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CRISPR/Cas9 knockout of human 
arylamine N-acetyltransferase 
1 in MDA-MB-231 breast cancer 
cells suggests a role in cellular 
metabolism
Samantha M. Carlisle1,4, Patrick J. Trainor2,3, Kyung U. Hong1, Mark A. Doll1 & 
David W. Hein1 ✉

Human arylamine N-acetyltransferase 1 (NAT1), present in all tissues, is classically described as a 
phase-II xenobiotic metabolizing enzyme but can also catalyze the hydrolysis of acetyl-Coenzyme A 
(acetyl-CoA) in the absence of an arylamine substrate using folate as a cofactor. NAT1 activity varies 
inter-individually and has been shown to be overexpressed in estrogen receptor-positive (ER+) breast 
cancers. NAT1 has also been implicated in breast cancer progression however the exact role of NAT1 
remains unknown. The objective of this study was to evaluate the effect of varying levels of NAT1 N-
acetylation activity in MDA-MB-231 breast cancer cells on global cellular metabolism and to probe for 
unknown endogenous NAT1 substrates. Global, untargeted metabolomics was conducted via ultra 
performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) on MDA-MB-231 
breast cancer cell lines constructed with siRNA and CRISPR/Cas9 technologies to vary only in NAT1 
N-acetylation activity. Many metabolites were differentially abundant in NAT1-modified cell lines 
compared to the Scrambled parental cell line. N-acetylasparagine and N-acetylputrescine abundances 
were strongly positively correlated (r = 0.986 and r = 0.944, respectively) with NAT1 N-acetylation 
activity whereas saccharopine abundance was strongly inversely correlated (r = −0.876). Two of 
the most striking observations were a reduction in de novo pyrimidine biosynthesis and defective 
β-oxidation of fatty acids in the absence of NAT1. We have shown that NAT1 expression differentially 
affects cellular metabolism dependent on the level of expression. Our results support the hypothesis 
that NAT1 is not just a xenobiotic metabolizing enzyme and may have a role in endogenous cellular 
metabolism.

Breast cancer is a heterogeneous disease with many underlying genetic transformations that lead to a diseased 
state. According to the American Cancer Association, 30% of all new cancer cases in women in 2020 will be breast 
cancer and 1 in 8 women will develop breast cancer in their lifetime1. A better understanding of the role NAT1 has 
in breast cancer would aide in the development of novel treatment strategies and therapeutics.

Human arylamine N-acetyltransferase 1 (NAT1) is a phase-II xenobiotic metabolizing enzyme found 
in almost all tissues. NAT1 can additionally hydrolyze acetyl-Coenzyme A (acetyl-CoA) in the absence of an 
arylamine substrate using folate as a co-factor2,3. Many additional novel roles for NAT1 have recently been 
identified using breast cancer cell models including regulation of matrix metalloproteinase 9 (MMP9)4, pro-
viding protection against reactive oxygen species during glucose starvation5, and the loss of NAT1 leading to 
regulation of mitochondria through inhibition of the pyruvate dehydrogenase complex6. NAT1 expression varies 
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inter-individually and has been shown to be elevated in several cancers including estrogen receptor-positive 
(ER+) breast cancers7–9. Additionally, multiple studies have shown that inhibition of NAT1, by both small mol-
ecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation10 
and decreased anchorage-independent colony formation11.

To date however, the exact mechanism by which NAT1 expression affects cancer risk and progression remains 
unclear (reviewed in12). Differences in endogenous acetyl-CoA have been observed between MDA-MB-231 
breast cancer cells expressing parental, increased, and decreased levels of human NAT111,13. A previous study 
investigating the polar metabolome of the same cells has also revealed differences in a number of metabolites, 
including amino acids and palmitoleic acid13. Given these data, we hypothesize differences in NAT1 activity may 
be contributing to downstream effects on metabolic pathways that utilize acetyl-CoA such as the TCA cycle and 
fatty acid synthesis and degradation.

As metabolic reprogramming is one of the hallmarks of cancer proposed by Hanahan and Weinberg14 
and acetyl-CoA plays a central role in metabolism15 we have utilized untargeted metabolomics to investigate 
how different levels of NAT1 affect cellular metabolism in MDA-MB-231 triple negative breast cancer cells. 
Metabolomics provides a well-suited method to interrogate global changes in cellular metabolism. Many studies 
have utilized metabolomics to study cellular metabolism alterations in breast cancer in an effort to increase the 
understanding of the disease process and to identify potential therapeutic targets or diagnostic biomarkers16–18. 
To build upon our previous metabolomics work13, we have expanded the scope of metabolites measured from 
only the polar metabolome to the global metabolome and also expanded the samples to include complete NAT1 
knockout (KO) cell lines as well as a cell line that has only one copy of NAT1 knocked-out (expresses half of 
parental NAT1 activity).

