members, i and j, of 

a multi-membership cluster. Under these three extended BML models, the region- and 

subject-specific effects can be similarly reassembled through (10) and (12), respectively.

Another type of model extension is to investigate the effect associated with a subject-level 

(e.g., sex, disease, genotype, age, behavioral measure) explanatory variable. With one 

explanatory variable x, we may have,

BML0*:zijk a0, a1, xi, xj, ξi, ξj, π0k, π1k N a0 + a1 xi + xj + ξi + ξj + π0k + π1k
xi + xj σ2 ,

ξi, ξj
iidN 0, λ2 , π0k, π1k

T iidN 0, τ , i, j = 1, 2, …, n i > j , k = 1,
2, …, m,

(16)
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BML1*:zijk a0, a1, xi, xj, ξi, ξj, π0k, π1k N a0 + a1 xi + xj + ξi + ξj + ηij + π0k
+ π1k xi + xj σ2 ,

ξi, ξj
iidN 0, λ2 , ηij

iidN 0, μ2 , π0k, π1k
T iidN 0, τ , i, j = 1, 2, …, n i

> j , k = 1, 2, …, m,

(17)

where τ is a 2 × 2 variance-covariance matrices. For example, a between-subject factor with 

l levels (e.g., l = 2 for males vs females, or patients vs controls) can be incorporated into the 

BML model with l − 1 dummy-coded variables. On the other hand within-subject or 

repeated-measures factors could be naturally modeled under BML through the hierarchical 

structure; however, we recommend that one directly take each contrast (e.g., condition A vs 

B) as input data zijk as a practical approach to save computational time.

Six aspects are noteworthy about the two extended models, BML0* and BML1*. First, 

multi-membership modeling allows us to utilize only half of the off-diagonals in the ISC 

matrix from each subject as input, as indicated by the index relationship i > j. Second, the 

effect associated with the covariate x at the population level, a1, and at the region level, π1k, 

is shared by all subjects (including subject pairs), thus a simplified notation for a derived 

covariate xij* = xi + xj for each subject pair can be adopted for easier implementation, in 

contrast to the LME counterpart in which two separate effects have to be included in the 

model. Third, the inclusion of any subject-level explanatory variable in the model is 

intended to account for cross-subject variation in the data, thereby precluding the 

justification for incorporating the subject-region interaction effects, ζij and ζjk, as shown 

BML1 (15). In light of this consideration, we do not consider any extended models, in the 

presence of any subject-specific covariate, that correspond to BML1 (15). Four, cases with 

more than one explanatory variable can be similarly formulated as in the BML0* and 

BML1*. Five, under BML0* or BML1*, the region- and subject-specific effects can be 

similarly reassembled through (10) and (12), respectively; in addition, the region-specific 

effect for the covariate x can be derived through,

b1k = a1 + π1k, k = 1, 2, .., m . (18)

Lastly, model complexity under BML is usually not a concern from a theoretical and 

numerical perspective except for computation cost. Even though there have been some 

technical debates about the model selection between the maximum complexity (Bar et al., 

2013) and a parsimonious one (Bates et al., 2018), a Bayesian model balance tends to be less 

likely to have a convergence problem due to the regularization of priors.

To recapitulate our modeling strategy here about ISC analyses, we first untangle each 

subject-pair-specific effect into the additive effects of the two involved subjects through a 

multi-membership structure, maintaining the relatedness as embodied in the correlation 

matrix P (n). Because of this untangling step, we can obtain the relative contribution, si in 

(12), from each subject even though the input data (ISC values) are the jointed contributions 

from subject pairs, not individual subjects. In addition, the cross-region effects (and 

sometimes subject-region interaction effects) are included in the BML models to account for 

Chen et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cross-region variability. The main difference between univariate LME (Chen et al., 2017a) 

and BML lies in the assumption about the brain regions: the effects (e.g., π0k and π1k in 

(17)) are assigned with a Gaussian prior under BML while they are assumed to have a 

noninformative flat prior under the corresponding LME model. In other words, the effect at 

each region is estimated independently from other regions under univariate LME, thus there 

is no information shared across regions. In contrast, the effects across regions are shared, 

regularized and partially pooled through the Gaussian assumption under BML for the effects 

across regions; the Gaussian assumption about cross-region variability shares the same 

rationale as the cross-subject Gaussian distribution under the conventional framework (e.g., 

GLM). On the one hand, partial pooling drags the region effects from both ends toward the 

center, resulting in conservative effect estimates relative to univariate LME. On the other 

hand, partial pooling through an integrative model sidesteps the multiplicity issue (Chen et 

al., 2019c). In the same vein, partial pooling has been previously applied to resting-state data 

in improving predictability of a subject’s seed-based correlation with the average of the 

other subjects in the group (Shou et al., 2014).

Implementations of BML for ISC analyses

As no analytical solution is available for BML models in general, we draw samples from the 

posterior distributions via Markov chain Monte Carlo (MCMC) simulations with the 

algorithms implemented in Stan, a publicly available probabilistic programming language 

and a math library in C++ (Stan Development Team, 2019). The present implementations 

are executed with the R package brms that is is based on Stan, and multi-membership 

modeling is directly available in brms (Bürkner, 2017; Bürkner, 2018).

