
New Insights into Abasic Site Repair and Tolerance

Petria S. Thompson, David Cortez*

Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA

Abstract

Thousands of apurinic/apyrimidinic (AP or abasic) sites form in each cell, each day. This simple 

DNA lesion can have profound consequences to cellular function, genome stability, and disease. 

As potent blocks to polymerases, they interfere with the reading and copying of the genome. Since 

they provide no coding information, they are potent sources of mutation. Due to their reactive 

chemistry, they are intermediates in the formation of lesions that are more challenging to repair 

including double-strand breaks, interstrand crosslinks, and DNA protein crosslinks. Given their 

prevalence and deleterious consequences, cells have multiple mechanisms of repairing and 

tolerating these lesions. While base excision repair of abasic sites in double-strand DNA has been 

studied for decades, new interest in abasic site processing has come from more recent insights into 

how they are processed in single-strand DNA. In this review, we discuss the source of abasic sites, 

their biological consequences, tolerance mechanisms, and how they are repaired in double and 

single-stranded DNA.
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DNA is under constant threat by endogenous and environmental DNA damaging agents. 

Apurinic/apyrimidinic (AP or abasic) are the most frequent DNA lesions. AP sites result 

from cleavage of the N-glycosylic bond between the nitrogenous base and the deoxyribose 

sugar, leaving an intact phosphodiester backbone. Base loss can happen because of 

spontaneous hydrolysis, base damage leading to destabilization of N-glycosyl bond, or the 

action of specialized DNA glycosylases. There are numerous evolutionarily conserved repair 

pathways for AP sites reflecting their physiological importance and mutagenic potential. AP 

site lesions that persist are roadblocks to transcription and DNA replication. Furthermore, 

these non-coding lesions are cytotoxic and a threat to genomic integrity since they can cause 

strand-breaks, interstrand DNA crosslinks, mutations, and DNA-protein crosslinks. 

Therefore, understanding mechanisms of formation and repair of AP sites are critically 
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important. Here, we will review how AP sites are formed, how they are processed by 

different repair and tolerance mechanisms depending on context, and their consequences for 

genome stability.

1. AP Site Formation

AP sites are the most frequent lesion in cells with estimates of ~10,000–20,000 per human 

cell per day [1]. They form spontaneously, as a consequence of destabilization of the N-

glycosyl bond by other types of DNA damage, and enzymatically by glycosylases (Fig. 1A).

1.1 Spontaneous Base Loss

Although DNA is a relatively stable biomolecule, the N-glycosyl bond is prone to 

hydrolysis. Spontaneous depurination events occur at a rate of ~3 × 10−11 nucleotides per 

second in vitro under physiological conditions in duplex DNA [2], [3]. In E. coli, 0.5 

depurinations occur per cell per generation, and in mammalian cells, approximately 10,000 

purines are lost from the genome per day. Guanines are 1.5-times more likely to undergo 

depurination compared to adenines. Although the mechanism of base loss is similar for 

purines and pyrimidines, the rate of depyrimidination is 1/20th the rate for depurination since 

the N-glycosyl bond of pyrimidines are more stable [4]. Furthermore, abasic sites 

preferentially form at sites of DNA replication [5]. The stretches of single-stranded DNA 

(ssDNA) on the lagging strand are more vulnerable to chemical attack and spontaneous bass 

loss. In fact, the rate of depurination is accelerated more than four times in ssDNA versus 

double-stranded DNA (dsDNA) [2].

1.2 Base Damage and Destabilization of N-Glycosylic Bond

Several environmental and cancer therapeutic genotoxins including alkylating agents, 

oxidizing agents, ionizing radiation, and ultraviolet radiation can cause nucleobase loss and 

the formation of AP sites. Base alkylation often weakens the N-glycosyl bond by generating 

an unstable positive charge on the ring base. This protonation on the ring is stabilized via 

electron resonance leading to N-glycosyl bond cleavage [6]. Nitrogenous bases are 

predominately protonated on N3 and N7 of purines and O2 of pyrimidines [7],[8]. The most 

common alkylating agents used in anticancer therapies including methanesulfonate esters, 

nitrosoureas, and nitrogen mustards generate AP sites [9].

Oxidative damage is a significant burden to cells. There are more than 100 types of oxidized 

base modification present in mammalian DNA [10]. Reactive oxygen species such as 

superoxide, hydrogen peroxide, and hydroxyl radicals are by-products of cellular 

metabolism that can modify all four DNA bases [11]. Because of the low redox potential of 

guanine residues, 7,8-dihydro-8-oxoguanine (8-oxoG) is the most common oxidized lesion 

and is present in large quantities [12],[13]. In addition, the formamidopyrimidine lesions 

2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino-5-hydroxy-5-

formamidopyrimidine are other highly mutagenic oxidative lesions caused by fragmentation 

of the purine imidazole ring. Similar oxidative lesions are seen on adenine. Finally, free 

radicals tend to attack thymine and cytosines residues at the 5,6-double bond leading to 

various oxidized base products [11], [12]. These oxidized base derivates cause AP sites 
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directly through destabilization of the N-glycosylic bond (Fig. 1B) or are recognized by 

DNA glycosylases leading to AP site formation.