Materials and Methods
We conducted a global untargeted metabolomics study on MDA-MB-231 breast cancer cell lines expressing 
parental (Scrambled), increased (Up), decreased (Down, CRISPR 2-12), or knockout (CRISPR 2–19, CRISPR 5–50) 
human NAT1 N-acetylation activity (Fig. 1). The construction and characterization of the Scrambled, Down, and 
Up cell lines are described in detail elsewhere11,13. Briefly, the Scrambled cell line was included as a transfection 
control; the Up cell line expresses an approximate 700% increase in NAT1 activity while activity in the Down cell 
line is decreased approximately 40% compared to the Scrambled cell line.

Additionally, cell lines constructed using CRISPR/Cas9 technology, expressing approximately 50% of the 
NAT1 activity of the Scrambled cell line (CRISPR 2–12) and no detectable (knockout) NAT1 activity (CRISPR 
2–19, CRISPR 5–50) were included in this study (Fig. 1). The construction and characterization of the CRISPR 
2–19 and CRISPR 5–50 cell lines has been described elsewhere19,20 (MDA-MB-231 2 = CRISPR 2–19 & 
MDA-MB-231 5 = CRISPR 5–50 in that manuscript) however the construction of the CRISPR 2–12 cell line has 
not been previously described. The CRISPR 2–12 cell line was constructed using the same methodology and guide 
RNA as the CRISPR 2–19 cell line described in Carlisle et al.19. All cell lines were authenticated by the ATCC 
Short Tandem Repeat (STR) profiling cell authentication service.

NAT1 N-Acetylation activity assays.  In vitro NAT1 N-acetylation activity was determined in each con-
structed cell line via high performance liquid chromatography (HPLC) using slight modifications of procedures 
previously described19,21. Briefly, cell lysate from each cell line was incubated with 1 mM acetyl-CoA and 300 μM 
p-aminobenzoic acid (PABA) at 37 °C for 10 minutes. Reactions were terminated with the addition of 1/10 reac-
tion volume 1 M acetic acid. Reaction products were collected and analyzed using an Agilent Technologies 1260 
Infinity high performance liquid chromatography using a LiChrospher 100 RP-18 (125 × 4 mm; 5 μm) column to 
determine the amount of acetylated product.

Collection of Samples.  Cells were plated in triplicate per biological replicate at a density of 500,000 cells per 
150 × 25 mm cell plate. All cell lines were cultured in high-glucose Dulbecco’s Modified Eagle Medium (DMEM), 
with 10% fetal bovine serum, 1% glutamine, and 1% penicillin/streptomycin added. Cells were allowed to grow 
for three days in an incubator at 37 °C and 5% CO2.

Cells were then harvested on ice by adding 5 mL 0.25% trypsin and scraping the cells from the plate. Three 
plates were combined to form one sample (biological replicate) to ensure there was enough cell mass for analysis. 
After harvesting the cells, cells were washed 3 times with ice-cold 1 x phosphate buffered saline (PBS). All super-
natant was removed and the cryovials containing cell pellet samples were then flash frozen by placing in a pool of 
liquid nitrogen for 1 minute followed by immediate storage at −80 °C. Samples were then shipped on dry ice to 
Metabolon Inc. (Durham, NC) for analysis.

Following receipt by Metabolon, samples were inventoried and immediately stored at −80 °C until pro-
cessing. Detailed sample preparation, quality assessment/quality control, ultrahigh performance liquid 
chromatography-tandem mass spectrometry (UPLC-MS/MS), data extraction, compound identification, and 
metabolite quantification methods are described in detail elsewhere22.

Statistical analyses.  Biochemical data was normalized to total protein as determined by Bradford assay to 
account for differences in metabolite levels due to differences in the amount of material present in each sample. 
Data for each biochemical was rescaled to set the median equal to 1. Missing values were imputed with the min-
imum value.

All statistical analyses were performed on median-scaled and log-transformed data using R: A Language and 
Environment for Statistical Computing version 3.3.123. Data was approximately normally distributed after these 
transformations. Figure 1 illustrates experimental approach and data analyses methods. One-way ANOVA was 
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performed to test for differences between all groups for each metabolite. Q-values were then calculated from 
un-adjusted p-values for preserving the false discovery rate and to account for multiple comparisons24. Dunnett’s 
post-tests were utilized to compare all groups (Up, Down, CRISPR 2–12, CRISPR 2–19, CRISPR 5–50) to the 
Scrambled group for those metabolites with one-way ANOVA q ≤ 0.05. Q-values were also determined and 
reported for Dunnett’s post-tests.

Fold-change was calculated as previously described13. Briefly, the mean abundance for each metabolite was 
calculated for each group. We then divided the mean of the comparison group (Up, Down, CRISPR 2-12, CRISPR 
2-19, CRISPR 5-50) by the mean of the Scrambled group to give us fold-change relative to the Scrambled group. 
Fold-change and significance of between group differences in global metabolites were visualized using volcano 
plots. Additionally, abundance data were plotted as box-plots to visualize the distribution of each metabolite 
by groups. The Pearson correlation coefficient was calculated between NAT1 activity and relative metabolite 
abundance for all metabolites to generate hypotheses about potential unknown NAT1 substrates or products. 
Additionally, the correlation coefficient was calculated between carnitine and metabolites whose abundance was 
concordantly altered in the two NAT1 KO cell lines due to the large proportion of fatty acyl-CoA carnitine con-
jugates observed. Data was also plotted as a heatmap and hierarchal clustering was conducted using the weighted 
pair group method with arithmetic mean (WPGMA) method. Principal component analysis was conducted by 
singular value decomposition of the centered data matrix. The loadings of the first (horizontal-axis) and second 
(vertical-axis) principal component were plotted. Pathway enrichment analysis was conducted for each group 
compared to Scrambled. The pathway analysis enrichment score was normalized to mean enrichment of random 
samples of the same size to determine the relative degree of enrichment.