For typical BML models, the priors for cross-region and cross-subject effects as well as their 

interactions have been laid out in the previous section. We typically adopt an improper flat 

(noninformative uniform) distribution for population parameters (e.g., a0 and a1 in BML0* 

(16) and BML1* (17)). As for hyperpriors, we follow the general recommendations in Stan 

(Stan Development Team, 2019). Specifically, for the scaling parameters at the region and 

subject level, the standard deviations for the cross-region and cross-subject effects, ξi, ξj, 

and πk as well as their interactions, we adopt a weakly informative prior such as a Student’s 

half-t(3, 0, 1) or half-Gaussian N+ 0, 1  (restricting to the positive values of the respective 

distribution). For covariance structure (e.g., τ in BML0* (16) and BML1* (17)), the LKJ 

correlation prior5 is used with the shape parameter taking the value of 1 (i.e., jointly uniform 

over all correlation matrices of the respective dimension) (Gelman et al., 2017). Lastly, the 

standard deviation σ for the residuals is assigned using a half-Cauchy prior with a scale 

parameter depending on the standard deviation of zijk. To summarize, besides the Bayesian 

framework under which hyperpriors provide a computational convenience through numerical 

regularization, the major difference between BML and its univariate GLM counterpart is the 

application of the Gaussian prior in the BML models that plays the pivotal role of pooling 

and sharing the information among the brain regions. It is this partial pooling that effectively 

takes advantage of the effect similarities among the ROIs and achieves higher modeling 

efficiency (Chen et al., 2019c).

5The LKJ prior (Lewandowski et al., 2009) is a distribution over symmetric positive-definite matrices with the diagonals of 1s.
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Bayesian inferences are usually expressed in the whole posterior distribution of each effect 

of interest. For practical considerations in results reporting, point estimates from these 

distributions such as mean and median are typically used to show the effect centrality, while 

quantile-based (e.g., 90%, 95%) intervals also provide a condensed summary of the posterior 

distribution. A typical workflow to obtain the posterior distribution is the following. 

Multiple (e.g., 4) Markov chains are usually run in parallel with each of them going through 

a predetermined number (e.g., 2000) of iterations, half of which are thrown away as warm-

up (or “burn-in”) iterations while the rest are used as random draws from which posterior 

distributions are derived. To gauge the consistency of an ensemble of Markov chains, the 

split R statistic (Gelman et al., 2014) is provided as a potential scale reduction factor on split 

chains and as a diagnostic parameter to assist the analyst in assessing the quality of the 

chains. In practice R < 1.1 is considered acceptable. Another useful statistic, effective 

sample size (ESS), measures the number of independent draws from the posterior 

distribution that would be expected to produce the same amount of information of the 

posterior distribution as is calculated from the dependent draws obtained by the MCMC 

algorithm. We suggest a minimum ESS of 200 for deriving the quantile intervals for the 

posterior distribution.

BML applied to ISC data

To demonstrate the modeling capability and performances of BML, we used a dataset from 

the Child Mind Institute Healthy Brain Network (CMI-HBN), a publicly available 

naturalistic scanning dataset (Alexander et al. 2017). Briefly, the dataset consisted of a 

community-based sample of generally healthy children and adolescents who were scanned 

while resting as well as watching two different videos. Rich phenotypic data are also 

available for each individual. We focus here on data acquired during “The Present,” an 

animated short about a boy who receives a puppy as a gift. The video has a social theme and 

is emotionally evocative, which led us to hypothesize that it would evince individual 

differences along a phenotypic spectrum related to social functioning. Data used here come 

from the CMI-HBN data releases 1 and 2, which represented all of the available data in 

January 2018 when we began the project.

Functional MR images were acquired with the following EPI scan parameters: B0 = 3 T, flip 

angle = 31°, TR = 800 msec, TE = 30 msec, 60 slices, voxel size = 2.4 mm isotropic, 

multiband factor = 6, 250 volumes with a total scanning time of 3:20 min:sec. Other details, 

including parameters for anatomical scans as well as full protocols for MRI and phenotypic 

data, can be found in the data descriptor (Alexander et al. 2017) and at the following URL: 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/

Data were preprocessed as follows. First, we used Freesurfer (Fischl, 2012) to extract 

subject-specific ventricle and white-matter masks using each subject’s anatomical image. 

Next, we used the afni_proc.py program in AFNI to perform the following preprocessing 

steps on the functional images: despiking, head motion correction, affine alignment with 

anatomy, nonlinear alignment to a standard template, and smoothing with an isotropic 

FWHM of 5 mm. Confounding effects during preprocessing included: the first three 

principal components of the ventricles, local white matter regressors generated from fast 
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ANATICOR (Jo et al, 2010), each subject’s 6 motion time series, their derivatives and linear 

polynomials for slow drifts. Censoring of time points was performed whenever the per-time-

point motion (Euclidean norm of the motion derivatives) was 0.3 mm or more or when more 

than 10% of the brain voxels were outliers. Censored time points were set to zero rather than 

removed altogether (this is the conventional way to do censoring, but especially important 

for inter-subject correlation analyses, to preserve the temporal structure across participants). 

Because this is a pediatric sample, we used a recently developed pediatric template brain as 

the standard template (“Haskins template”; Molfese et al., in prep).

Our primary phenotypic measure of interest was the Social Responsiveness Scale-2, 

abbreviated here as SRS (Constantino and Gruber, 2012). This parent-report scale measures 

the presence and severity of social impairment using items such as “seems much more 

fidgety in social situations than when alone”, “takes things too literally and doesn’t get the 

real meaning of a conversation”, and “avoids eye contact or has unusual eye contact”. There 

are 65 total items and each is rated on a Likert scale from 0–3; higher scores indicate poorer 

social functioning.

