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Human stereoEEG recordings reveal network
dynamics of decision-making in a rule-switching
task

Marije ter Wal® 2% Artem Platonov® 3, Pasquale Cardellicchio® 3, Veronica Pelliccia® %,
Giorgio LoRusso® 4, Ivana Sartori® 4, Pietro Avanzini® 2, Guy A. Orban® 3 & Paul H. E. Tiesinga® '

The processing steps that lead up to a decision, i.e., the transformation of sensory evidence
into motor output, are not fully understood. Here, we combine stereoEEG recordings from the
human cortex, with single-lead and time-resolved decoding, using a wide range of temporal
frequencies, to characterize decision processing during a rule-switching task. Our data reveal
the contribution of rostral inferior parietal lobule (IPL) regions, in particular PFt, and the
parietal opercular regions in decision processing and demonstrate that the network repre-
senting the decision is common to both task rules. We reconstruct the sequence in which
regions engage in decision processing on single trials, thereby providing a detailed picture of
the network dynamics involved in decision-making. The reconstructed timeline suggests that
the supramarginal gyrus in IPL links decision regions in prefrontal cortex with premotor
regions, where the motor plan for the response is elaborated.
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ARTICLE

uring perceptual decision-making, sensory signals are

mapped onto motor outputs, while integrating a multitude

of factors, such as current motivation and goals, previous
experience, risk, and potential reward. Many different processes
(and brain areas) have been found to contribute to the preparation
and formation of a decision!?, which have traditionally been
divided into three functional groups: sensory encoding, decision
representation, and motor output preparationl.

Sensory evidence is built up by the relevant sensory cortices, as
supported by changes in BOLD fMRI>* and MEG/EEG>®
responses in humans, and selectivity of (subsets of) cells recorded
in macaque sensory areas’-8. The preparation of the desired motor
plans closely follows the accumulation of sensory evidence and
can be read out in the relevant motor cortices, i.e., the frontal eye
field and lateral intraparietal (LIP) area when eye movements are
desired, or premotor and motor areas for hand movements>-11,
LIP, which is situated in the intraparietal sulcus (IPS), has received
most attention. In monkeys, LIP neurons increase their average
firing rate with the accumulation of evidence!>13 and sustain their
firing until the response. The neural responses scale with, among
others, the quality of the sensory information (e.g., easy versus
difficult stimuli>!4) and task demand (e.g., speed versus accu-
racy!®). LIP has therefore been proposed to encode the decision
variable, i.e., the evidence for one or more possible decision out-
comes within the task context, and the decision is made when LIP
activity reaches a threshold!3. However, recent findings point to a
more complex representation of the decision variable: the
dynamics of LIP neurons remain topic of discussion!®!” and
inactivation of response-related cell assemblies in LIP were shown
to have variable effects on behavior!8.

Decision-related activity is also found in areas of prefrontal
cortex (PFC) and posterior parietal cortex (PPC), beyond motor-
related areas. These areas seem well suited to carry decision sig-
nals, due to their proximity to sensory-motor transformation
regions and motor areas, and their shared involvement in task
control!®. However, the precise roles of PPC and PFC in the
decision-making network remain topic of discussion?0. fMRI work
in human has demonstrated an abstract representation of the
decision, independent of the motor system involved, in the dor-
solateral prefrontal cortex (dIPFC), but not in PPC and other
areas>21. However, these findings rely on assumptions about the
BOLD response and response contrasts between, for example, easy
and difficult stimuli, which have since been questioned!416-22, as
they do not take into account the non-monotonic relationship
between neural recruitment and sensory evidence in monkey
single-cell recordings?®. The expected BOLD patterns are only
partially observed in insula, inferior frontal gyrus, anterior cin-
gulate cortex (ACC), and PPC*1422, causing them to be under-
reported as abstract decision regions. Using EEG, evidence
accumulation signals independent of both sensory and motor
systems!0-24 were found over central parietal cortex!?, potentially
originating in posterior cingulate cortex?. Furthermore, single-
cell recordings in monkeys suggest a role for both dIPFC and LIP
in top-down regulation of decision-making with changing task
rules?®. However, it remains unclear whether these decision areas
in PPC and PFC form a network that is shared between sensory
features, task conditions, as well as motor outputs.

To address this question, a spatially and temporally precise
insight into the decision-making process is required. Here, we
analyze stereoEEG recordings from the cortex of drug-resistant
epilepsy patients performing a rule-switching task. The rule-
switching task allowed us to (1) identify decision signals (choice
between left and right buttons), independent of the sensory
content of the stimuli; and (2) determine whether decision signals
are common to task rule and other task dimensions and if not,
where they are modulated by those dimensions. Using linear

classifiers, we identify a wide range of brain areas that were active
in the stimulus-response interval, including ACC, dIPFC, and
insula, which have previously been implicated for similar tasks.
However, only a small subset of areas allowed us to successfully
decode the left/right decision. The identified areas did not differ
between task rules and stimulus features, suggesting they carry a
common decision process. They include parietal operculum and
supramarginal areas, which have so far gone unnoticed as
decision-related areas, as well as known effector-related premotor
and motor areas. To gain insight into the function of the newly
identified decision areas, we analyze the onset of decoding on
each trial for all decision areas. In line with previous work, we
identify dIPFC and dorsal premotor cortex as carrying early
decision information. Intriguingly, subregions of the supramar-
ginal gyrus and parietal operculum also show early decoding of
the decision, suggesting these too play a role in the elaboration of
the decision.

Results

StereoEEG recordings during a rule-switching task. Here we
report data from six patients undergoing epilepsy monitoring in
preparation of a focus-removal surgery at the Claudio Munari
Center for Epilepsy Surgery of the Ospedale Niguarda-Ca’
Granda in Milan, Italy (see Supplementary Tables 1 and 2 for
demographic and diagnostic information). Patients had intra-
cerebral electrodes stereotactically implanted?’ into frontal,
temporal, and parietal regions of one hemisphere, allowing us to
record local field potentials®® from in total 663 gray matter
contacts (Supplementary Table 3) that remained after removal of
electrodes and trials with interictal epileptic activity. We refer to
the “Methods” section for more information on recording and
preprocessing procedures.