Ionization radiation (IR) generates a broad spectrum of DNA damage products with double 

strand breaks the predominant lesion causing cellular lethality. However, IR-induced base 

damage can also generate AP sites. IR produces hydroxyl radicals that directly attack the N-

glycosyl bond or react with the 5,6-double bond in nucleobases saturating the ring and 

decreasing N-glycosyl bond stability [14],[15]. Other ring-saturated derivates of IR, such as 

thymine glycol, are recognized by DNA glycosylases that then generate AP sites [16],[17].

Cyclobutane pyrimidine dimers (CPD) are the predominant lesion formed by ultraviolet 

(UV) radiation. However, other UV induced photoproducts can indirectly produce abasic site 

lesions [18]. The addition of water across the 5,6-double bond of cytosine generates cytosine 

hydrate. Cytosine hydrate undergoes deamination to uracil hydrate which is subsequently 

dehydrated to uracil [19]. This UV-induced product forms more readily in ssDNA than 

duplex DNA, and subsequent action of uracil DNA glycosylase generate AP sites [1]. Other 

notable UV induced photoproducts that can lead to abasic sites include thymine glycol, 

alkali labile purine lesions, and other pyrimidine hydrates [20],[13].

1.3 Action of Specialized DNA Glycosylases

DNA glycosylases produce abasic sites as an intermediate step during the repair of damaged 

DNA by the base excision repair pathway (discussed below). These specialized enzymes are 

generally well-conserved through all domains of life. DNA glycosylases catalyze the 

hydrolysis of the N-glycosidic bond between DNA base and sugar-phosphate, releasing the 

base. DNA glycosylases can be classified as monofunctional or bifunctional. 

Monofunctional glycosylases remove the base leaving only the intact AP site whereas 

bifunctional glycosylases have lyase activity that cleaves DNA 3’ of the AP site to generate 

a 3’ unsaturated aldehydic and a 5’-phosphorylated ends [13].

Some DNA glycosylases are specific for base-pair mismatches. Thymine DNA glycosylase 

(TDG) and methyl-CpG-binding domain protein 4 (MBD4) recognize G:T mismatch and 

G:U or G:T mismatch bases, respectively. Other DNA glycosylases are specialized for a 

variety of damaged bases, including 8-oxoguanine glycosylase (OGG1) that recognizes and 

removes 8-oxoG and FapyG lesions and N-methyl-purine DNA glycosylase (MPG) that 

repairs 3meA, 7meG, and 3meG lesions. Most single glycosylase knockouts are not lethal, 

suggesting overlapping substrate recognition amongst DNA glycosylases [13]. Most 

bifunctional glycosylases such as NEIL1, NEIL2, and NEIL3 (endonuclease VIII-like) and 

NTHL1 (endonuclease III-like) are specialized for oxidized pyrimidines and ring-opened 

purines [13].

Uracil DNA glycosylase is perhaps the most conserved among yeast, bacteria, and 

mammalian cells. All mammalian glycosylases that remove uracil are monofunctional. 

Mammalian uracil DNA glycosylase (UNG) travels with the replisome generating abasic 

sites. Uracils are incorporated into DNA via numerous mechanisms. DNA polymerases can 

incorporate dUMP instead of dTMP during replication[21]. While polymerases are highly 

selective, the genome size and much higher concentration of rNTPs than dNTPs in cells 
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mean that more than 13,000 ribonucleotides are incorporated during each round of DNA 

replication in budding yeast and orders of magnitude larger numbers in the human genome 

[22]. Depletion of cellular dNTP pools, which can happen in response to drug treatments 

that interfere with ribonucleotide reductase and replication timing dysregulation caused by 

oncogenes, likely increases uracil incorporation [23].

Another prominent source of uracil incorporation in DNA is cytosine deamination (Fig. 1C). 

Spontaneous deamination of cytosine introduces ~100–500 uracils per day in human 

cells[24]. Cytosines are more prone to heat-induced degradation compared to other DNA 

bases. This deamination occurs spontaneously at neutral pH. The rate of cytosine 

deamination is higher in ssDNA than dsDNA [2],[25],[26], and approximately 1–2% of 

DNA in proliferating mammalian cells is in the single-stranded form at any given time, 

especially during the processes of replication and transcription [25]. Subsequent uracil 

removal by UNG generates significant numbers of AP sites. Furthermore, the additive action 

of enzymes, such as cytosine deaminases, can exacerbate the number of abasic sites in the 

genome. For example, the AID/APOBEC (activation-induced deaminase/apolipoprotein B 

mRNA editing enzyme, catalytic polypeptide-like) family of DNA cytosine deaminases 

specifically act on ssDNA [27]. While APOBEC enzymes are usually retained in the 

cytoplasm and act to restrict invading nucleic acids from pathogens, cancer cells often 

exhibit elevated APOBEC expression and nuclear localization. Thus, cytosine deamination 

by APOBEC enzymes generates two mutational signatures in cancer. One of the signatures 

is the result of misincorporations across from abasic sites [28],[29]. This mutagenesis is 

biased towards the lagging strand since that is where the majority of ssDNA is present to be 

targeted by the APOBEC enzymes during replication [30],[31]. Thus, generation of uracils 

in DNA is a notable source of genome instability that drives tumorigenesis in part through 

production of abasic sites.