We selected a subset of subjects for analysis based on the following criteria: (1) a usable T1-

weighed anatomical image (for registration purposes), (2) the functional movie-watching run 

of interest (“The Present”), with at least 85% (213/250) volumes remaining after censoring 

of head motion and outliers, (3) valid demographic information including age and sex; and 

(4) a valid SRS score. There were 68 subjects that met these criteria (age range = 6–17 

years, mean ± standard deviation = 10.8 ± 3.1 years; 30 females). SRS scores followed a 

right-skewed distribution with range = 3–140, median (mean) = 43.5 (53.3), and median 

absolute deviation (standard deviation) = 17 (33.6). In this subset, there was negligible 

correlation between age and SRS (r = 0.046) or between head motion (as measured by mean 

frame-wise displacement) and SRS (r = −0.064). There was a moderate negative correlation 

between age and head motion (r = −0.25). Males and females did not differ much in age 

(males 10.35 ± 2.95 years, females 11.3 ± 3.19 years). However, SRS scores were 

moderately higher among males than females (males 58.26 ± 35.26, females 47.07 ± 30.88).

Owing to the computational intractability of conducting BML at the voxel-wise level, we 

defined ROIs using a preexisting functional brain parcellation (Shen et al., 2013), which 

contains 268 regions covering the whole brain (cortex, subcortex and cerebellum). It was 

originally defined in MNI space and nonlinearly warped to Haskins template space using 

3dQwarp in AFNI for purposes of this study. Region-wise time courses for each subject 

were calculated by averaging the signal of all the voxels in each region at each time point. 

Thus, the final dataset that entered into the ISC calculation consisted of 268 regions × 250 

time-points × 68 subjects. To demonstrate that the method is robust to the choice of ROIs 

and spatial resolution of the parcellation, we also conducted the same analysis using a 

coarser, anatomically defined parcellation containing 107 nodes that is included as part of 

the Haskins template space (Molfese et al., in prep).

The ISC data of Fisher-transformed z-values from the n = 68 subjects at m = 268 ROIs were 

analyzed with three models: BML0* (16) and BML1* (17), and the region-wise LME model 

that corresponds to BML1*. Three explanatory variables (SRS, Age, and Sex), plus their 
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two- and three-way interactions, yield a total of eight effects of interest at each ROI: overall 

ISC (intercept), main effects (SRS, Age, Sex), two-way interactions (SRS:Age, SRS:Sex, 

Age:Sex), and three-way interaction (SRS:Age:Sex). The ROI dataset was analyzed with the 

three models using the R package brms. Runtime for BML was three weeks on a Linux 

system of Fedora 25 with AMD Opteron 6376 at 1.4 GHz; in contrast, the runtime of the 

same model with the coarser parcellation of 107 ROIs was five days.

To compare the two BML models, we assessed their point-wise out-of-sample prediction 

accuracy through the LOOIC. As the LOOIC for the BML1* model (with subject pair 

specific effects) relative to BML0* (without subject pair specific effects) is −56406.34 ± 

474.65, the higher predictive accuracy of BML1* is shown by its substantially lower LOOIC 

than BML0*. We thereafter focus our results discussion on BML1*.

The summary of the BML1* parameter estimates is shown in Table 1. One noteworthy 

aspect is that the interaction effect ηij of subject pairs was substantial with a standard 

deviation λ = 0.091 (with a 95% quantile interval of [0.090, 0.092], Table 1), and such an 

interaction was stronger than the additive effects of individual subjects ξi or ξj with a 

standard deviation µ = 0.079 (with a 95% quantile interval of [0.076, 0.084], Table 1). In 

other words, cross-subject-pairs effects ηij account for a little more ISC variability than 

cross-subjects effects ξi and ξj. These results justify our adoption of the extended BML1* 

model (17) that contains the cross-subject-pairs effects ηij instead of BML0* (16) without 

the effect ηij. This result is also interesting from a scientific perspective, as it suggests that 

the interaction between a given subject pair is more important for determining ISC levels 

than either of the two subjects on their own. In other words, it is generally not the case that 

an individual subject tends to have high (or low) ISC values across the board (i.e., with all 

potential pairs); rather, it is the specific subject pair that explains more variability in 

observed ISC effects.

The results comparison between BML and LME is quite revealing. Despite the injection of 

priors and hyperpriors, the two modeling frameworks produced virtually identical estimates 

for the population parameters and variances for cross-subjects, cross-subject-pairs and cross-

regions effects (Table 1), validating the adoption of the BML approach. However, the 

differential treatment of model parameters under LME and BML results in a crucial 

difference. Under LME we can estimate the population effects and their uncertainties (e.g., 

a0, a1, …, a7); we can only obtain the standard errors (e.g., λ, µ, τ ‘s) for the random-effects 

variables. In other words we cannot make inferences at the region level (e.g., effects of τ ‘s 

at each region) under LME. In contrast, under BML we can directly assess these effects 

through (10) and (18) with Bayesian simulations.

The eight effects of interest under BML1* can be shown with their respective posterior 

distributions. However, with 268 ROIs, it is more practical to summarize the results with the 

mean, standard error and 90% and 95% quantile intervals at each ROI. To demonstrate the 

results, here we illustrate the four main effects at the 268 parcels in the brain (Fig. 3): overall 

ISC, SRS, Sex, and Age. These effects can be interpreted in light of what is known from 

previous naturalistic scanning studies and the demographic and behavioral covariates of 

interest.
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First, much of the brain shows a substantial overall ISC effect (Fig. 3A). While this effect is 

particularly strong in primary visual and auditory cortex, there is evidence for synchrony in 

higher-order regions of association cortex as well. This is consistent with a large body of 

literature using naturalistic scanning to show that by exposing subjects to the same time-

locked, complex, engaging stimulus, much of the brain becomes synchronized across 

subjects (Hasson et al., 2010).