The patients performed a rule-switching task adapted from
ref. 2% (see also ref. 30). Patients had to judge the color (red or
blue) or orientation (horizontal or vertical) of a bar-like stimulus
(Fig. 1a), and subsequently press a button with either their left or
right hand according to the decision table in Fig. la. Two of the
four stimuli led to the same responses for both rules, i.e., were
rule congruent, while the required responses to the other two
stimuli were incongruent. The rule changed after a randomized
period of 10-46 trials. The rule was cued by the color of an
outline presented at the edge of the screen during a 300-600 ms
period before stimulus onset. The cue and stimulus remained on
the screen until the patient responded (Fig. 1b). The reaction
times reported here represent the time between stimulus onset
and button press. If the patient did not respond within 1500 ms of
the stimulus onset, the trial timed out. Incorrect and timed-out
trials were excluded from analyses.

Five of the six patients performed the task well (Fig. 1c), with
decision accuracies between 86.7 and 98.5% (mean = 93.5%), while
one patient had a performance level that only marginally differed
from chance (54.8%, p = 0.0358, Chi-squared test, y*(1,N = 480) =
4.4083), though this was mostly caused by trial time-outs (71% of
excluded trials were time-outs). Decision accuracies did not
significantly differ between left and right button presses (Fig. lc;
p = 0.747; two-tailed paired #-test; #(5) = —0.3417) and neither did
accuracy between rules, congruent or incongruent stimuli, or the
two colors and orientations of the stimuli (Supplementary Fig. 2),
hence allowing us to compare left and right button presses across
these task dimensions. Furthermore, reaction times did not differ
between left and right button presses (Fig. 1d; left: 0.507 +0.173 s,
N=1559; right: 0499+0.177s, N=1566; p=0.216; two-tailed
t-test; #(3123) = 1.238), but they did differ for other dimensions of
the task, notably rule (Fig. le; color: 0.540+0.139s, N=1578;
orientation: 0.511 +0.137 s, N = 1547; p <0.0001; two-tailed t-test;
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Fig. 1 Task and behavioral performance. a Stimuli and decision table showing the correct button press for each combination of rule and stimulus
characteristics; b task sequence and screen layout; ¢ task performance for left and right button presses. Each line connecting two dots represents one
subject; d reaction time distributions for left (N =1559) and right (N =1566) button presses of all subjects combined (see Supplementary Fig. 2 for
individual subjects); e reaction time distributions for the color (N =1578) and orientation (N =1547) rules. The boxplots in d and e show the 5, 25, 50
(filled circles), 75, and 95% boundaries. Gray horizontal bars represent the outcome of two-sided statistical tests of difference, using a paired t-test in
c and Student's t-test in d and e. ns means not significant and * indicates significance at a = 0.01. Orange: color rule; green: orientation rule. a and b were

adapted from ref. 30,

#(3123) = 5.906) and orientation (Supplementary Fig. 2; horizontal:
0.519 £0.138's, N=1573; vertical: 0.533+0.139s, N=1552; p=
0.0038; two-tailed t-test; #(3123) = —2.894). The longer RTs for the
color rule indicate that, as in the monkey??, the color rule was more
difficult. Reaction times showed an interaction between rule and
color of the stimulus (Supplementary Fig. 2; p = 0.0005; two-way
ANOVA, F(1,3124) = 12.12), probably caused by priming due to the
colored rule cue. This interaction is expected to have little effect on
the decision-related and response-locked analyses presented in the
remainder of the paper. Subjects also responded significantly faster
on correct than on incorrect trials (Supplementary Fig. 2; correct:
0.526 £0.139 s, N=3125; incorrect: 0.597 +0.183s, N=170; p<
0.0001; two-tailed #-test; £(3293) = —6.334). In the remainder of the
paper, only correct trials are included.

Linear classifiers identify decision areas. In order to identify
brain regions involved in the rule dependent left/right decision-
making process, we trained a linear discriminant analysis (LDA)
classifier’! to distinguish between trials, in which the patient
pressed the left or the right button (see “Methods” section). A
high classification performance represents either a large or a
reliable distinction between the neural signatures of left and right
trials, or both. Following a wavelet transform on the response-
locked data, we used spectral power computed for 50 frequencies
between 5 and 152 Hz as features for the classifier. This approach
allowed us to (1) train the classifier on a single channel, preser-
ving the high spatial precision; and (2) train the classifier indi-
vidually for every point in time, preserving the high temporal
resolution of the stereoEEG data. In addition, training the clas-
sifier on frequency-resolved data meant that we did not have to
make assumptions about the frequency range of interest, and
allowed for the possibility that for different brain regions infor-
mation is contained in different frequency bands.

Across the six subjects, 95 out of the 663 gray matter leads
showed significant response-locked decoding performance for the
left/right decision (red circles in Fig. 2a; cluster statistic tested
against 100 label-shuffled permutations with & =0.05 and after
false discovery rate (FDR) correction with ¢g=0.10, see
“Methods” section). A large part of the identified leads was
located in dorsal and medial premotor cortex and motor cortex

BA4, in line with the notion that decision information is
represented by the relevant motor system™!!, while leads in
somatosensory areas BA3a/S1 likely carry feedback signals. In
addition, the classifier identified three decision-carrying leads in
the dIPFC, in agreement with earlier studies>?!-26. The classifier
also decoded left/right decision in a small number of leads spread
across the temporal lobe (TL), possibly due to the visual nature of
the stimuli. Intriguingly, however, a third of the leads showing
successful left/right decoding were located bilaterally in the
supramarginal gyrus and parietal operculum, areas that have so
far gone largely undetected as decision areas. We further localized
the leads into cytoarchitectonic areas PFt, PFcm, PF, and PFop of
the supramarginal gyrus, and parietal operculum areas OP1-OP4
(see Supplementary Fig. 1 and the “Methods” section for details
on the localization, and Supplementary Fig. 3 for the number of
leads per area and per patient). Further results concentrate on the
12 areas sampled by at least three significant leads (86 leads in
total).