Figure 1.  Diagram of Experimental Approach. Six biological replicates from each cell line were collected. 
Samples were then analyzed by UPLC-MS/MS using 4 methods. Following metabolite identification, abundance 
data was protein normalized, median scaled, minimum values imputed, and log-transformed. Metabolite 
abundances were then analyzed for differential abundance, correlation with NAT1 N-acetylation activity, 
unbiased multivariate analysis/clustering, and pathway enrichment.
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Results
p-aminobenzoic acid (PABA) N-acetylation activity was measured in each of the six MDA-MB-231 cell lines. 
The Scrambled cell line had approximately the same activity as the Parent MDA-MB-231 cell line while the Up 
cell line had an approximate 700% increase in activity. Additionally, the Down and CRISPR 2-12 cell lines had 
approximately 65% and 50% of the activity of the Parent and Scrambled cell lines, respectively, while the CRISPR 
2-19 and CRISPR 5-50 cell lines had no detectable (limit of detection = 0.05 nmoles acetylated PABA/min/mg) 
activity (Fig. 2).

Univariate analyses.  Summary statistics of differentially abundant metabolites.  A large proportion 
(515/567; 90.8%) of the detected metabolites were found to significantly differ (q ≤ 0.05) between the six cell 
lines (Table 1). Following Dunnett’s post-tests it was observed that more metabolites differed in the cell lines con-
structed via CRISPR/Cas9 than the cell lines constructed via siRNA when compared to the Scrambled cell line. 
A subset of total detected metabolites (9.5%, 5.6%, 28.4%, 35.8%, and 19.9%) were differentially abundant in the 
Down, Up, CRISPR 2-12, CRISPR 2-19, and CRISPR 5-50 groups, respectively, with a fold change of 2 or greater 
(in either direction) compared to the Scrambled cell line. Metabolites were further characterized by direction of 

Figure 2.  NAT1 N-acetylation Activity in the Parent and Constructed MDA-MB-231 Cell Lines. The Parent 
and Scrambled cell lines expressed approximately the same level of NAT1 N-acetylation activity while NAT1 
N-acetylation activity in the Down and CRISPR 2-12 cell lines was decreased by approximately 50%. NAT1 N-
acetylation activity in the Up cell line was increased by approximately 700%. The CRISPR 2-19 and CRISPR 5-50 
had no detectable NAT1 N-acetylation activity. Modified from data published previously19.

One-way ANOVA

Statistical Comparison

All Groups

Total Metabolites
p ≤ 0.05 519

Total Metabolites
q ≤ 0.05 515

Dunnett’s
t-test
Post Test

Statistical Comparison

Down
Scrambled

Up
Scrambled

CRISPR 2-12
Scrambled

CRISPR 2-19
Scrambled

CRISPR 5-50
Scrambled

Total Metabolites
p ≤ 0.05
FC ≥ 2

56 36 161 206 115

Metabolites
(↑↓) (15|41) (9|27) (77|84) (121|85) (50|65)

Total Metabolites
q ≤ 0.05
FC ≥ 2

54 32 161 203 113

Metabolites
(↑↓) (14|40) (8|24) (77|84) (120|83) (50|63)

Table 1.  Differentially Abundant Metabolites.
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fold-change compared to Scrambled (Table 1; Fig. 3); more metabolites were decreased than increased in all group 
comparisons to Scrambled except the CRISPR 2-19 cell line. The CRISPR/Cas9 generated cell lines had not only 
more total metabolites differentially abundant compared to the siRNA generated cell lines, but also more metab-
olites whose fold-changes were greater than 4.

Concordance between differentially abundant metabolites in the two NAT1 Knockout cell lines.  To ensure 
we focused on differences related to NAT1 rather than differences related to the specific guide RNA (possible 
off-target effects) utilized during the knockout of NAT1, the overlap in significant metabolites with a fold-change 

Figure 3.  Global Differential Abundance Between All Groups to Scrambled. In the volcano plots, each dot 
represents a single metabolite and is color coded according to q-value. The black dots represent metabolites that 
had a Dunnett’s post test q-value greater than 0.05, blue dots represent metabolites that had a q-value less than 
or equal to 0.05 but greater than 0.01, and red dots represent metabolites that had a q-value less than or equal 
to 0.01. Negative fold changes represent a decrease in that metabolite compared to the Scrambled group while 
positive fold changes represent an increase in that metabolite compared to the Scrambled group.