Atop this general synchrony, our method revealed that subject-level covariates of interest 

affect the strength of ISC. In the case of Social Responsiveness Scale (SRS), most of these 

effects are negative (Fig. 3B), meaning that ISC is relatively stronger among children with 

low SRS scores than those with higher SRS scores. This is the expected direction given that 

lower SRS scores reflect better social function; in other words, children with good social 

skills are more synchronized while viewing a socially and emotionally evocative film as 

compared to children with more autistic traits and tendencies, corroborating previous reports 

(Hasson et al., 2009; Salmi et al., 2013; Byrge et al., 2015). There was substantial evidence 

for an effect in this direction in anterior and posterior regions along the midline as well as in 

temporal cortex, many of which are known to be involved in processing social information.

In the case of Sex (Fig. 3C), we observed higher ISC among males as compared to females 

in many posterior and central midline regions, as well as some visual association areas. In 

contrast, we observed higher ISC among females in the temporo-parietal junction and an 

inferior temporal region partially encompassing the fusiform gyrus.

In the case of Age (Fig. 3D), we observed that ISC generally declines with age, such that 

many regions (especially those in posterior midline and visual association regions) are more 

synchronized in younger children relative to older ones. One possible explanation for this is 

that idiosyncratic (i.e., subject-specific) responses emerge with age, leading to an increase in 

variance (and decrease in cross-subject synchrony) as children get older. Another potential 

explanation of these effects might be the choice of stimulus itself: the animated film may 

have been more engaging for younger subjects than older ones, who require more 

sophisticated content to fully capture their attention; future studies should explore the effect 

of stimulus on ISC values through development. The exception was a handful of regions 

along the superior temporal lobe, in which ISC increased with age. This may in part reflect 

language processes that are developed and refined as children mature, leading to more 

consistent responses among older subjects in these areas.

Beyond main effects, the BML framework also allows us to examine interactions among the 

covariates. For example, as shown for the Sex:Age interaction (Fig. 4A) and the Age effect 

in each sex (Fig. 4B, C), a region in the inferior temporal lobe encompassing the fusiform 

gyrus seems to increase its ISC with age among females (Fig. 4C), while among males there 

is almost no evidence for such an age effect (Fig. 4B). Additionally, in some of the regions 

along the superior temporal lobe and insula, the increase in ISC with Age seems to be driven 

largely by females, which may reflect differing developmental trajectories in language and 

affect between the sexes.
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One aspect in which ROI-based BML excels is the completeness and transparency in results 

reporting: if the number of ROIs is not overwhelming (e.g., less than 100), the summarized 

results for every ROI can be completely presented in a tabular form or in full distributions of 

posterior density (Chen et al., 2019a). It is worth emphasizing that Bayesian inferences 

focus less on the point estimate of an effect and its associated quantile interval, but more on 

the whole posterior density that offers more detailed information about the effect 

uncertainty. Unlike the whole brain analysis in which the results are typically reported as the 

tips of icebergs above the water, posterior density reveals the extent of uncertainty regardless 

of strength of statistical evidence. In addition, one does not have to stick to a single harsh 

thresholding when deciding a criterion on the ROIs for discussion; for instance, even if an 

ROI lies outside of, but close to, the 95% quantile interval, it can still be reported and 

discussed as long as all the details are revealed. Such flexibility and transparency, as 

illustrated in Figures 3 and 4, are difficult to navigate or maneuver through the conventional 

cluster-based thresholding at the whole-brain level.

Discussion

Here, we introduce an extension to the LME platform, namely Bayesian multilevel modeling 

(BML), for jointly estimating inter-subject correlation during naturalistic scanning in a series 

of predefined regions. The advantages of this BML approach over previous approaches 

include: dissolution of multiplicity, ability to incorporate covariates, modeling efficiency, 

spatial specificity in outcome interpretation, results reporting and visualization.

ROI-based ISC analysis through BML as an extension of LME

The advantage of multilevel modeling lies in its capability of stratifying the data in a 

hierarchical or multilevel layout so that complex dependency or correlation structures can be 

properly accounted for coherently within a single modeling platform. Specifically applicable 

in the ISC context is a crossed or factorial layout across three crisscross layers, two sets of 

subject pairs and the list of ROIs. Even though the LME approach can quantitatively 

characterize the ISC effect of each subject pair as the combined effect of the respective 

subjects, the decomposition remains coarse. For instance, an LME model can accommodate 

neither the uniqueness of each subject pair nor that of each subject-ROI interaction, due to 

the LME system being potentially underdetermined from the overwhelming number of 

parameters. These limitations evince one motivation for our current work with BML as an 

extension to our previous work of LME modeling for ISC data analysis. That is, the 

idiosyncratic effect of each subject pair as well as that of each subject-ROI interaction can 

be modeled under BML since non-identifiability would be dissolved under BML because a 

Bayesian model can be identified as long as the posterior distribution is proper.

The multiple testing issue is a fundamental aspect of the massively univariate approach 

widely adopted in neuroimaging, and it produces several challenges, including artificial 

dichotomization of the results, inflated errors of incorrect sign and incorrect magnitude, 

vulnerability to data manipulations, suboptimal predictive accuracy, and lack of model 

validation (Chen et al., 2019c). To address these limitations, we have adopted the use of a 

single, integrative BML model that shares information across regions. Instead of fighting 
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multiplicity through leveraging the relatedness only among the neighboring voxels, the 

hierarchical structure of BML implements just one model that calibrates the information 

globally shared across all regions; in addition to avoiding the need for an unrelated, 

corrective test, the BML approach leads to better control of errors of incorrect sign and 

incorrect magnitude; to improved modeling efficiency; to a reduction in the susceptibility to 

fishing expeditions; to inherent validation of each model; and to complete results reporting.