To ensure that the left/right classification results were
functionally meaningful, we tested whether the same leads were
activated by the task, using two different approaches. Firstly,
we trained a new set of time-resolved classifiers to distinguish
active trials from baseline activity (see “Methods” section). We
did this for all 663 leads, of which 211 showed significant activity
in the response period (shown as blue dots in Fig. 2a). Note that
there is a large overlap between the left/right classifier and the
activity/baseline classifier, with 90.5% of left/right leads showing
significant decoding of activation over baseline in the response
period (p <0.0001; Fisher’s exact test). The activity/baseline
classifier also revealed several brain areas that showed task-
related activity, but did not carry significant left/right informa-
tion, e.g., insula, fusiform and parahippocampal gyri, and anterior
cingulate.

Secondly, we compared the left/right decoding performance
with the power spectra of the identified leads. When contrasting
trials with contralateral button presses, relative to the recorded
hemisphere, against ipsilateral trials, we found substantial power
differences in both the (pre)motor, sensory, as well as the PF and
OP areas (Fig. 2b, Supplementary Figs. 6 and 7), supporting the
result from the classifier that PF and OP areas carry left/right
information. Note that for the power spectra, as with the
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Fig. 2 LDA classifier identified leads that carry decision information. a Flatmaps showing, for all recorded leads across six patients whether a significant
response-locked change from baseline was detected (blue dots) and/or the left/right decision was successfully decoded (red circles), or whether their
activity did not differ from baseline in the interval starting 0.5 s before and ending 0.15 s after the response (white dots). Brain areas of interest are
indicated by white outlines. The insets show the t-scored classification performance of four example left/right decoding leads (indicated by I-IV on the
flatmaps). Dotted lines indicate the onset of temporal cluster of the significant classification. For full labeling of areas see Supplementary Fig. 1; b average
spectral power per area (number of leads given in brackets), including only those leads that showed significant decoding of the left/right decision. To
combine data recorded in both hemispheres, data were contrasted as contralateral (i.e., left button presses when recording in the right hemisphere) versus
ipsilateral decisions (i.e., right button presses when recording in the right hemisphere); ¢ average correlation per area between spectral power and
classification performance across all left/right decoding leads. Correlations were computed using a 100 ms wide sliding window. Green indicates that
power increase related to high classification performance and purple indicates that power decrease co-occurred with high classification performance. In
b and ¢, black lines give the average response-locked classifier performance across leads in the area, normalized to the peak performance (y-scale between
0 and 1). Non-scaled performances per lead are given in Supplementary Fig. 4, stimulus-locked and response-locked classifier performance are compared
in Supplementary Fig. 5, and spectral power and power-classifier correlations for all other areas of interest can be found in Supplementary Figs. 6-9.

classifier, we used a left/right contrast to identify regions that
represent the decision. However, to pool these results across
subjects, we converted this to a contra-ipsilateral hemisphere
contrast, as two subjects were implanted in the right hemisphere
and four subjects in the left hemisphere. Spectral power for
contra- and ipsilateral trials are given separately in Supplemen-
tary Fig. 7.

We next asked what part of the spectral content of the signals
informed the left/right classifier at each time point; in other
words, what is the spectral signature of the left/right decision in

each brain area? To assess this, we computed the correlation
between the classifier performance and the spectral power
contrast for each lead, and frequency across time in 100 ms
sliding windows (Fig. 2c). Note that the LDA classifier used here
is a multivariate approach and can use any linear combination of
frequencies to classify the trials. Therefore, a lack of correlation
between classifier and power at a specific frequency does not
indicate a lack of information at that frequency in general, but
only a lack of univariate correlation, while a high correlation can
be taken as indication that a given frequency provides left/right

4 NATURE COMMUNICATIONS | (2020)11:3075 | https://doi.org/10.1038/s41467-020-16854-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

PFt PFcm OP1 BA4 PFop S1
3 3 4 6
_ ns ns ns ns gl ns
3 3 5 3
g 2 2 4 6
< /\ » /\ ns ns \ ns
- S b s
3 1 I +AJ10 . .10 10 A\ 10 10 . W\ 10
= ] 1 2 ns
2 | n ns 4 -
2 0 | 5™ — 5, 5 1 5 5 2 5
o o | |
© il 1| ; — I i
-1 0 -1 — 0 -1 0 -1 0 - 0 0
-04-02 0 -04-02 0 -04-02 0 -04-02 0 -04-02 0 -04-02 0
Time (s) Time (s) Time (s) Time (s) Time (s)
dIPFC PMd OP3 TL PMm BA3a
3 3 4 4 5
= ns ns ns gl ns
\g » Orient. , 3 3 4
£ ’ 3 W 6 V\
I 10 1 k\w /\10 10 5 1010 4 10
= W 1 ns ns v
2 J ‘ - T ns
% 0 WL | sins oMIARS | ' sins 5 5 5 2 5
2 - - o g —— 0 —— o LR
: | h el i
-1 olfm 4 0 -1 0 -1 0 -1 0 —7>1—0
-04-02 0 -0.4-02 0 -04-02 0 -04-02 0 -0.4-02 0 -04-02 0
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

Fig. 3 Decisions for color and orientation rules invoke similar responses in the same brain regions. The left panels show the average classifier
performance traces (+ standard deviation, numbers of data points included are given in the right panels) for classifiers trained on only color rule trials
(orange), only orientation rule trials (green), and the average of ten subsampled trial sets that included both color and orientation rules, and match the trial
count of one rule (gray). All brain regions that showed significant left/right decoding based on all trials are included here. For all regions with three or more
decoding leads for both the color and orientation only classifiers, a cluster-based permutation test was performed to compare decoding performance of
color and orientation over time. None of the clusters survived FDR correction. The right panels show the number of leads that show significant decoding for
each of the classifiers. For the subsampled classifier bars show the mean, and error bars indicate the standard deviation across ten repetitions (raw data
can be found in Supplementary Table 5). Horizontal bars indicate a one-sided Wilcoxon rank test of the difference between the number of leads for color
and orientation rule compared to pairs of randomly subsampled classifiers (e« = 0.05; FDR corrected); ns is not significant. The total number of leads per

brain area can be found in Supplementary Fig. 3b.

information. Across all brain areas, we found a strong positive
correlation between gamma power (>50 Hz for premotor, >30 Hz
for other areas) and classifier performance around the response
time and negative correlations with alpha/beta power (10-30 Hz),
indicating that response information was associated with high
gamma power and reduced alpha/beta power. Intriguingly, the PF
and OP areas showed an additional negative correlation between
classifier and gamma frequencies at earlier time points (Fig. 2c,
Supplementary Figs. 8 and 9). This suggests that the PF and OP
areas undergo a decision-predictive initial reduction in gamma
power in the contralateral hemisphere, and/or an increase in
power on the ipsilateral hemisphere, followed by an increase in
gamma power in the contralateral hemisphere (Supplementary
Fig. 7). The non-monotonic response points to complex, biphasic
dynamics in the PF and OP regions.