Figure 4.  Concordance Between the Two NAT1 Knockout Cell Lines. Significant metabolites with a fold-
change greater than or equal to 2 were compared between CRISPR/Cas9 generated NAT1 KO cell lines for 
concordance. Eighteen metabolites were increased concordantly in the two NAT1 KO cell lines compared to 
Scrambled with 102 and 32 metabolites uniquely increased in the CRISPR 2-19 and CRISPR 5-50 cell lines, 
respectively. Twenty-five metabolites were decreased concordantly in the two NAT1 KO cell lines compared 
to Scrambled with 58 and 38 metabolites uniquely decreased in the CRISPR 2-19 and CRISPR 5-50 cell lines, 
respectively.
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greater than or equal to 2 was compared between the two NAT1 KO cell lines and the Scrambled group (Fig. 4). 
Eighteen metabolites were increased concordantly in the two NAT1 KO cell lines compared to Scrambled with 102 
and 32 metabolites uniquely increased in the CRISPR 2-19 and CRISPR 5-50 cell lines, respectively. Twenty-five 
metabolites were decreased concordantly in the two NAT1 KO cell lines compared to Scrambled with 58 and 
38 metabolites uniquely decreased in the CRISPR 2-19 and CRISPR 5-50 cell lines, respectively. Table 2 lists 
metabolites whose abundances were concordantly changed in the NAT1 KO cell lines. More metabolites had 
conflicting differential abundance between the two CRISPR NAT1 KO cell lines compared to Scrambled that 
those that agreed. Notably, many of the metabolites decreased concordantly in the CRISPR NAT1 KO cell lines 
were carnitine conjugates. Assessing correlation between carnitine and the metabolites concordantly changed 
in the CRISPR NAT1 KO cell lines revealed that the abundance of most of those metabolites were associated 

METABOLITE BIOCHEMICAL
ANOVA
q-value

FOLD-CHANGE Correlation
with
Carnitine

CRISPR 2-19/
Scrambled

CRISPR 5-50/
Scrambled

M6 1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2)* <0.0001 4.1 2.2 -0.60