One controversial aspect of Bayesian modeling in popular discussions is selection of priors, 

since Bayesian methods are frequently deemed “subjective” due to this feature. It should be 

noted first that all statistical models are subjective in the sense of idealizing or 

approximating reality – consider analogous assumptions of model linearity or Gaussianity of 

residuals in other modeling frameworks. The Gaussian priors adopted here for cross-subject 

and cross-region effects under BML are based on two considerations: one aspect is 

convention and pragmatism (many features in practice tend to be approximately single-

peaked and drop-off into relatively thin tails), and the other is the fact that, per maximum 

entropy principle, the Gaussian distribution is the most conservative choice if the data have a 

finite variance. More importantly, the Gaussian priors only stipulate the distribution shape, 

and its specific parameters (e.g., variance) are actually determined a posteriori through the 

model conditioning on the data (Chen et al., 2019a; Chen et al., 2019c). In fact, the impact 

of our prior choices for ISC analysis under BML is negligible as demonstrated in Table 1. 

Lastly, the validity of prior choices and model specifications (including LME and BML) can 

be assessed through validation tools under the Bayesian framework – if a prior is ill-suited to 

the model and negatively affects results, this step will alert the researcher.

Applying the general BML modeling strategy (Chen et al., 2019a) to the ISC context, we 

formulate the BML data generation mechanism for each dataset on a set of ROIs by 

extending the univariate LME framework. Our adoption of BML, as illustrated with the 

demonstrative data analysis, indicates that BML holds some promise for ROI-based ISC data 

analysis. By incorporating the effects from both subject pairs and region pairs, we can 

formulate a BML model that accounts for both inter-subject and inter-region relationships, 

potentially extending the BML-based ISC and matrix-based analysis (Chen et al., 2019b) 

further to broader situations such as inter-subject functional correlation (Simony et al., 2016) 

and representational similarity analysis (Cai et al., 2019). In general, the BML approach 

offers several advantages over traditional voxel-wise approaches:

1. Two multiplicity issues with whole brain voxel-wise ISC analysis form another 

background for our work here. Just as with conventional whole-brain GLM-

based analyses, ISC analysis through univariate LME would still face the 

multiplicity issue in the sense that the same model is applied as many times as 

the number of voxels. Therefore, correction for FWE would still have to be 

executed as an extra step. The popular approach of leveraging between cluster 

size and statistical strength has been widely adopted to control the overall FWE, 

but the penalty is usually too severe as the information shared across brain 

regions is not effectively considered in modeling (Chen et al., 2019a; Chen et al., 

2019c). Another difficulty with the whole brain analysis is the sidedness issue in 

statistical testing. For a symmetric statistical distribution, one-sided testing for 
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one direction (e.g., positive) would be justified if prior information is available 

regarding the sign of the effect for a particular brain region. When no prior 

information is available for all regions in the brain, one cannot simply perform 

two separate one-sided tests in place of one two-sided test, and such a double-

sidedness practice, although popularly practiced in neuroimaging, warrants a 

Bonferroni correction because the two directions are independent with each 

other. However, simultaneously testing both tails in tandem for whole brain 

analysis without correction for sidedness is widely used without clear 

justification, and this forms a source of multiplicity issue that needs proper 

accounting.

Instead of separately correcting for multiple testing, BML incorporates multiple 

testing as part of the model by assigning a prior Gaussian distribution among the 

ROIs. In doing so, multiple testing is handled under the scaffold of the multilevel 

data structure by conservatively shrinking the original effect toward the center 

with the reasonable assumption that the effects among brain regions are usually 

similar and largely center within a finite range. In other words, instead of 

leveraging cluster size or statistical strength, BML leverages the commonality 

among ROIs through effective regularization, simultaneously achieving 

meaningful spatial specificity and detection efficiency. Even though the 

conventional correction for FWE in neuroimaging is considered desirable in 

controlling overblown FWE, it is not necessarily efficient nor practically 

meaningful to fight the strawman of absolutely zero effect anywhere in the brain. 

More importantly, arbitrary thresholding, regardless of the extent of rigor, 

artificially dichotomizes the data, resulting in an undesirable situation: reporting 

only the results that pass thresholding unavoidably ignores the ones that may not 

differ much from the former.

In addition, BML offers a flexible approach to dealing with double sidedness at 

the ROI level. When prior information about the directionality of an effect is 

available on some, but not all, regions (e.g., from previous studies), with the 

massively univariate approach for the whole brain one may face the issue of 

performing two one-tailed t-tests at the same time in a blindfold fashion. In 

contrast, the ROI-based BML approach disentangles the complexity since the 

posterior inference for each ROI can be made separately.

2. No duplication for input data is needed under BML. To keep a balanced data 

structure and to maintain proper overall FPR controllability under the current 

LME implementations, we have to duplicate the input data with both the lower 

and upper triangular components of the ISC correlation matrix due to the fact 

those two sets of subject effects are parameterized as two separate parameter 

sets. In contrast, input data duplication under BML is unnecessary thanks to an 

implementation technique similar to the multi-membership modeling strategy 

available in the R package brms (Bürkner, 2017), halving the input data and the 

number of parameters for subject effects under BML, as opposed to LME.
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3. BML may achieve higher spatial specificity through efficient modeling. A 

statistically identified cluster through the conventional whole brain analysis is 

not necessarily anatomically or functionally meaningful. In other words, a 

statistically identified cluster is not always aligned well with a brain region for 

diverse reasons such as “bleeding” effect due to contiguity among regions, and 

suboptimal alignment to the template space, as well as spatial blurring. In fact, 

investigators usually tabulate the location of the “peak” (i.e., maximum effect 

magnitude or statistic value) voxel for a cluster even though the cluster may only 

partially cover an anatomical region or overlap multiple brain regions or 

subregions. In contrast, under BML, the regions are utilized as prior spatial 

information, and the statistical inference for each region under BML is assessed 

by its effect strength relative to its peers, not by its spatial extent, providing an 

alternative to the conventional whole brain analysis with more accurate spatial 

specificity.