Decision network is agnostic to task dimensions. Our classifi-
cation and spectral analyses suggest that an extensive network of
brain regions is involved in the preparation and/or execution, and
evaluation of the decision. Our task design allowed us to test
whether this network was specific to stimulus or task character-
istics, namely stimulus color and orientation, task rule and rule
congruency. Rule information has been shown to be represented
at the stage of dIPFC?®, one of the regions showing left/right
decoding here. Does the left/right decoding network differ for
different task rules? To test this, we retrained the left/right clas-
sifier on color rule and orientation rule trials separately. This
halved the number of trials available to the classifier and to
compensate for this, we also retrained the classifier on ten ran-
domly subsampled trial sets containing trials from both rules. The
total number of leads showing significant decoding did not differ
between color and orientation rules (p = 0.289, Fisher’s exact test)

and neither did the number of leads in any of the recorded brain
regions (Wilcoxon rank-sum tests against 45 pairs of subsampled
trial sets; right panels of Fig. 3 and Supplementary Fig. 10a).
Furthermore, time traces of the color rule and orientation rule
classifiers showed no differences for any of the brain regions with
three or more leads (left panels of Fig. 3; cluster-based t-test with
500 permutations and FDR correction, see “Methods” section).
These findings indicate that the two rules engaged identical brain
regions, with similar time courses, for the elaboration of the
decision. Similarly, we only found differences in number of leads
showing significant decoding for congruent and incongruent
trials for OP1 and somatosensory areas (Supplementary Fig. 10b),
while red and blue trials, and horizontal and vertical trials only
differed in S1 (Supplementary Fig. 11).

Analysis of classifier onset times. What is the functional role of
the newly identified parietal PF and OP areas in the decision-
making process? To shed light on this, we analyzed the precise
timing of the responses in the information-carrying areas. As
response times can be biased when using a classifier performance
metric across trials, for example, in areas sensitive to trial-to-trial
variations in difficulty level, we instead identified response tim-
ings in single trials. To this end, we obtained a decoding per-
formance trace for each trial individually, by retraining the LDA
classifiers using a leave-one-out cross-validation approach for all
the previously identified left/right decoding leads (see “Methods”
section for details). The leave-one-out classifier provided us with
a decision value (D-value, see “Methods” section), a proxy for the
certainty with that the time point in the trial could be decoded by
a classifier trained on the same time point from all other trials.
For each trial, we then identified the time point at which the
classifier performance started to increase toward the highest
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Fig. 4 Single-trial analysis of activity onset for classifier and spectral power traces. a Schematic explanation of single-trial onset analysis. For every

single trial the onset of the highest peak of classifier performance (D-values) or single-trial power trace was determined. Here, two example classifier D-
value traces are shown for lead P11 located in area PFt, with onsets indicated by vertical lines. Subsequently, either the average onsets are computed across
all leads in each area of interest, after which the differences of the average onsets is determined (‘average of onsets’), or the differences in onset of pairs of
leads are compared for each trial, after which the differences are averaged within the areas of interest (‘trial by trial’). Both methods thus resulted in a
difference matrix between all areas of interest, which was then ordered on a linear time axis using a multidimensional scaling approach. For power traces
(not shown in this example), onset analyses were computed for each frequency independently and time difference distributions were combined across
frequencies; b-e temporal ordering results of the average of onsets approach (b, d) and the trial-by-trial approach (c, e) for single-trial classifiers (b, €) and
spectra (d, e). Connected filled circles indicate the onset of each area relative to the onset of area BA4 (gray), with blue areas starting before BA4 and
yellow areas appearing after BA4. Small dots represent bootstrapping results, with each bootstrap leaving out the data from one recording lead (N = 86).

The classifier onset distributions of all leads can be found in Supplementary Fig. 12 and time difference matrices for all four methods are given in

Supplementary Fig. 13.

performance peak (Fig. 4a left). This provided us with a dis-
tribution of trial-specific onset times for each lead.

We then obtained onset time differences for all pairs of
identified brain areas, using two different strategies. In the first
approach (Fig. 4a), we combined the onset distributions of all
leads in one brain area and computed the average onset for this
area. We then computed the time difference matrix by comparing
onsets of all pairs of brain areas. Averaging within a brain area
provides a more stable estimate of the onset and has the
advantage that the difference matrix is complete, but note that a
difference is computed even if a pair of areas is not represented in
the recordings from a single patient. To account for this, we used
a second approach (Fig. 4a), where we computed the time
difference between each trial individually for every pair of leads
recorded simultaneously. We then collapsed the onset time
differences within brain areas and averaged across subjects. Note
that the resulting time difference matrix is incomplete when pairs
of brain areas were not recorded in any of the subjects.

To aid interpretation of the time difference matrices, we
projected them back onto a timeline using a simplified multi-
dimensional scaling (MDS) approach. This approach can only
produce a relative timeline and not the “absolute” time before the
response, as the absolute time-to-response is subtracted out in
the pairwise comparisons. We therefore translated the timelines
to the onset of motor cortex (BA4), as a proxy for response onset.
We validated each timeline with a bootstrapping procedure,
leaving out the results from one lead from each bootstrap
(leading to 86 bootstraps per method). The resulting timelines
and their bootstrapping results for the average onset and trial-by-
trial approaches are shown in Fig. 4b, ¢, respectively. Both
approaches identified early decoding onsets for area PFt and
dorsal premotor area, together with dorsolateral prefrontal
dIPFC for the trial-by-trial method, with all three areas having
a response onset well before motor cortex. Though the exact
timing differed slightly between methods, onsets in PMm, PFcm,
OP1, and OP3 roughly coincided with BA4 response onset in
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Fig. 5 Integration of the results of the four onset-tracking methods. a Rank distributions (i.e., ignoring the numerical value of onset) combined for all four
methods from Fig. 4b-e, with each dot representing one bootstrap (N = 86) from one method (N = 4). All areas shown here achieved significant conjunction.
Areas are ordered by their average rank; b average onset time of activation (color coded), relative to onset of area BA4, for all areas with significant consistency
between methods. Each dot is located at the center of mass of all recording leads that contributed and the size of the circle represents the number of recording
leads; € schematic of information flow suggested by the results in Figs. 3, and a and b: stimulus information and rule information all converge onto a shared
decision process, consisting of an early (dIPFC, PFt, and PMd) and a late phase (PFcm, OP1, and OP3). See “Discussion” section for a detailed description.

both. Sensory areas BA3a and S1 were last to classify the
response, together with area PFop.