2. Consequences of AP sites for genome stability

AP sites have multiple deleterious consequences (Fig. 2). They interfere with the natural 

information content function of the DNA and are obstacles to RNA polymerases. They are 

reactive intermediates in the generation of interstrand and DNA protein crosslinks. When 

encountered during DNA replication, they can generate mutations. Finally, they are potent 

blocks to DNA polymerases, which can threaten the completion of DNA replication.

2. 1 AP sites are intermediates in the formation of interstrand and DNA-protein crosslinks

Abasic sites exist as a sugar anomer in an equilibrating mixture of a closed-ring furanose 

(99%) and an open-ring aldehyde (1%) [32]. The open-ring aldehyde form is highly reactive 

[33]. AP sites can be converted into strand-breaks via a β-elimination reaction where the 3’ 

phosphodiester bond of the aldehyde form is hydrolyzed to generate a 3’-terminal 

unsaturated sugar and a terminal 5’-phosphate. The presence of nucleophilic molecules, 

including thiols, amines, polyamines, and basic proteins, further stimulates this reaction 

[34]. Furthermore, AP sites can generate DNA intra- and inter-strand crosslinks (ICLs) [35],

[36]. The AP aldehyde can react with the exocyclic amino group on nucleobases, especially 

guanine [37],[35]. Interestingly, these abasic site ICLs are cleaved by the DNA glycosylase 
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NEIL3. This NEIL3 mediated “unhooking” prevents DSB formation and curiously generates 

another AP site intermediate [38].

AP sites are also prone to forming crosslinks with multiple proteins. Several repair enzymes, 

including PARP1/2 [39],[40],[41], Pol β [42],[43], and KU [44],[45] can form DPCs with 

AP site lesions or BER intermediates (reviewed in [46],[47]) (Fig. 2). However, these DPCs 

are often thought to be suicidal, deleterious, or transient intermediates. PARP1/2, Pol β, and 

KU all form transient Schiff-base intermediates that can be trapped in the presence of 

NaBH4. Most Schiff-base intermediates are unstable and are quickly resolved by β-

elimination to release the enzyme. Interestingly, Pol β also forms a dead-end suicide DPC 

with 2-deoxyribonolactone (dL), an oxidized AP site derivative [42]. This Pol β DPC occurs 

in the absence of NaBH4, forms in vivo, and is repaired in a proteasome-dependent 

mechanism[43]. Structures of other DNA enzymes that form DPCs such as topoisomerase 

and DNA methyltransferases are in the literature. However, these DPCs are often covalently 

trapped using mechanism-based compounds. Furthermore, at least in the case of 

topoisomerase cleavage complexes, their repair is mediated by a specific set of enzymes (ie-

TDP1/TDP2) [48],[49].

2.2 AP sites are a strong block to replicative polymerases and generate mutations

AP sites preferentially form at sites of DNA replication due to the vulnerability of ssDNA to 

base damage[5]. Although AP sites can retain B-DNA structure [50], they are a potent block 

to replicative polymerases (Pol alpha, delta, and epsilon) [51],[52],[53]. AP sites are highly 

mutagenic, and their mutational capacity varies depending on the organism and system 

used[54]. In E. coli cells, replication past the AP site is characterized by the preferential 

incorporation of adenosine (A) opposite AP sites[55]. This “A-rule” predicts that 

depurinations should produce transversions, and depyrimindations should produce 

transitions. In transfection experiments in which single-stranded bacteriophage DNA was 

introduced into E. coli and recovered from cells, this was the exact mutational pattern 

observed [51],[56]. Furthermore, this rule is observed in systems using purified DNA 

polymerases and constructs containing abasic sites [53], [57], [58]. In Saccharomyces 
cerevisiae, using a dsDNA plasmid system, dAMP was preferentially inserted opposite AP 

sites[59]. However, other nucleotides have been reported to be preferentially inserted 

opposite abasic sites in other studies. Gibbs and colleagues observed a dCMP preference in a 

gapped duplex shuttle vector with a single abasic site located within a single-stranded 

region[60]. Similarly, Otsuka and colleagues using a short oligonucleotide transformation 

observed a preference for dCMP insertion opposite abasic sites[61]. In another study, using 

spontaneous mutagenesis of the SUP4-o gene in APN1 deficient yeast dGMP was 

preferential inserted[62]. Dissimilar results have also been obtained in eukaryotic cells 

suggesting that the A-rule may not always be operable[63],[64],[65]. In any case, the 

preference for nucleotide insertion across form AP sites is dependent on a multiplicity of 

factors including sequence context and cell type. Furthermore, peculiarities dependent on the 

assay such as aberrant DNA synthesis of transfected DNA vs. chromosomal replication may 

also play a role in observed differences in nucleotide preference.
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3. Repair of AP sites in dsDNA

Cells must cope with the high levels of AP site lesions to avoid deleterious consequences. In 

dsDNA, AP sites can be repaired using the high-fidelity methods of Base Excision Repair 

(BER) and Nucleotide Excision Repair (NER) since an intact DNA template remains to 

provide coding information for repair synthesis. These repair systems are fast, accurate, and 

likely conduct the majority of AP site repair[13],[66],[67].