4. BML may potentially alleviate the arbitrariness of data space selection. Under 

the conventional framework, if the data space changes because of an evolving 

research focus (e.g., from whole brain to gray matter, a large network or a list of 

regions), the impact due to the different domain for multiple testing correction 

can be substantial, leading to the vulnerability to the issue of “the garden of 

forking paths”, “data snooping” or p-hacking. In contrast, the region-based ISC 

analysis under the Bayesian framework is more adaptive to the situation of 

region selection due to the adaptivity of the Gaussian priors. In other words, the 

amount of regularization is derived from the data through partial pooling that 

embodies the similarity assumption of effects among the brain regions. Such 

adaptivity of the Gaussian prior is supported by our ongoing analyses of a task-

related dataset but with different numbers of regions of interest (e.g., 30, 300, 

and 1000), resulting in consistent inferences.

5. Full results reporting is possible for all ROIs under BML. The conventional 

NHST focuses on the point estimate of an effect supported with statistical 

evidence in the form of a p-value. In the same vein, typically the results from the 

whole brain analysis are displayed with sharp-thresholded maps or tables that 

only show the surviving clusters with peak statistic- or p-values. In contrast, as 

the focus under the Bayesian framework is on the posterior distribution, not the 

point estimate, of an effect, the totality of BML results can be summarized as 

shown in Figures 3 and 4. Such totality is more advantageous than the typical 

practice in which the effect estimates are usually not reported in the whole brain 

analysis (Chen et al., 2017b). In other words, BML modeling at the ROI level 

directly allows the investigator to present the effect estimate. More importantly, 

BML substantiates the reporting advantage not only because of modeling at the 

ROI level, but also due to the fact that the uncertainty associated with each effect 

estimate can be demonstrated in a much richer fashion.

To some extent, the ROI-based BML approach can alleviate the arbitrariness of 

thresholding using the current FPR correction practices. Even though BML 

allows the investigator to present the whole results for all regions, for example, in 
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a table format, we do recognize that the investigator may prefer to focus the 

discussion on some regions with strong statistical evidence. Nevertheless, the 

decision can hinge on the statistical evidence from the current data, combined 

with prior information from previous studies. For example, one may still choose 

the 95% quantile interval as an equivalent benchmark to the conventional p-value 

of 0.05 when reporting the BML results. However, those effects with, say, 90% 

quantile intervals can still be utilized with a careful and transparent description, 

which can be used as a reference for future studies to validate or refute; or, such 

effects can be reported if they have been shown in previous studies. Moreover, 

rather than a cherry-picking approach on reporting and discussing statistically 

significant clusters in whole brain analysis6, we recommend a principled 

approach in results reporting in which the ROI-based results be reported in 

totality with a summary as shown in Figures 3 and 4 and be discussed through 

transparency and soft, instead of sharp, thresholding. We believe that such a 

highlighting and soft thresholding strategy is more healthy and wastes less 

information for a study that goes through a strenuous pipeline of experimental 

design, data collection, and analysis.

5) Inferences at the level of individual subjects are possible. As BML partitions the 

effect at the subject-pair level as the summation of multiple additive effects 

including the two involved subjects, the effect from each individual subject can 

be teased apart, revealing the contribution at the subject level as shown in 

formula (12), even though the input data for ISC analysis are at subject-pair 

level. Such effects at the subject level could be beneficial as auxiliary 

information in exploring, for example, outlying subjects or association with 

behavior data.

One crucial aspect of Bayesian modeling is model validation. In fact, a full Bayesian 

workflow includes several steps, such as prior predictive checks, model sensitivity analysis 

and posterior predictive checks (Gelman et al., 2014). Here we have demonstrated only the 

leave-one-out information criterion for model comparison and cross validation between 

BML and its LME counterpart in Table 1, but the other steps can play important roles in 

properly capturing the data structure and in guaranteeing robust inferences. For example, 

data can be simulated from prior distributions and fitted with the proposed model, and 

numerical behaviors of Markov chains for the posterior distributions can be checked (Chen 

et al., 2019a). Furthermore, simulation-based calibration can be utilized to assess whether 

estimated posterior parameters follow the same distribution as the true model parameters 

adopted to generate simulated data. Building, comparing, tuning and improving models is a 

daunting task with a sophisticated BML model due to the high computational cost. In the 

presence of the huge number of parameters involved in the BML model for the current 

experiment dataset, it is impractical to fully and systematically explore the full spectrum of 

the whole Bayesian workflow here, but we plan to continue these additional validation steps 

in our future work.

6A popular cluster reporting method among the neuroimaging packages is to simply present the investigator only with the icebergs 
above the water, the surviving clusters, reinforcing the illusionary either-or dichotomy under NHST.
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Limitations of ROI-based BML and future directions

The performance of BML requires more testing to assess and validate its consistency and 

replicability under different scenarios and when applied to multiple datasets. For example, 

would the inference be consistent when the number of regions varies in real data analysis? 

The linearity of effect decomposition under BML is a strong assumption, and, as in all linear 

models, it is an approximation. In addition, other limitations of the ROI-based BML exist as 

follows.

1. ROI data extraction involves averaging among voxels within the region. As a 

spatial smoothing or low-pass filtering process, averaging condenses, reduces or 

dilutes the information among the voxels within the region to one number, and 

loses any finer spatial structure within the ROI. In addition, the variability of 

extracted values across subjects and across ROIs could be different from the 

variability at the voxel level. The issue might be alleviated through approaches 

such as the principal component of each region, hyperalignment algorithm 

(Haxby et al, 2011) or shared response modeling (Chen et al., 2015).