As the classifier performance is based on a wavelet decom-
position using frequencies between 5 and 152 Hz, the time
differences between areas can be confounded by differences in
frequency content, with lower frequencies leading to broader
responses and hence earlier onsets. To exclude this possibility, we
performed the analysis described for the classifier performance on
the contra-/ipsilateral power contrast traces for each frequency
(see Fig. 2b for the average contrasts). To capture the potentially
biphasic power response that we described earlier for PF and OP
leads, we detected both increases and decreases in power contrast.
By only averaging across frequencies after relative times have
been computed, any influence of wavelet width is removed.
Though the single-frequency single-trial analysis is much more
variable and lacks the multivariate information used by the
classifier, we still obtained timelines qualitatively similar to those
obtained from the single-trial classifiers (Fig. 4d, e).

Consensus confirms early role for dIPFC, PMd, and PFt. To test
the consistency and reliability of the timelines, we integrated the

four methods into a single timeline. Due to differences in scale of
the time axes, the timelines will have different weights when
computing a standard average. We therefore opted for a non-
parametric approach, by identifying the rank order for each
bootstrap for every method and collapsing the rank distributions
across methods (Fig. 5a). We then computed a rank clustering
score for each area (see “Methods” section) and compared this to
500 randomly generated datasets. All identified brain areas
showed significant clustering (p < 0.002), except for the collection
of TL leads (p > 0.998), which is therefore excluded from Fig. 5.

Both the integrated rank (Fig. 5a) and the average onset across
methods (Fig. 5b) paint a picture of early involvement in
decision-making by areas PFt, dIPFC, and PMd, with these areas
responding, on average, ~12 ms before area BA4. The response
onset of BA4 coincided with the onset of PFcm, OP1, and OP3.
Areas PFop and PMm showed late responses, together with
sensory areas BA3a/S1, with the onset of S1 responses following
~25 ms after the onset of BA4. The late responding BA3a/S1 areas
also stand out due to their high decoding performance
(Supplementary Fig. 4). This suggests that for decision regions,
there is little or no evidence that earlier onset is coupled to the
highest decoding performance (Supplementary Fig. 14).
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Patient 6 did not perform the task well, yet this had negligible
impact on the results, as demonstrated by extremely high
correlations for rank (Spearman; rho =0.991; p <0.0001) and
timing (Pearson; rho=0.994; p<0.0001) between the full
dataset and a reduced dataset without their data (Supplementary
Fig. 15a).

The majority (567/663) of tested leads were located outside the
epileptogenic zone (EZ), yet 16 of the 95 left/right classifier leads
were located in the EZ. Inclusion of the latter leads in the results is
unlikely to influence the left/right classification results. Indeed, the
fraction of leads with significant classification performance did not
differ inside and outside of the EZ (Fisher’s exact test; p = 0.528
for the left/right classifier; p=0.556 for the baseline classifier).
When computed without the EZ channels (Supplementary
Fig. 15b), the integrated timeline produced similar results to the
full dataset, leading to high correlations between the datasets for
the rank conjunction (Spearman correlation; rho=0.861; p =
0.0003) and onset times (Pearson; rho = 0.839; p = 0.0007).

Discussion

By performing single-lead decoding on human stereoEEG data,
we have identified brain areas carrying decision information in a
rule-switching task. We reported significant classification per-
formance in areas in the parietal operculum and the supramar-
ginal gyrus, which have so far remained undetected in studies
using BOLD fMRI and EEG/MEG in humans, or using invasive
recordings in monkeys. In addition, we confirmed the involve-
ment of previously identified brain areas in early decision-making
processes, such as the dIPFC and premotor areas, and were able to
decode the button press from somatosensory areas, such as SI.
Leads showing successful decoding did not differ between the two
task rules, indicating that the identified regions carry a task-
independent representation of the decision (Fig. 5¢). To investi-
gate the function of the newly found decision areas, we assessed
when decision information appeared in each area, by determining
the onset of successful decoding with the LDA classifier and
power differences between left and right trials. Both measures
indicated early onset of decision information in OP and PF areas,
with area PFt responding first, together with dIPFC and PMd,
while PFcm and OP areas follow around the onset of BA4
(Fig. 5¢).

The early onset of decision information in dIPFC aligns with its
proposed abstract representation of the decision, i.e., indepen-
dently of the motor plan required for output>2!. However, more
recent studies suggest that abstract information is also present in
human parietal areas!®24, and that macaque PFC and LIP both
carry early decision information, as well as top-down task
information26. The timing of posterior parietal areas and dIPFC
presented here, using a similar task, agrees with the notion of an
early decision network shared between PPC and PFC; including,
however, a previously unnoticed PPC region, the supramarginal
gyrus (Fig. 5c). The comparison between classification perfor-
mance and spectral power contrast suggests that the dIPFC and
supramarginal areas (Fig. 2c) do not show a gradual, monotonic
increase leading up to the decision, as was previously reported for
a human posterior parietal region!42223, Instead, these areas
show a non-monotonic response with an initial negative corre-
lation between classification performance and power at higher
frequencies, followed by a late positive correlation at these fre-
quencies. This shared electrophysiological signature can point to
a close functional link between supramarginal gyrus, in particular
PFt, and dIPFC. Indeed, anatomical connections between the
anterior PF region of the intraparietal lobule, and both PFC and
dorsal premotor areas are well documented in macaque3? and
human?3.