M26 13-HODE + 9-HODE 0.0010 2.5 2.0 −0.68

M33 1-linoleoyl-GPE (18:2)* <0.0001 5.4 3.6 −0.68

M116 3-hydroxydecanoate <0.0001 2.7 3.3 −0.91

M119 3-hydroxylaurate <0.0001 2.2 2.3 −0.77

M120 3-hydroxyoctanoate <0.0001 2.8 3.3 −0.62

M233 dihydroxyacetone phosphate (DHAP) <0.0001 5.5 4.5 −0.77

M339 lactose <0.0001 26.4 19.1 −0.82

M387 N-acetyl-beta-alanine <0.0001 13.3 4.1 −0.72

M417 nicotinamide ribonucleotide (NMN) <0.0001 25.9 2.9 −0.41

M437 oleoylcholine <0.0001 8.3 2.6 −0.66

M445 palmitoleoyl ethanolamide* <0.0001 3.0 2.3 −0.70

M447 palmitoloelycholine <0.0001 8.4 2.4 −0.57

M452 palmitoylcholine <0.0001 9.7 2.1 −0.53

M456 penicillin G <0.0001 18.2 5.7 −0.70

M481 pyridoxine (Vitamin B6) <0.0001 4.5 3.8 −0.83

M526 stearoyl ethanolamide <0.0001 2.6 2.2 −0.82

M555 urate <0.0001 2.0 3.5 −0.87

M102 2′-O-methylcytidine 0.0019 0.4 0.4 0.88

M110 3-aminoisobutyrate <0.0001 0.3 0.5 0.79

M132 4-hydroxyglutamate <0.0001 0.2 0.2 0.93

M161 adrenoylcarnitine (C22:4)* <0.0001 0.1 0.1 0.92

M176 arachidonoylcarnitine (C20:4) <0.0001 0.2 0.2 0.91

M190 beta-guanidinopropanoate <0.0001 0.3 0.4 0.84

M210 cis-4-decenoylcarnitine (C10:1) <0.0001 0.2 0.4 0.69

M218 cystathionine <0.0001 0.2 0.1 0.92

M226 cytidine diphosphate <0.0001 0.3 0.4 0.85

M231 dihomo-linolenoylcarnitine (20:3n3 or 6)* <0.0001 0.1 0.2 0.86

M232 dihomo-linoleoylcarnitine (C20:2)* <0.0001 0.1 0.4 0.88

M242 docosatrienoylcarnitine (C22:3)* <0.0001 0.1 0.2 0.88

M344 laurylcarnitine (C12) <0.0001 0.2 0.5 0.85

M352 linolenoylcarnitine (C18:3)* <0.0001 0.1 0.2 0.83

M353 linoleoylcarnitine (C18:2)* <0.0001 0.05 0.3 0.77

M371 myristoleoylcarnitine (C14:1)* <0.0001 0.1 0.4 0.75

M376 N2,N2-dimethylguanosine 0.0055 0.5 0.4 0.70

M384 N-acetylasparagine <0.0001 0.1 0.1 0.28

M412 N-carbamoylaspartate <0.0001 0.1 0.1 0.89

M441 orotate <0.0001 0.1 0.1 0.95

M448 palmitoyl dihydrosphingomyelin (d18:0/16:0)* <0.0001 0.4 0.4 0.95

M453 pantetheine <0.0001 0.5 0.3 0.78

M508 sphingomyelin (d18:0/18:0, d19:0/17:0)* <0.0001 0.4 0.5 0.63

M544 tryptamine <0.0001 0.5 0.5 0.93

M559 uridine 5′-triphosphate (UTP) <0.0001 0.04 0.1 0.95

Table 2.  Metabolites Concordantly Differentially Abundant in NAT1 Knockout Cell Lines. * indicates 
compounds that have been tentatively identified.
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with carnitine (Table 2). This suggests differential regulation of carnitine is related to the differential abundances 
observed in this subset of metabolites. Additionally, many metabolites involved in the pyrimidine biosynthesis 
pathway were concordantly altered in the CRISPR NAT1 KO cell lines suggesting the knockout of NAT1 affects 
pyrimidine biosynthesis (Fig. 5).

Correlation between NAT1 N-acetylation activity and metabolite relative abundances.  Eight metabo-
lites, N-acetylasparagine, N-acetylputrescine, saccharopine, cytidine, 1-palmitoyl-2-alpha linolenoyl-GPC 
(16:0/18:3n3), isovalerylcarnitine (C5), cysteine sulfinic acid, and serotonin, were significantly associated with 
NAT1 PABA N-acetylation activity (Table 3). The last five of the eight metabolites listed had a high degree of 
variation in the within-group measurement of metabolite abundance therefore the association is not as well 
defined as the others. The top two metabolites correlated with PABA N-acetylation, N-acetylasparagine (Fig. 6) 

Figure 5.  Differential Expression of Metabolites in the Pyrimidine Biosynthesis Pathway in NAT1 Knockout 
Cell Lines (Compared to Scrambled). Metabolite fold-changes in the two NAT1 KO cell lines compared to the 
Scrambled cell line were plotted on the KEGG pyrimidine biosynthesis pathway25–27. Each rectangle represents a 
single gene and each circle represents a single metabolite; the CRISPR 2-19 cell line fold-change appears on the 
left half of the circle while the CRISPR 5-50 cell line fold-change appears on the right half of the circle, Circles 
not filled represent metabolites for which abundance was not measured.

M# BIOCHEMICAL
CORRELATION
COEFFICIENT p-VALUE

M384 N-acetylasparagine 0.986 <0.001

M404 N-acetylputrescine 0.944 0.005

M491 saccharopine −0.876 0.022

M224 cytidine 0.856 0.029

M49 1-palmitoyl-2-alpha linolenoyl-
GPC (16:0/18:3n3)* 0.825 0.043

M336 isovalerylcarnitine (C5) −0.820 0.046

M220 cysteine sulfinic acid 0.816 0.047

M498 serotonin 0.811 0.050

Table 3.  Pearson Correlation Between NAT1 N-acetylation Activity and Metabolite Relative Abundances. * 
indicates compounds that have been tentatively identified.
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and N-acetylputrescine (Fig. 7), had a correlation coefficient (r) value greater than 0.90 and are N-acetylated 
compounds, suggesting they may be products of N-acetylation by NAT1. Two of the metabolites significantly 
correlated with PABA N-acetylation, saccharopine (Fig. 8) and isovalerylcarnitine (C5), had an inverse relation-
ship suggesting a role in a NAT1 catalyzed reaction as the substrate or possibly down-stream of a NAT1 catalyzed 
reaction. Additionally, differential acetyl-CoA levels due to NAT1’s ability to hydrolyze acetyl-CoA could be driv-
ing these observations.

Multivariate/Multivariable analyses.  Unsupervised hierarchical clustering of each sample revealed a dis-
tinct global metabolomic profile of each cell line (Fig. 9). The individual sample replicates clustered accurately by 
group except for sample 10 of the Down group that clustered with the Scrambled group. The first split in the den-
drogram of the hierarchical clustering is between the two CRISPR/Cas9 cell lines constructed using guide RNA 

Figure 6.  N-acetylasparagine Abundance is Strongly Correlated with NAT1 N-acetylation Activity. (A) One-
way ANOVA and dunnett’s post-test q-values. (B) N-acetylasparagine relative abundance by cell line. (C) 
Scatterplot between NAT1 N-acetylation activity and N-acetylasparagine relative abundance.

Figure 7.  N-acetylputrescine Abundance is Strongly Correlated with NAT1 N-acetylation Activity. (A) One-
way ANOVA and dunnett’s post-test q-values. (B) N-acetylputrescine relative abundance by cell line. (C) 
Scatterplot between NAT1 N-acetylation activity and N-acetylputrescine relative abundance.
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Figure 8.  Saccharopine Abundance is Strongly Inversely Correlated with NAT1 N-acetylation Activity. (A) 
One-way ANOVA and Dunnett’s post-test q-values. (B) Saccharopine relative abundance by cell line. (C) 
Scatterplot between NAT1 N-acetylation activity and Saccharopine relative abundance.