2. ROI-based analysis is conditional on the availability and quality of the ROI 

definition. One challenge facing ROI definition is the inconsistency in the 

literature due to the inaccuracies across different coordinate/template systems 

and publication bias. In addition, some extent of arbitrariness is embedded in 

ROI definition; for example, a uniform adoption of a fixed radius may not work 

well due to the heterogeneity of brain region sizes. When not all regions or 

subregions currently can be accurately defined, or when no prior information is 

available to choose a region in the first place, the ROI-based approach may miss 

any potential regions if they are not included in the model.

3. The exchangeability requirement of BML assumes that no differential 

information is available across the ROIs in the model. Under some circumstances 

ROIs can be expected to share differential information among some subgroups, 

especially when they are anatomically contiguous or more functionally related 

than the other ROIs (e.g., homologous regions in opposite hemisphere); more 

exploration is needed to incorporate such a hierarchical structure. On the other 

hand, exchangeability, as an epistemological – neither physical nor ontological – 

assumption, provides a convenient approximation of a prior distribution by a 

mixture iid distributions (de Finetti’s theorem) (Gelman et al., 2014). Such an 

approximation, similar to suboptimal assumptions such as linearity in most 

models, does leave room for further improvement. Ignoring such hierarchical 

structure in the data, if substantially present, may lead to underestimated 

variability and inflated inferences. Nevertheless, Bayesian inferences build on 

posterior distributions without invoking the degrees of freedom, and the violation 

of exchangeability usually leads to negligible effect on the final shape of 

posterior distributions except for the precise sequence in which the posterior 

draws occur (McElreath, 2016). Furthermore, the performance of BML can be 

effectively examined against the conventional approaches through posterior 

predictive checks and cross validations (Chen et al., 2019a). In the future we will 
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continue to explore the possibility of accounting for such a hierarchical 

correlation structure.

4. BML computation can be time-consuming or even prohibitive in cases. For 

example, the number of parameters grows quadratically with the number of 

subjects. In addition, the number of regions and explanatory variables increases 

linearly the number of parameters. Due to model complexity and limited 

experience, no simple dependence of computational cost is currently available on 

the number of subjects or regions. Currently parallelization can only be 

performed across chains. However, the improvement in numerical schemes are 

currently under fast development, and the use of graphical processing units and 

within-chain parallelization may be implemented in the near future (Stan 

Development Team, 2019), substantially improving the usability of BML for ISC 

analysis.

5. The BML performance requires more validation and assessment for its 

consistency and replicability from various perspectives and when applied to 

different data. For example, partial pooling under BML may not always be 

effective. On one hand, partial pooling acts as a compromise between the two 

forces: one force drags all regions toward the center, and the other toward each 

individual region. Pooling through a weighted average of these two extremes is 

particularly effective when the across-region variance is at roughly the same 

order of magnitude as the within-region variance (sum of cross-subject variance 

and residual variance). However, when one variance is substantially 

overwhelmed by the other (e.g., by an order of magnitude), then there is no 

compromising and information sharing is essentially reduced to one of the two 

degenerative cases: either “no pooling” (relatively huge within-region variability) 

or “complete pooling” (relatively negligible within-region variability). Under 

these scenarios, partial pooling is ineffective, and larger sample sizes would be 

most likely required.

Conclusion

Inter-subject correlation (ISC) captures the extent of the simultaneous synchronization at a 

brain region among a group of subjects who experience the same naturalistic setting such as 

movie watching or music listening. Extending our previous work of linear mixed-effects 

(LME) modeling, we adopt here an ROI-based Bayesian multilevel (BML) approach to 

decomposing each ISC effect into multiple additive effects. In addition to dissolving the 

multiplicity issue and achieving higher inference efficiency, the BML approach allows for 

full results reporting that pales in comparison with the prevalent adoption of dichotomous 

decision making under NHST, increasing transparency and reproducibility.
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Figure 1: 

Inter-subject correlation (ISC) matrix Rk
n  among the n subjects for the kth spatial unit and 

its Fisher-transformed counterpart Zk
n . Due to the symmetry, only half of the off-diagonal 

elements (shaded in gray) are usually considered during ISC analysis.
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Figure 2: 
ISC with n = 5 subjects. Left: pictorial representation of 5 × 5 subject pairs. Right: The 

complex relatedness among the off-diagonal elements in Zk
n  is illustrated with the 

correlation matrix P (5) for n = 5 subjects, in which ρ represents the correlation when two 

elements (e.g., z32 and z53, colored in red) are associated with a common subject (e.g., S3). 

Without loss of generality, the third index k in zijk for brain location is dropped here for 

clarity.
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Figure 3: 
Four effects (overall ISC, SRS, Sex, and Age) derived from BML are shown here for the 268 

parcels in sagittal view with slice numbers indicating the relative left-right location. Warm 

(or cold) colors show positive (or negative) effects, with the colorbar range set to the 95% 

quantile of the respective effect; effect opacity is determined by the posterior density: 

opaque regions outlined in black are beyond 90% quantile tail (strong evidence), with 

transparency increasing toward the median (weak evidence). Note that the sex effect is 

shown as females minus males, meaning that in panel (C), blue regions show higher ISC in 

males while red regions show higher ISC in females.
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Figure 4: 
Interaction effects between sex and age derived from BML are shown here for the 268 

parcels in sagittal view with slice numbers indicating the relative left-right location. Warm 