Our results suggest that one of the supramarginal areas, PFt, is
in a position to link the decision region in the PFC with premotor
regions. PFt may therefore correspond to the abstract decision
step (independent of required motor output) identified by
O’Connell et al.!% and proposed to be located in rostral parietal
cortex (but see ref. 2°). Although our dataset did not include
electrodes placed in the more posterior IPS, and hence the timing
and signature of IPS responses cannot be compared directly to
our stereoEEG results, previous work suggests that IPS operates
in decision task on a similar time frame as dIPFC2°. Hence a
plausible sequence of events is that IPS encodes the decision
variable based on sensory inputs!®26, in order to track and
coordinate evidence accumulation. The decision information
from IPS is sent, online and parallel to sensory information, to
dIPFC where it is transformed into a task-relevant representa-
tion!?, and to PFt to be transformed into a motor-compatible
representation. The motor-compatible representation can then be
read out and converted to an all-or-none response in the pre-
motor areas’?, at which level speed-accuracy trade-offs may be
incorporated>. The transformation from a task-relevant to
motor-compatible representation of the decision variable might
be particularly important in the rule-switching task we used here,
in which stimulus features did not directly map onto button
presses due to rule-dependence of the desired output3¢. Our
findings hence put new emphasis on the need for a comprehen-
sive model of the steps and transformation needed to reach a
decision??,

Other supramarginal regions, in particular PFop, followed later
in the sequence, after BA4. They are suited for a role in post
decision processing®’, and in particular compute a perceptual
measure of confidence by comparing accumulated evidence for
the two choices at the moment of decision38. This signal can be
further elaborated into confidence when transmitted to the PFC
(ref. 3% Fig. 5¢).

Like the supramarginal gyrus, the parietal operculum has also
remained undetected as decision-related area. All four OP sub-
divisions respond to tactile stimulation®0, though OP1 does so
most consistently. OP1 has been reported to show both phasic
and tonic responses to contralateral median nerve stimulation!,
and tonic responses to ipsilateral nerve stimulation*?, suggesting
the left/right decoding from OP1 reflects phasic tactile inputs. OP
includes the secondary somatosensory area (SII)#0, which has
bidirectional connections with S1 (ref. 43). SII has been reported
to play an important role in tactile decision-making**, possibly
carrying the decision variable, but to our knowledge OP activa-
tion in decision-making has not been reported for sensory
modalities other than tactile. The present results suggest that the
involvement of OP1 reflects tactile feedback (Fig. 5¢), just as SI,
but combined with proprioceptive feedback?> and possibly pre-
dictive signals about the feedback. Beyond this possibility, the role
of OP areas in the rule-switching task remains to be established.

Why have the supramarginal and parietal operculum areas
remained undetected as decision areas in previous studies? We
hypothesize this partly reflects technical limitations. PF and OP
are relatively deep areas, and their convex shape and the proxi-
mity of more superficial concave gyri reduce their detectability in
EEG recordings?3. Depth is also likely to affect MEG detection, in
addition to a suboptimal orientation of the gray matter in OP and
PF relative to the skull*%, though OP regions have been targeted
using MEG*. On the other hand, BOLD fMRI studies have
successfully recorded OP#® and PF activation (ref. 4% and many
others). Yet, in decision paradigms, inferior parietal lobule acti-
vation has, to our knowledge, only previously been mentioned for
a perceptual recognition task?. One possible explanation is that
the BOLD response is not suitable to pick up the fast dynamics of
these rostral parietal regions (i.e., switch in correlation between
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power and classifier performance in Fig. 2). Furthermore, it is
unlikely that representations in parietal operculum and supra-
marginal gyrus scale with stimulus features, a contrast often used
to select decision areas in BOLD fMRI studies>+1422,

In this study, we obtained classification results with single-lead
resolution by using frequencies as features. So far, classification of
intracranial data has mostly been performed with leads as
features®®>1, allowing for high temporal, but low spatial resolu-
tion. Leaving out one dimension (time, frequency, or electrode
location) has been used to estimate the contribution of each
dimension®2-3, but this requires specific assumptions about the
timing and location of the effect under study.

In addition to using a single-lead classifier, we trained the
classifier for each time point individually. As we used a leave-one-
out cross-validation approach, this allowed us to assess the time
course of classification on individual trials for each lead. Time-
resolved classification has already provided insights in other
fields, e.g., the timing of retrieval of different aspects of mem-
ories®* and visual processing®, and was identified as an impor-
tant step forward in informing models of decision-making?®.
Here, we have shown that single-trial decoding can give unique
insight into the decision-making process, emphasizing the role of
the supramarginal gyrus. Further work, recording from more
patients and covering more posterior parts of the cortex, is nee-
ded to clarify the precise role of the diverse parietal and prefrontal
players in the decision process.

Methods

Patients and implantation procedure. Data were collected from six drug-resistant
epileptic patients (one female, aged 19-44 years). Detailed demographic and
diagnostic information about the patients can be found in the Supplementary
Tables 1 and 2). Patients presented either no anatomical alterations (N =5) or
alterations located outside the regions of interest (N = 1). Data from patient P01
and P02, who participated in the pilot experiment, were previously reported in
ref. 30. All patients were admitted to the Claudio Munari Center for Epilepsy
Surgery of the Ospedale Niguarda-Ca’ Granda in Milan, Italy, for identification of
the epileptic focus and subsequent surgical removal. Patients were stereotactically
implanted with 12-17 cylindrical probes (DIXI Medical, Besangon, France), which
contained 8-18 contacts (or leads) of 2 mm length spaced 1.5 mm apart.
Implantation sites were selected by the medical team on clinical grounds, according
to ictal semiology, scalp-EEG, and neuroimaging studies, and with no reference to
the experimental protocol presented here. Signals were sampled at 1000 Hz using a
Neurofax EEG-1100 system (Nihon Kohden), along with a trigger channel and two
electro-oculography (EOG) electrodes. The stereoEEG electrodes were referenced
against the average signal of two adjacent leads, both located in white matter. The
reference leads were selected for each patient individually, based on the require-
ment that they did not show any response to standard clinical stimulation,
including somatosensory (median, tibial, and trigeminal nerves), visual (flash), and
acoustical (click) stimulations, nor did electrical stimulation evoke any sensory
and/or motor behavior, (see also ref. 41). The Ethics Committee of Ospedale
Niguarda-Ca’ Granda (ID 7-012013-25.01.2013) approved the study. Patients were
fully informed of the stereoEEG implantation and recording procedures, and gave
their written informed consent to participate in the study, according to the
Declaration of Helsinki (BM] 1991; 302:1194). Recordings took place in two ses-
sions during the seizure-free postimplantation period.