3.1 Repair of AP sites by Base Excision Repair

BER protects the genome from base damage by endogenous and exogenous sources. BER is 

a series of sequential reactions coordinated by multiple enzymes to remove small damaged 

or distorted DNA bases, AP sites, and AP site intermediates (reviewed here [13,68–71]). 

Briefly, the five major steps are: recognition and removal of incorrect or damaged DNA 

base, excision of AP site by AP endonuclease or AP lyase, cleaning up of DNA ends, repair 

synthesis by DNA polymerase, and sealing of the nick by DNA ligase. BER can be broken 

into two subcategories--short-patch repair for single-nucleotide lesions and long-patch repair 

for multiple-nucleotide lesions. In general, short-patch repair is more prevalent and utilizes 

APE1 and Pol β [72].

For short patch repair, the modified base is removed by a monofunctional DNA glycosylase. 

AP endonuclease incises the DNA 5’ to the AP lesion, leaving behind 3’ hydroxyl and 5’ 

terminal deoxyribose phosphate (5’ dRP) DNA ends. The resulting one-nucleotide gap in 

duplex DNA is then repaired by Pol β or Pol λ with the help of accessory factors poly(ADP-

ribose) polymerase 1 (PARP) and X-ray repair cross-complementing 1 (XRCC1). Finally, 

DNA ligase I or 3 ligates the DNA ends to seal the nick. For long patch repair, Pol δ, ε, or λ 
perform strand displacement synthesis to remove 2–10 nucleotides. A 5’ flap is generated 

and then removed by flap endonuclease 1 (FEN1). This generates the DNA end required for 

ligation. Short and long-patch BER occur in parallel. Changes in cell type, cell cycle, the 

initiating glycosylase, or the ATP concentration all have been implicated in BER pathway 

choice [73],[74].

3.2 Nucleotide excision repair of AP sites

In addition to BER, nucleotide excision repair (NER) can also remove AP sites from DNA. 

Two types of NER are possible – global genome NER (GG-NER) or transcription-coupled 

NER (TC-NER) (reviewed here [66,67]). In GG-NER, large distortions in the DNA helix, 

such as pyrimidine dimers, promote the recruitment of NER machinery. NER enzymes 

generate single-strand nicks in the DNA 5’ and 3’ to damage to generate a ~25–30 

nucleotide single-strand fragment[75]. The subsequent gap is repaired by the actions of 

DNA polymerase and DNA ligase. Generally, small base damage and AP sites are not 

thought to generate the needed helical distortion for recognition by GG-NER. However, in 

E. coli the central NER protein uvrABC can generate 3’ and 5’ nicks to an AP site in vitro 
[76],[77]. Similarly, eukaryotic NER proteins can recognize and process AP sites in 
vitro[78]. In yeast, NER inactivation increases sensitivity of AP endonuclease-deficient cells 

to MMS. Furthermore, the rate of AP site repair is decreased and the MMS-induced 

mutation frequency is increased in BER- and NER-deficient cells.[79] Other studies have 
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also found an overlap or crosstalk between BER and NER pathways[80] suggesting that 

NER and BER have the ability to recognize and repair similar lesions.

TC-NER is a major repair mechanism for AP sites in cells. AP sites are a potent block to T7 

RNAP and RNA polymerase II (RNAPII) during transcription when present on the actively 

transcribed strand[81]. The AP lesion structurally interferes with nucleotide incorporation, 

and subsequent nucleotide extension past the AP site is slow[82]. The stalling of 

transcription at AP sites is highly mutagenic[83], and AMP is preferentially inserted 

opposite AP sites by RNAPII[82]. Furthermore, highly transcribed sequences are more 

susceptible to AP site accumulation and are a significant source of transcription-associated 

mutagenesis[84], [85], [86], [87]. NER deficiencies cause increased transcriptional 

mutagenesis at the AP site [84], [88]. The paused RNAPII at lesions signals the recruitment 

of the NER machinery. Overall, the final steps of excision, repair, and ligation remain the 

same as GG-NER.

4. AP site repair in ssDNA context

AP sites in ssDNA present a different threat to genome stability that generally cannot be 

solved by excision repair. ssDNA AP sites can form wherever ssDNA exists such as at 

telomeres or in transcription bubbles. However, they are most prevalent during DNA 

replication due to either the unwinding of dsDNA containing an unrepaired AP site or the 

generation of a new AP site in the ssDNA on the lagging strand. Thus, most ssDNA abasic 

site repair or tolerance mechanisms operate in the context of replication. BER enzymes such 

as APE1 do have activity on AP sites in ssDNA, although AP-ssDNA processing by APE1 is 

~20-fold less compared to AP-dsDNA[89]. Many DNA glycosylases also have activity 

against AP-ssDNA substrates [90],[91],[92]. There may be a function for BER repair in 

ssDNA at sites of transcription or replication [90]. However, since BER cleaves the DNA 

backbone, it generally would not be useful for AP sites in ssDNA since there would not be a 

template for repair. Translesion synthesis (TLS) polymerases provide one error-prone 

mechanism of AP site tolerance. Homologous recombination or fork reversal combined with 

template switching can provide an error-free mechanism. Finally, two additional initiating 

mechanisms for repair or tolerance of ssDNA-AP sites were recently described, which are 

mediated by Rad51 paralogs[93] or the evolutionarily conserved AP basic site shielding 

protein HMCES [94].