Figure 9.  Heatmap with Hierarchical Clustering Indicates Each Cell Line has a Distinct Global Metabolome. 
Metabolites colored red on the heatmap had a median scaled relative abundance less than 1, metabolites colored 
white had a median scaled relative abundance of 1, and metabolites colored blue had a median scaled relative 
abundance greater than 1. Hierarchical clustering reveals the two CRISPR/Cas9 cell lines constructed using 
guide-RNA 2 are more similar than the two NAT1 complete KO cell lines as would be expected.
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2 and the other four cell lines; this provides evidence that those two cell lines have global metabolic profiles that 
are more similar to each other than to the respective cell lines that express the same level of NAT1 N-acetylation 
activity. The heatmap visualization of the data shows distinct clusters of metabolites whose relative abundance is 
much more similar between the two cell lines constructed using CRISPR/Cas9 guide RNA 2 but have different 
levels of NAT1 activity than the two CRISPR/Cas9 cell lines that were constructed using two different guide RNAs 
but had no detectable NAT1 activity.

Similarly, principal component analysis showed that the CRISPR/Cas9 generated cell lines had global metabo-
lomic profiles that were distinct from the siRNA generated cell lines as well as each other. In our dataset, principal 
component 1 explains 53% of the variance in the data while principal component 2 explains 14% of the variance 
(Fig. 10). The CRISPR 2-12 and CRISPR 2-19 groups are separated from the other four groups by principal com-
ponent 1. This reveals that these two groups have global metabolomics profiles that are similar to each other 
but very different from the other four groups given that PC1 represents 53% of the variance in our dataset. The 
CRISPR 5-50 group is separated from the other five groups along principal component 2.

Figure 10.  Principal Components Analysis Indicates Each Cell Line has a Distinct Global Metabolome. Each 
symbol represents an individual metabolomics sample and is color coded by cell line. Principal component one 
represents 53% of the total variance in our dataset and separates the CRISPR 2-12 and CRISPR 2-19 cell lines 
from all other cell lines. Principal component 2 represents 14% of the total variance in our dataset and separates 
the CRISPR 5-50 cell line from all other cell lines.

Figure 11.  Principal Components Analysis Loadings Plot. Loading from principal component 1 and 
principal component 2 are plotted showing which metabolites have the greatest contribution to each principal 
component. Each point represents a single metabolite and is color-coded by contribution to principal 
component.
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From the loadings of each principal component we can infer which metabolites, together, contribute the most 
to the separation between the groups and thus the variance between the groups (Fig. 11). Most metabolites in the 
dataset are not contributing to the variance observed. There are groups of approximately 5-15 metabolites that 
are contributing the greatest to each principle component (in each direction). Adenosine and carnitine related 
metabolites are negatively correlated with principal component 1 (region A in Fig. 11) while phosphate related 
metabolites are positively correlated (region E in Fig. 11). Lactate related metabolites are negatively correlated 
with principal component 2 (region C in Fig. 11) while phosphate and carnitine related metabolites are positively 
correlated (region H in Fig. 11).

Pathway analysis.  Pathway enrichment analysis was conducted on each group compared to the Scrambled 
group (Fig. 12). We focused on pathways that had at least one comparison with a normalized enrichment score 
of >1.20. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used25–28. Disease associated 
pathways were removed from the analysis results. Amino acid, lipid, and fatty acid metabolism pathways were 
found to be significantly enriched. Some enriched pathways did not include all group comparisons suggesting 
differential impacts on metabolism.

Discussion
Given that we (theoretically) only genetically altered a single gene, NAT1, in each cell line, we expected only a 
small proportion of metabolites to be significantly different, due to the vast homeostasis mechanisms present29–31. 
However, we observed a very large proportion (~90%) of all metabolites detected to be altered. Additionally, we 
expected very few, if any, differences in metabolite abundance between the two NAT1 KO cell lines since each cell 
line should have the exact same genome. Yet one of the most striking observations of this study is the differences 
in relative metabolite abundance between the two complete NAT1 KO cell lines. The hierarchical clustering, 
principal components analysis, and pathway enrichment analysis show there were significant differences between 
the two cell lines constructed using CRISPR/Cas9 guide RNA 2 and the cell line constructed using CRISPR/Cas9 
guide RNA 5. Even though, in terms of NAT1 activity the CRISPR 2-19 and CRISPR 5-50, cell lines are highly 
similar, their metabolic profiles are extremely different. This suggests there may be additional genetic differences 
between the two cell lines. The observation of a large number of differentially abundant metabolites between each 
KO cell line compared to the Scrambled cell line and compared to each other could be because the cell lines have 
undergone additional unique mutations between them and/or because each CRISPR guide RNA used caused 
unique off-target effects in addition to targeting NAT1. To focus on metabolome differences associated with var-
ying levels of NAT1 in breast cancer, we have focused our interpretation of this study to metabolites that agreed 
between the two CRISPR NAT1 KO cell lines (Table 2).