(or cold) colors show positive (or negative) effects, with the colorbar range set to the 95% 

quantile of the respective effect; effect opacity is determined by the posterior density: 

opaque regions outlined in black are beyond 90% quantile tail (strong evidence), with 

transparency increasing toward the median (weak evidence). Note that the sex effect is 

shown as females minus males, meaning that in panel (1), blue regions show higher age 

effect in males while red regions show higher age effect in females.
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Figure 5: 
Comparisons of the leave-one-out (LOO) approach with other nonparametric methods 

explored in Chen et al. (2016). The subfigures shown here are copied from Figures 2 and 3 

in Chen et al. (2016) with the LOO results added.(A) The simulations were performed in the 

same fashion with one group of 10, 20, 40 and 80 subjects as in our previous work with 

nonparametric methods (Chen et al., 2016). The LOO approach (dark green) showed 

unsatisfactory controllability on false positive rate at the nominal level of 0.05 (horizontal 

gray line) compared to subject-wise bootstrapping (dot-dashed blue line). (B) When applied 

to the same experiment dataset in Chen et al. (2016), poor false positive control was also 

evident; in addition, the ISC estimates were substantially inflated. The acronyms are 

inherited from Chen et al. (2016): SW (subject-wise) EW (element-wise), EWB (element-

wise bootstrapping), SWB (subject-wise bootstrapping), EWP (element-wise permutations) 

and SWP (subject-wise permutations).
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Table 1:

Summary results from the ISC dataset fitted with an extended version of BML1* in (17) and its LME 

counterpart. The column headers Estimate, SD, QI, and ESS are short for effect estimate, standard deviation, 

quantile interval, effective sample size, respectively. LME1* shares the same effect components as BML1*, 

and shows virtually the same effect estimate for the population mean b0 and the standard deviations for those 

effect components despite: (1) the two modeling frameworks were solved through two different numerical 

schemes (REML for LME and MCMC for BML); and 2) in practice the input data for LME1 had to be 

duplicated to maintain the balance between the two crossed random-effects components associated with each 

subject pair. In addition, the nearly identical parameter estimates between the two models indicate that the use 

of priors under BML had a negligible effect. However, the LME framework cannot provide uncertainty 

measures for those variances, as indicated by the dashes in the table. R is the split statistic of a convergence 

indicator for the Markov chains. All R values under BML1* were less than 1.1, indicating that all the four 

MCMC chains converged well. The effective sample sizes (ESSs) for the population- and region-level effects 

were large enough to warrant quantile accuracy in summarizing the posterior distributions for region-specific 

effects. The correlations among the eight cross-region effects π·k under BML are not shown in the table 

because their inferences are not available under LME.

Term
BML1* LME1*

Estimate SD 95% QI ESS R Estimate SD

population-level effects

a0: Intercept 0.057 0.064 [0.045, 0.069] 104 1.04 0.057 0.063

a1: SRS −1.27e-4 8.35e-5 [−2.86e-4, 3.99e-5] 492 1.00 −1.31e-4 5.54e-5

a2: Age −1.12e-3 8.78e-4 [−2.78e-3, 5.80e-4] 377 1.00 −1.14e-3 6.06e-4

a3: Sex −3.54e-3 5.38e-3 [−1.39e-2, 7.37e-3] 349 1.01 −3.70e-3 3.76e-3

a4: Age:Sex 7.85e-4 3.23e-4 [1.51e-4, 1.42e-3] 317 1.01 7.54e-4 2.44e-4

a5: SRS:Sex 9.22e-6 3.07e-5 [−5.12e-5, 7.04e-5] 244 1.01 9.45e-6 2.21e-5

a6: Age:SRS 5.53e-6 5.35e-6 [−4.56e-6, 1.64e-5] 295 1.00 5.68e-6 3.81e-6

a7: Sex:Age:SRS 1.54e-6 6.30e-6 [−1.06e-5, 1.42e-5] 257 1.01 1.75e-6 4.56e-6

cross-subjects effects (levels: 68)

λ: standard deviation for ξi, ξj 0.079 0.060 [0.076, 0.084] 561 1.01 0.079 -

cross-subject-pairs effects (levels: 2278)

µ: SD for ηij 0.091 0.058 [0.090, 0.092] 395 1.01 0.091 -

cross-ROIs effects (levels: 268)

τ0: SD for Intercept π0k 0.106 0.060 [0.102, 0.111] 66 1.06 0.106 -

τ1: SD for SRS π1k 1.19e-4 6.14e-6 [1.08e-4, 1.31e-4] 563 1.01 1.23e-4 -

τ2: SD for Age π2k 1.40e-3 7.0e-5 [1.27e-3, 1.54e-3] 705 1.01 1.44e-3 -

τ3: SD for Sex π3k 8.0e-3 4.0e-4 [7.22e-3, 8.80e-3] 948 1.00 8.22e-3 -
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Term
BML1* LME1*

Estimate SD 95% QI ESS R Estimate SD

τ4: SD for Age:Sex π4k 1.27e-3 7.54e-5 [1.13e-3, 1.43e-3] 1442 1.00 1.36e-3 -

τ5: SD for SRS:Sex π5k 1.05e-4 6.50e-6 [9.29e-5, 1.18e-4] 1468 1.00 1.14e-4 -

τ6: SD for Age:SRS π6k 2.03e-5 1.20e-6 [1.79e-5, 2.27e-5] 1130 1.00 2.22e-5 -

τ7: SD for Sex:Age:SRS π7k 1.48e-5 1.62e-6 [1.16e-5, 1.79e-5] 1274 1.00 1.96e-5 -

residuals

σ: SD for residuals 0.160 0.058 [ 0.160, 0.160] 3097 1.00 0.160 -
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