Task. The patients performed a rule-switching task based on the task presented in
ref. 29 (Fig. 1a, b). Each trial started with the presentation of a cue, following an
intertrial interval in which only a fixation cross was shown. The cue consisted of a
colored band around the edge of the screen. A red outline indicated that the color
rule was active, whereas a blue outline cued the orientation rule. The duration of
the cue period was randomized and chosen from 18 intervals uniformly spanning
the 300-600 ms range. After this interval, the stimulus appeared in the center of the
cue outline, while the cue remained on the screen. Stimuli consisted of a series of
W’s and M’s, forming a bar-like structure. Stimuli were always either red or blue,
and were either horizontal or vertical (Fig. 1a). Red-horizontal and blue-vertical
stimuli always required right, respectively left, button presses, i.e., these stimuli
were rule congruent, while red-vertical and blue-horizontal stimuli were rule
incongruent. The rule switched after a randomized period of between 10 and 46
trials. Subjects were instructed to respond as accurately as possible soon after
stimulus onset. If the subject did not respond within 1500 ms after stimulus onset
the trial timed out. After the subject’s response the fixation cross reappeared,
indicating the start of the intertrial interval. The patients completed two blocks of
trials. The first two patients did two blocks of 400 trials each, with intertrial

intervals of 100 ms, while the other four patients completed blocks of 240 trials
each, with longer (500 ms) intertrial intervals, to allow for a better estimate of low
frequency content. As these differences did not affect the analyses presented here,
results from all six patients were combined.

Localization of electrodes. The location of each electrode was determined as
described in ref. 41, based on postimplantation CT scans (O-arm scanner, Med-
tronic) co-registered to preimplantation T1-weighted MRIs (voxel size 0.5 x 0.5 x
2 mm). Subsequently, multimodal views were constructed using the 3D Slicer
software package®’, and the exact position in the brain of all leads implanted in a
single patient was determined using multiplanar reconstructions and Freesurfer®
computed surfaces.

Leads located in white matter were excluded from further analysis. In total,
between 92 and 141 gray matter contacts were recorded in each patient (663 leads
total, see Supplementary Table 3). Gray matter lead locations were imported into a
common template, using the warping of the individual cortical anatomy to the fs-
LR template>. Leads were assigned to the cytoarchitectonic brain regions imported
from the Anatomy Toolbox (https://www.fz-juelich.de/inm/inm-1/DE/Forschung/
_docs/SPMAnatomyToolbox/ SPMAnatomyToolbox_node.html)60 onto the
template (see Supplementary Fig. 1 for full labeling of regions), following the work
of Katrin Amunts, Karl Zilles and colleagues®!-%*. We combined the results from
leads in areas BA1, BA2, and BA3b into area S1. Areas with fewer than three leads
were not included in the analyses for Figs. 2b, ¢, 4 and 5. Of the gray matter leads,
between 3 and 30 leads per patient (96 leads total, see Supplementary Table 3) were
identified as located in the epileptogenic zone (EZ). Control analyses for the impact
of the EZ electrodes are reported in the “Results” section.

Data preprocessing and artifact rejection. To facilitate artifact rejection, we
transformed the data to the time-frequency domain by convolving with complex
Morlet wavelets at 50 ms time intervals, using the cwt routine from the Wavelet
Toolbox for MATLAB. The wavelets were scaled to approximate frequencies
between 50 and 150 Hz at increments of 10 Hz (ref. 41). The quality of the data was
visually inspected using plots of gamma power time course in all trials collected for
a given condition, to detect the possible presence of ictal epileptic discharges
(IEDs). All trials/channels in which any IED or other transient electrical artifacts
appeared were removed. The numbers of removed items are listed in Supple-
mentary Table 4.

The raw data from artifact-free trials were band-pass filtered between 1.5 and
300 Hz using a sixth-order Butterworth filter. Line noise (50 Hz) and its harmonics
were removed using Notch filters with a 3 dB power reduction at +0.02 Hz.

Trials for which the subjects did not respond in time, or for which they
answered incorrectly, were not included in the analyses presented in this paper. For
five of the six subjects, the number of correct trials significantly exceeded chance
level (86.7-98.5% correct, see Fig. 1c and Results section), but the sixth subject only
answered 54.8% of trials correctly, which only marginally differed from chance (p
= 0.0358, Chi-squared test, x>(1, N = 480) = 4). This subject answered 12.9% of
the trials incorrectly and the remaining 32.3% timed-out. The main results include
all six subjects; however, control analyses limited to the five above-chance
performing subjects produced the same outcome (Supplementary Fig. 15).

In order to prevent classification based on eye movement-induced signals,
particularly in frontal leads, an independent component analysis (ICA) was
performed on the data of each patient, using the runICA.m implementation from
EEGlab®. Components that correlated significantly with the electro-oculography
(EOG) channels (5% of components) were removed and the reconstituted data
were subsequently transformed back to channel space.

Wavelet analysis. All remaining trials were wavelet transformed by using a
complex Morlet mother wavelet of four cycles wide at 10 ms time intervals, using
the continuous wavelet transform function cwt from the Wavelet Toolbox for
MATLAB. Wavelets were scaled to cover frequencies between 5 and 152 Hz at
50 semilogarithmic intervals. The absolute value provided an estimate of spectral
power. We then cut the trials into epochs starting 0.5 s before the button press to
0.15 s after button press. To report the spectral signature of the left/right decision
(Fig. 2b), we contrasted the trials where the button contralateral to the recorded
hemisphere was pressed to trials with an ipsilateral button press, by computing the
t-statistic for every time point and frequency. For interpretability, we also z-scored
the power spectra against a 500 ms pre-cue baseline for contralateral and ipsilateral
trials separately (Supplementary Fig. 7).