A striking finding from the present study is that NAT1 KO cells seem to have defective β-oxidation of fatty 
acids. A vast majority of the metabolites that are found to be reduced in both NAT1 KO cell lines belong to acyl-
carnitine species, including laurylcarnitine (C12), linolenoylcarnitine (C18:3), linoleoylcarnitine (C18:2), and 

Figure 12.  Pathway Analysis Reveals Enrichment of Amino Acid, Lipid, and Fatty Acid Metabolism Pathways. 
Pathway enrichment analysis was conducted for each group compared to Scrambled and is color-coded by 
comparison. We utilized the normalized enrichment score to determine the relative degree of enrichment.
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myristoleoylcarnitine (C14:1) (Table 2). Formation of acylcarnitines which is performed by carnitine palmito-
yltransferase 1 (CPT1) is the first and crucial step in transport of fatty acids into mitochondria. Interestingly, 
malonyl-CoA, which is a known regulator of fatty acid synthesis and oxidation32, is formed by carboxylating 
acetyl-CoA and is known to inhibit CPT1. Decreases in the level of a number of acylcarnitine species clearly 
indicate that the CPT1 step and subsequent mitochondrial metabolism of fatty acids are disturbed in NAT1 KO 
cells. We hypothesize the increase in acetyl-CoA observed when NAT1 is knocked out may lead to increased 
malonyl-CoA which inhibits CPT1 resulting in less acylcarnitines. In addition, 3 out of 18 metabolites that 
are concordantly increased in both KO cell lines belong to 3-hydroxy-fatty acids (e.g., 3-hydroxydecanoate, 
3-hydroxylaurate, and 3-hydroxyoctanoate) (Table 2) which are intermediates in β-oxidation of fatty acids. The 
reduced levels of acylcarnitine species and accumulation of 3-hydroxy-fatty acids, together, strongly suggests that 
both transport of fatty acids into mitochondria as well as metabolism of fatty acids are compromised in NAT1 KO 
cells. This suggests the involvement of NAT1 in fatty acid metabolism. Another possible explanation is that the 
defects in fatty acid metabolism may reflect mitochondria dysfunction.

To further clarify whether this observation was due to dysregulation of fatty acyl-CoA species or carnitine 
in NAT1 KO cell lines, we accessed association between carnitine and metabolites decreased and increased con-
cordantly in both NAT1 KO cell lines. Nearly every metabolite concordantly differentially abundant showed 
strong correlation with carnitine suggesting the observation may follow the differential regulation of carnitine. 
Carnitine is biosynthesized from lysine and methionine33 with important biological roles in the transport of 
activated long-chain fatty acids from the cytosol to the mitochondrial matrix for β-oxidation34,35, modulation of 
the acyl-CoA/CoA ratio35,36, and storage of energy as acetylcarnitine36,37. Further studies are required to discern 
whether these observations are due to NAT1 directly or indirectly due to NAT1’s effect on acetyl-CoA levels or 
other possible indirect effects.

One of the most noticeable findings that emerged from the current metabolomics data was a reduction in 
de novo pyrimidine biosynthesis in the absence of NAT1. This was indicated by significant and concomitant 
decreases in the level of different intermediates that are involved in the pyrimidine biosynthetic pathway, includ-
ing N-carbamoylaspartate, orotate, UTP, and CDP, in both NAT1 KO cell lines (Table 2). Moreover, cytidine (a 
ribosyl pyrimidine) was among the few metabolites whose levels were positively correlated with NAT1 activity 
(Table 3). Taken together, these indicate that the cellular level of pyrimidine biosynthetic intermediates as well as 
cytidine may be either directly or indirectly regulated by NAT1 activity. Pyrimidine nucleotides play a critical role 
in cellular metabolism38,39. They serve as activated precursors of RNA and DNA. In addition, CDP-diacylglycerol 
is a key intermediate in the synthesis of phospholipids, and UDP-sugars serve as sugar donors in protein glyco-
sylation. As such, de novo pyrimidine biosynthesis is indispensable during cell growth and proliferation to meet 
the demand for nucleic acid precursors and other cellular components. Accordingly, the de novo pyrimidine bio-
synthetic pathway is invariably upregulated in rapidly growing neoplastic cells40. We and others have previously 
reported that depletion of NAT1 in cancer cell lines often leads to a reduction in growth potential under specific 
conditions10,11,20,41,42. Although speculative, it is plausible that the deficiency in cellular pyrimidine pool may con-
tribute to the growth delay observed in NAT1 KO cells. Although the mechanism by which NAT1 depletion leads 
to an alteration of the pyrimidine biosynthetic pathway is currently unclear, the present observation has an impli-
cation in breast cancer therapy. Recently, Brown and colleagues have reported that resistance to chemotherapy in 
triple-negative breast cancer cells can be circumvented by inhibiting the de novo pyrimidine synthesis pathway43. 
In addition, targeting de novo pyrimidine synthetic pathway has been shown to be a successful strategy in treating 
different types of tumors44–47. Based on this finding, targeting and inhibiting NAT1 expression or activity may 
increase the sensitivity of breast cancer to chemotherapeutic agents.