4. 1 TLS Bypass of AP Sites

TLS polymerases replicate past lesions that block replicative polymerases, thus allowing 

cells to tolerate DNA damage (Fig. 3A). These polymerases have a larger active site 

compared to replicative polymerase allowing accommodation of damaged or distorted bases. 

However, the low fidelity and lack of exonuclease proofreading activity of TLS polymerases 

combined with the lack of coding information on the template strand make bypass of DNA 

lesions error prone. Here we will focus on the abasic site specificity of TLS polymerases. 

The specificity of bypass for other lesions has been reviewed previously [95],[96].

TLS polymerases bypass often follows a two-step process where one polymerase inserts a 

nucleotide across from the lesion and another polymerase extends past the lesion. Following 
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bypass and extension by TLS, further extension is resumed by high fidelity polymerases. 

TLS polymerases involved in abasic site bypass include the Y family of polymerases 

including Pol eta (Rad30) and Rev1 in S. cerevisiae, Polη, Polι, Polκ, and Rev1 in humans, 

and DNA Pol IV (DinB) and Pol V (UmuC) in E. coli. The Y-family polymerases generally 

act as insertors across from the AP site lesions. B-family polymerases such as E. coli DNA 

pol II and eukaryotic Polζ usually perform extension synthesis from the inserted nucleobase 

opposite the abasic site. Other polymerases such as Polλ and Polμ are generally not thought 

to be involved in AP site bypass.

In vertebrates, much of the in vivo evidence for TLS bypass of AP sites comes from studies 

of immunoglobulin (Ig) somatic hypermutation (SHM). During B-cell development, B cells 

undergo a second round of antibody diversification involving the Ig locus. In this process, 

the rearranged IgG genes are hypermutated by activation-induced deaminase (AID), a 

member of the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-

like) family of proteins. AID intentionally generates deoxyuridines in ssDNA. A portion of 

these uracils are subsequently processed by uracil DNA glycosylase to generate abasic sites 

that are then bypassed by TLS polymerases. Data suggests a role for Polη Polι Rev1, and 

Polζ in SHM although the modest effects of genetic inactivation of Polη and Polι suggest 

there is significant redundancy or compensation.

Polη is adept at bypassing UV photoproducts. However, its overall contribution to AP site 

bypass is controversial. In yeast, pol eta (Rad30) deficiency is dispensable for AP site 

bypass [97]. In patients with a variant form of xeroderma pigmentosum (XPV), the 

frequency of SHM is normal [98]. Similarly, in Polη-deficient mice the frequency of 

mutations remains overall the same compared to wild-type[99]. However, the Ig mutational 

profile in both the XPV patients and Polη-deficient mice suggest that Polη contributes to 

mutations at A and T[98], [99]. In vitro, Polη can bypass AP sites but its efficiency may be 

low and dependent on sequence context and experimental conditions [100],[101],[102].

Polι may also have limited activity in AP site bypass. The overall frequency of SHM is 

decreased in BL2 Burkitt’s Lymphoma cells deficient for Polι [103]. However, mice with a 

natural nonsense mutation in the POLI gene have a normal frequency of Ig hypermutation 

[104]. Inactivation of Polι with simultaneous loss of Polη in mice does not alter the 

mutation pattern seen by Polη alone suggesting a marginal role for Polι in AP site bypass 

[105]. Polι can incorporate nucleotides opposite an abasic site lesion with preference for 

dGTP and dTTP over dATP and dCTP [106],[107] but it cannot do extension synthesis after 

nucleotide incorporation [108].

The REV1 Y family DNA polymerase, interacts with REV7 and inserts dCMP opposite AP 

sites due to its intrinsic dCMP transferase activity [109], [110]. Mice with a rev1 deficiency 

have a normal frequency of SHM but a decrease in C to G transversions suggesting a role for 

Rev1 in AP site bypass [111]. Similarly, disruption of the REV1 gene in DT40 cells causes 

defects in SHM [112]. Using a subtelomeric ssDNA reporter system, Chan and colleagues 

were able to assess the in vivo specificity of AP site bypass by different TLS polymerases in 

yeast [97]. By overexpressing APOBEC3G, they were able to selectively generate AP sites 

in ssDNA and show that Rev1 and Rev3 (the catalytic subunit of Polζ) were necessary for 
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TLS bypass of AP sites [97]. Additionally, Rev1-deficient yeast exhibit a marked decrease in 

mutation frequency of AP-ssDNA [97]. Interestingly, catalytic dead Rev1 expressing cells 

have wild-type mutation frequencies suggesting it has a non-catalytic, scaffolding function 

for other TLS polymerases [97],[59],[113]. However, the composition of mutations in the 

Rev1-catalytic dead cells is markedly different [97]. Thus, Rev1 may be the predominant 

polymerase that inserts dCMP across from AP sites, which is consistent with other studies 

[60],[111],[112],[114],[115].

To date there does not seem to be a significant role for Polκ [116],[117] or Polθ in SHM, 

although Polθ can bypass AP sites in vitro [118],[119].The role of Polβ in SHM is 

controversial and its effects in B-cell development may be due to other DNA repair functions 

[120],[121],[122]. After insertion of a base across from the AP, site Polζ is involved in the 

majority of extension polymerization prior to switching to high fidelity polymerases [113]. 

Polζ is a complex of the catalytic subunit REV3 and an accessory subunit REV7. Error-

prone synthesis by Polζ can continue for several hundred nucleotides[123]. In yeast, Rev3 is 

required for AP site induced mutagenesis [113],[97]. Studies based on transfection of 

plasmids with a single AP site show that Rev3 is necessary for the majority of mutagenic 

TLS bypass [114],[59]. Mice expressing rev3l anti-sense RNA have reduced mutation 

frequencies at all base pairs in the IgVH genes and impaired affinity maturation of memory 

B cells indicating a significant function for Polζ in SHM [124]. Thus, Polζis critical for 

TLS-mediated bypass of AP sites.

In E. coli, SOS induction increases replication-dependent AP site tolerance by increasing 

expression of TLS polymerases. The SOS-induced polymerases umuC and umuD (Pol V) 

and dinB (pol IV) can bypass AP sites. Pol V is thought to be the major lesion bypass DNA 

polymerase for AP sites in vivo and contributes to the A-rule by preferentially incorporating 

dAMP [125],[126],[127]. Deletion of umuDC operon causes a 3.5-fold decrease in 

spontaneous mutation frequency in BER deficient E. coli [128]. The UmuC-UmuD’ 

complex in conjunction with RecA and SSB (single-stranded DNA binding protein) act to 

rescue replicative polymerase stalled at AP sites [129],[130]. In the absence of UmuD’ and 

UmuC AP sites are skipped resulting in mostly single-nucleotide deletions [130]. Pol IV 

(dinB) is 5–10-fold more accurate than Pol V (umuCD), but it is inefficient at AP site bypass 

[125],[127], and DinB does not seem to play a major role in AP site bypass.

4.2 Recombination and Template-Switching repair of AP Sites

Homologous recombination (HR)-mediated repair and template switching have also been 

suggested as an error free mechanism of AP site repair. Certainly if AP sites are processed 

into DSBs or if AP sites are part of complex lesions such as those generated by radiation or 

free radicals, then homology-directed repair of the break including resection and strand 

invasion would be useful [131],[1]. HR-mediated repair may be particularly important 

during DNA replication. When a replication fork encounters an AP site, the helicase 

unwinds the DNA but the polymerase stalls leading to an accumulation of ssDNA. This 

increase of ssDNA could invoke HR and template switching pathways.

Using an engineered thymine DNA glycosylase to generate chromosomal AP sites, Otterle 

and colleagues demonstrated that AP site cytotoxic effects are enhanced in cells deficient in 
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BER, TLS, and recombination repair [132]. Furthermore, chromosomal AP sites are 

cytotoxic and mutagenic in E. coli strains deficient in recombination or BER [133]. In S. 
cerevisiae, BER-deficient strains have an increased rate of HR [80]. When HR is diminished 

in the setting of BER deficiency, a stronger mutator phenotype results compared to loss of 

BER or HR alone. Likewise, when TLS and BER are inactivated, there is a synergistic 

increase in the recombination rate indicating that multiple, partly compensatory pathways 

can converge to accomplish AP site repair [80]. In mammalian cells, HR was shown to 

repair DNA gaps opposite an abasic site in a plasmid-based assay [134]

During replication, template switching can promote error-free repair of AP sites. In template 

switching the undamaged information on the sister chromatid is utilized to generate duplex 

DNA that can then be processed via one of the dsDNA AP site repair mechanisms. Template 

switching could occur via a fork reversal process in which a four-way junction is generated 

by annealing the two nascent DNA strands (Fig. 3B), or a strand invasion mechanism 

dependent on HR proteins like RAD51 or RAD52 [135] (Fig. 3C). In both cases, DNA 

synthesis followed by a resolution step allows bypass of the lesion without introduction of a 

mutation [136]. The AP site can then be repaired via BER at a later time. Alternatively, the 

lesion could be repaired while the fork is reversed to generate an intact template for 

continued DNA synthesis. In E. coli, repair of a gapped plasmid containing an abasic site 

was repaired 20% of the time by template switching [137]. Fork reversal is thought to be a 

frequent event in human cells [136], but whether it actually facilitates error-free AP site 

tolerance is unknown [138].

4.3 The Shu complex promotes damage tolerance of AP sites

The S. cerevisiae Shu complex is a heterotetrametric complex containing Shu2 (SWIM 

domain containing protein) and the RAD51 paralogs Csm2, Pys3, and Shu1. Based on 

subunit homologies to RAD51, it was originally characterized in HR repair of DSBs[139]. 

More recently, an activity in controlling ssDNA AP site processing was discovered (Fig. 