The strong positive association between the abundance of N-acetylasparagine and NAT1 activity in the 6 
MDA-MB-231 cell lines is consistent with N-acetylasparagine being a product of NAT1 N-acetylation. There 
is currently no known mechanism or enzyme responsible for the acetylation of free amino acids. It is hypothe-
sized that acetylated free amino acids originate from the breakdown of N-terminal acetylated proteins however 
L-asparagine residues in proteins are not known to be acetylated by NAT148. Additionally, the biosynthesis of 
N-acetylasparagine is not defined in the literature. Recombinant murine and human aminoacylase 2 (ASPA) have 
been reported to catabolize N-acetylasparagine, albeit at a much lower level than the prototypic ASPA substrate 
N-acetylaspartate49. Additionally, aminoacylase 1 deficiency (ACY1), a rare inborn error of metabolism disease, 
is diagnosed by increased N-acetylated amino acids in the urine, including N-acetylasparagine50 suggesting ACY1 
can also metabolize N-acetylasparagine. Given the abundance distribution of N-acetylasparagine in our con-
structed cell lines, it is possible that L-asparagine is a substrate N-acetylated by NAT1 to form N-acetylasparagine 
but confirmation is needed.

Similarly, the strong positive association between the abundance of N-acetylputrescine and NAT1 
N-acetylation activity in the 6 MDA-MB-231 cell lines is consistent with N-acetylputrescine as a product of NAT1 
N-acetylation. Putrescine is known to be N-acetylated by spermidine/spermine N1-acetyltransferase 1 (SAT1) 
and spermidine/spermine N1-acetyltransferase 2 (SAT2) but with much lower affinity than for other SAT sub-
strates such as spermidine51. Redundancy in non-homologous metabolic enzymes has been shown to occur52,53 
and it is possible that NAT1 and the SATs may both N-acetylate putrescine.

Both L-asparagine and putrescine have been implicated in the promotion of cell growth54–59. Our data indi-
cates cell lines with higher levels of NAT1 activity have increased amounts of N-acetylated asparagine and putres-
cine while cell lines with decreased and knocked-out NAT1 activity have decreased amounts of N-acetylated 
asparagine and putrescine. We hypothesize this could lead to decreased asparagine and putrescine in cell lines 
with high NAT1 and increased asparagine and putrescine in cell lines with decreased and knocked-out levels 
of NAT1 relative to cell lines with basal NAT1 activity. However, we did not observe this differential distribu-
tion in our dataset. It has been shown that intracellular asparagine exchanges with extracellular amino acids 
to promote mTORC1 activation, protein and nucleotide synthesis and cell proliferation under normal growth 
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(non-starvation) conditions55. Additionally, it has been reported that the invasiveness of a mouse breast can-
cer model could be modulated either by altering asparagine biosynthetic capacity or by modifying extracellular 
asparagine pools with decreases in asparagine leading to decreased metastatic burden54. Polyamines, such as 
putrescine, are known to facilitate the interactions of transcription factors, such as estrogen receptors with their 
specific response element and are involved in the proliferation of ER negative breast cancer tumor cells (reviewed 
in60). Additionally, an increase in intracellular polyamine concentrations has been associated with increased cell 
proliferation and has been linked to tumorigenesis61–65. Our data, interpreted in light of the results of previous 
studies, suggests that knockout NAT1 may increase cell growth capabilities due to higher levels of asparagine and 
putrescine however studies from our lab do not support this20. This may be because there are additional mech-
anisms in place regulating the amount of free asparagine and putrescine or other factors regulating growth that 
override an abundance of these metabolites.

The strong negative association between the abundance of saccharopine and NAT1 activity in the 6 
MDA-MB-231 cell lines suggests saccharopine is a NAT1 substrate or located upstream of a NAT1 catalyzed reac-
tion. Saccharopine is an intermediate in the main pathway responsible for the catabolism of lysine66,67. This obser-
vation may be connected to lysine’s role in carnitine biosynthesis33. Pathway analysis indicated pathways that 
directly involve acetyl-CoA such as the lysine degradation and tryptophan metabolism pathways were enriched 
for differences (Fig. 12). Additionally, pathways that feed into the TCA cycle were also significantly enriched 
suggesting NAT1 has an impact on energy metabolism.

Conclusions
Our results support the hypothesis that NAT1 is not just a xenobiotic metabolizing enzyme and may have a 
role in endogenous cellular metabolism. Whether this is direct or through NAT1’s effect on acetyl-CoA remains 
unknown. We have shown that NAT1 expression differentially affects cellular metabolism dependent on the level 
of expression. Additionally, we have identified potential novel substrates and products of N-acetylation by NAT1 
but further validation is required. These metabolites have recently been implicated in enhanced cell growth and 
metastatic potential in breast cancer models suggesting they may be the key to understanding how varying lev-
els of NAT1 affect breast cancer progression. Furthermore, metabolites involved in fatty acid metabolism and 
pyrimidine biosynthesis showed strong concordant changes in both NAT1 KO cell lines suggesting NAT1 may 
have an essential role in these processes. Moreover, many of the pathways significantly enriched in pathway anal-
ysis are pathways where acetyl-CoA plays a role, adding further evidence for the connection between NAT1 and 
acetyl-CoA in metabolism.

Data availability
Processed metabolite relative abundance data is available as a Supplementary File. Reasonable requests for the 
transformed MDA-MB-231 cell lines utilized in this study will be considered.
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