4A). Shu mutant yeast are sensitive to MMS-induced replication blocking lesions and have 

an elevated mutation frequency consistent with an activity in promoting error-free lesion 

tolerance [140]. Indeed, Shu promotes error-free bypass of MMS-induced alkylation damage 

and abasic sites specifically when they are present on the lagging strand template during 

replication [140]. Csm2-Psy3 of the Shu complex binds double-flap DNA substrates with 

AP sites in vitro and accumulates on AP site associated chromatin in vivo. This binding of 

abasic sites blocks AP endonuclease activity thereby preventing DSB formation[93]. The 

Shu complex may both protect the ssDNA AP site from cleavage and promote RAD51-

dependent template switching to prevent mutations[93]. A Shu2 protein (SWS1) is found in 

human cells [141]. SWS1 binds a RAD51 paralog called SWSAP1 [142]. Inactivation of 

these proteins increases cellular sensitivity to DNA damaging agents that stall forks and 

reduces fork restart [143]. However, it is not yet known if it has an ssDNA AP-site tolerance 

activity like the yeast Shu complex.

4.4 HMCES initiates a new mechanism for ssDNA AP site recognition and repair

The evolutionary conserved protein HMCES (5-hydroxymethylcytosine embryonic stem 

cells specific) recently was discovered to initiate a pathway for recognition and repair of AP 
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sites in ssDNA [94] (Fig. 4B). HMCES was found in a mass spectrometry search for 

candidate proteins that preferentially bind oxidized derivatives of methylcytosine including 

5-hydroxymethylcytosine (5hmC) suggesting it might act in an epigenetic pathway of gene 

expression control [144]. It was also reported to act as a nuclease towards 5hmc-containing 

DNA [145]. However, other studies failed to replicate these findings [94]. Furthermore, 

HMCES-deficient or over-expressing human cells did not exhibit changes in levels of 5mC 

or 5hmC [94]. HMCES deficiency also does not cause a global change 5hmc in bone 

marrow cells [145] or adult mice [146], although some change was reported in embryonic 

stem cells [146]. Consistent with a lack of epigenetic function, very few changes in gene 

expression were found in HMCES-deficient cells [94]. Therefore, HMCES may be a 

misnomer. Instead, an increase in replication-dependent DNA damage in HMCES-deficient 

cells, and an increase in DNA damage-dependent transcripts suggests it acts in a replication-

coupled DNA repair pathway [94].

HMCES contains an SOS response associated peptidase (SRAP) domain named because 

SRAP genes in bacteria are spatially linked to SOS response genes including mutagenic TLS 

polymerases [147]. SRAP domains are conserved through all domains of life and have a 

proposed thiol autopeptidase activity dependent on a conserved triad of residues (cysteine, 

glutamate, and histidine) [147]. This peptidase activity was suggested to be an 

autoproteolytic switch [145]. However, the only residue that would be removed by this 

proposed activity would be the N-terminal methionine since the cysteine is almost 

universally encoded by residue two, and amino-peptidases should typically remove the 

methionine anyway.

Supporting an activity in AP site recognition and processing, HMCES-deficient cells exhibit 

marked sensitivity to AP site inducing DNA damage agents, including IR, UV, MMS, and 

KBrO3 and have a defect in AP site resolution [94]. HMCES is recruited to chromatin in 

response to these agents selectively in S-phase cells, it is localized to replication forks, and 

directly interacts with PCNA [94]. Furthermore, HMCES-deficient cells are hypersensitive 

to the nuclear expression of APOBEC3A, further supporting that HMCES is responding to 

an AP lesion [148].

HMCES and its E.coli ortholog yedK recognize AP sites in ssDNA and form a stable 

thiazolidine linkage between the ring-opened AP site and the alpha-amino and sulfhydryl 

groups of the invariant second amino acid cysteine [149],[150],[151]. The HMCES DPC is 

stable, resistant to strand cleavage by AP endonuclease, and is resolved at least in part via a 

ubiquitin-dependent mechanism [149],[94]. The HMCES peptide-DNA adduct left after 

proteolysis is also resistant to AP endonuclease cleavage [149]. HMCES-deficient cells 

accumulate DNA double-strand breaks during DNA replication [148]. Crystal structures 

reveal that HMCES has a preference for AP sites at 3’ dsDNA-ssDNA junctions [149] (and 

reviewed in this issue [156]). The is the exact type of junction that would form when a 

replicative polymerase stalls at an AP site. Interestingly, HMCES-DPC formation reduces 

mutation frequencies, HMCES-deficient cells have elevated Polζ levels at replication forks, 

and TLS activity generates the slow replication elongation kinetics seen in the cells 

expressing nuclear APOBEC3A [94],[148].
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Unifying these observations is the model that HMCES shields ssDNA AP sites from other 

pathways that would generate DSBs or mutations. In the context of replication, this would 

presumably let cells get on with replication and reduce genome instability. However, most 

DPC repair is thought to be an error-prone process as the final steps require TLS 

polymerization past a peptide-DNA adduct [152],[153]. How the HMCES-DPC could be 

resolved by an error-free manner is an unanswered question. Template switching or fork 

reversal could be involved similar to what is proposed for the Shu complex pathway. 

Alternatively, TLS activity could still work downstream of the HMCES-DPC, but the 

specific lesion being bypassed (a DPC vs. abasic site) may provide some advantage.

Finally, HMCES may have a DSB repair activity in addition to its activity in AP site 

processing. HMCES-deficient cells are hypersensitive to ionizing radiation (IR), but not 

sensitive to PARP inhibitors and they do not exhibit defects in HR or classical non-

homologous end joining (NHEJ) repair of DSBs [94]. However, HMCES has been 

implicated in microhomology-mediated alternative end-joining (Alt-EJ) [146], and the top 

co-dependency with HMCES identified in the cancer dependency map project is the Alt-EJ 

factor Polθ [154]. The mechanism of HMCES function in this pathway is unclear and is 

reported to be independent of the catalytic cysteine residue [146]. This Alt-EJ activity is 

unlikely to explain the IR sensitivity of HMCES-deficient cells since cells expressing 

HMCES with a mutation in the cysteine remain IR sensitive [94]. Further studies will be 

needed to understand the relationship of this function of HMCES to its activity in AP site 

processing.

5. Conclusion

The prevalence, mutagenicity, and potential for cytotoxicity of AP sites explains why there 

are so many evolutionarily conserved mechanisms of AP site repair and tolerance. The 

context of when and where an AP site lesion occurs helps to determine which repair 

pathway is used, but additional regulation that remains poorly understood must also be 

important. Given the long history of AP site repair studies, the recent identification of new 

mechanisms mediated by proteins like HMCES and the Shu complex underscores how much 

we do not know. Further studies will undoubtedly generate new surprises. Furthermore, 

these studies have health relevance. In the context of cancer, exploiting AP site repair may 

be advantageous. For example, in human B-cell lymphoma there is a higher expression of 

AID and high AP site levels. In fact, treatment with an agent that binds covalently to AP 

sites is cytotoxic to these AP site high cancer cells but not to other cancer cells or normal 

cells [155]. Thus, a relatively simple DNA lesion has complex and important causes and 

consequences.
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ssDNA single-stranded

DNA dsDNA double-stranded DNA

8-oxoG 7,8-dihydro-8-oxoguanine

FapyG 2,6-diamino-4-hydroxy-5-formamidopyrimidine

IR ionizing radiation

CPD Cyclobutane pyrimidine dimers

UV ultraviolet

TDG Thymine DNA glycosylase

MBD4 methyl-CpG-binding domain protein 4

OGG1 8-oxoguanine glycosylase

MPG N-methyl-purine DNA glycosylase

NEIL1/2 Neil endonucleaseVIII-like

NTHL1 E. coli nth endonuclease III-like

UNG or UDG uracil DNA glycosylase

AID/APOBEC activation-induced deaminase/apolipoprotein B mRNA 

editing enzyme, catalytic polypeptide-like

dL 2-deoxyribonolactone

BER Base Excision Repair

NER Nucleotide Excision Repair

PARP poly(ADP-ribose) polymerase

XRCC1 X-ray repair cross-complementing 1

FEN1 flap endonuclease 1

GG-NER global genome nucleotide excision repair

TC-NER transcription-coupled nucleotide excision repair

RNAPII RNA polymerase II

TLS translesion synthesis

HMCES 5-hydroxymethylcytosine embryonic stem cells specific

Ig immunoglobulin

SHM somatic hypermutation
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SSB single-stranded DNA binding protein

HR homologous recombination

Shu2 SWIM domain containing protein 2

5hmC 5-hydroxy-methylcytosine

SRAP SOS response associated peptidase

DPC DNA-protein crosslink

NHEJ non-homologous end joining

Alt-EJ microhomology-mediated alternative end-joining
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Fig. 1. 
Mechanisms of AP site formation. A. Potential sources of AP site formation. B. 

Destabilization of N-glyosidic bond after base damage generates AP site. Spontaneous or 

catalyzed deamination of cytosine generates uracil. Subsequent action of UDG produces an 

AP site.
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Fig. 2. 
Consequences of unrepaired AP sites. AP sites (in center) react to form stable (pink) or 

transient (blue) DNA-protein crosslinks (DPCs) (left), generate intrastrand crosslinks (ICLs) 

(top), stall DNA polymerases and RNA polymerases (right), and can cause strand breakage 

via β-elimination (bottom).
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Fig. 3. 
AP site repair in ssDNA. A. Translesion synthesis (TLS) polymerase bypass an AP lesion to 

promote error-prone damage tolerance. B. Fork reversal generates a four-way chicken foot 

structure that can facilitate template switching or excision repair. C. Template switching 

using a strand invasion step can place a ssDNA AP lesion in the context of dsDNA for error-

free bypass and repair.
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Fig. 4. 
New mechanisms of AP site recognition and repair in ssDNA. A. Model of Shu-mediated 

error-free damage tolerance of AP site. Shu complex binding to an AP site promotes RAD51 

filament formation and template switching using the sister chromatid. BER is used to repair 

AP site post-replicatively. B. HMCES initiates repair of AP sites by forming a DNA-protein 

crosslink to AP site in ssDNA especially in the context of DNA replication. The HMCES-

AP site DPC prevents endonuclease cleavage and TLS bypass. The mechanisms by which 

the HMCES-DPC is ultimately repaired remain unknown.
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