Left/right and baseline classifiers. To identify leads that carried information
about the left/right decision, we trained LDA classifiers®® on the wavelet trans-
formed and response-aligned data. We used the power per wavelet scale as features,
allowing us to train a classifier for each time point and for each lead individually,
preserving the high spatial and temporal precision of the data. We did not include
phase in the feature space®’, as exploratory analyses suggested including phase did
not improve decoding. To minimize overfitting, we used shrinkage regularization
and a k-fold approach to cross-validate the classifier’s performance, with five folds.
The selection of the folds was repeated ten times. For every lead and time point,
decision values for the left and right classes were combined to a t-statistic
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representing classification performance across all trials. We used the LDA classifier
implementation from the MVPA-Light toolbox used in ref. 3! and available on
(https://github.com/treder/MVPA-Light).

In addition to identifying differential activation between left and right trials, we
also aimed to identify general response-related activation, including activation that
is shared by both left and right button presses. To this end, we created a ‘baseline’
dataset by shuffling the time points within each trial and for each frequency. We
trained classifiers on the shuffled versus the intact trials. The classifier parameters
were otherwise identical to the left/right classifier.

Identification of temporal classification clusters. To obtain empirical reference
distributions for comparison with the classifier performance, we randomly shuffled
the class labels (either for left versus right contrast or for intact versus time shuffled
contrast) and retrained the classifier on the shuffled labels. Label shuffling and
retraining was performed for each lead individually and repeated 100 times, thus
generating a lead-specific estimate of chance level that takes into account any
structure in the dataset, other than the class labels. To minimize influence from
other task dimensions, specifically, task dimensions rule, color, and orientation, we
required that an approximate balance for these task labels was retained on each
permutation. For example, stimulus color was balanced for the intact labels, so 50%
blue and 50% red, within each rule. When the class labels were shuffled, we
required that each shuffled rule class contained at least 30% blue or 30% red trials.
We treated the other task dimensions in the same way.

Each classifier was trained for individual time points spaced 10 ms apart. Yet we
expect classification of the left/right decision to persist for an extended period
around the response, so time points should not be considered in isolation. We
therefore identified temporally contiguous clusters®® of significant classification
performance by thresholding the classification ¢-statistic trace for each lead at a« =
0.05 and the number of degrees of freedom defined as df = N .. — 2, with
NZ et the number of correct trials for subject s (Supplementary Table 4). For each
period of threshold crossing, we computed a cluster statistic by adding up all ¢-
values within the cluster.

Cluster statistics were also computed for all 100 label-shuffled classifier traces
obtained for each lead, producing a reference distribution of cluster statistics. The
cluster statistics from the intact dataset were then compared against this reference
distribution using a one-tailed rank test, producing a p-value for each cluster. The
p-values entered a FDR correction procedure with g =0.10%. Leads of which at
least one cluster survived FDR correction are shown in Fig. 2a; only these leads
were included in subsequent analyses.

Classification within task dimensions. In order to identify similarities and dif-
ferences between decision processes for stimulus and task characteristics, we
retrained the left/right classifiers and identified temporal clusters for subsets of
trials. In Fig. 3, the averaged decoding traces of left/right classification on color rule
trials only and orientation rule trials only are shown. We performed cluster-based
statistics®® to test whether these traces differed from each other, for every brain
region that had three or more significant leads for both of the rules. First, we
performed a two-tailed t-test for every time point, identified clusters of significant
t-values at o = 0.05, and determined a cluster f-statistic by summing all t-values
within the cluster. We then randomly shuffled and divided the classifier traces from
the color and orientation rules, and performed cluster analysis on this shuffled
dataset. We repeated the shuffling procedure 500 times, yielding a reference dis-
tribution of cluster ¢-statistics, against that we tested the cluster statistics obtained
from the color versus orientation rule comparison using a one-tailed rank test. We
performed FDR correction on the resulting p-values (g = 0.10)%. Of the 19
identified clusters, none survived cluster comparison and FDR correction.

Figure 3 also shows the number of leads selected in each brain region by the
color rule only and orientation rule only classifiers. We compared these lead counts
to lead counts from ten classifiers trained on randomly subsampled datasets with
half of the total trial count. This subsampling compensated for a possible reduction
in sensitivity due to lower trial count when only including trials from one rule. For
every brain region, we compared the difference between color and orientation rule
lead counts to the 45 lead count differences from the subsampled data using a one-
tailed Wilcoxon rank-sum test with & = 0.05. The resulting p-values were corrected
for multiple comparisons using a FDR correction procedure (g =0.10)%°. We
performed the same analysis for congruent and incongruent trials (subsampled to
30% to match the number of congruent trials), red versus blue trials and horizontal
versus vertical trials, the results of which are given in Supplementary Figs. 10 and
11.

Single-trial classifiers. For the selected leads, we trained an additional classifier
using a leave-one-out cross-validation approach, i.e., the classifier was trained on
all-but-one trials, and tested on the left-out trial, and this was repeated for all trials.
This provided us, for each time point in the trial, with the distance from the
hyperplane separating left from right button presses trained on the same time point
from all other trials, a measure known as the decision value (D-value). The whole
procedure was repeated ten times to minimize the effect of initial conditions of
classifier training and performed independently for each time point in the trial®.
This provided us with a D-value time trace for each trial (averaged across the ten

repetitions), thus allowing us to account for any trial-to-trial differences in the
processes leading up the response. To avoid circularity in our analyses, we did not
analyze the amplitude of D-values, as we previously selected the included leads
based on the significance of their k-fold cross-validation classifier traces (see “Left/
right and baseline classifiers” section). Instead, we only report the onset times of D-
value peaks, and included all trials for which a peak could be detected (see next
section).

Peak onset detection. For both spectral power contrast and classifier decision
values, we aimed to determine the onset of activation/classification for each indi-
vidual trial. To identify that onset, we used the following procedure:

Step 1: find the highest value in the trace, with the additional requirement for
spectral power contrasts of a minimum height of py,s for the trial to be included in
further analyses. We set pinres = SD, i.e., to 1 standard deviation from the lead
mean, computed across all trials. For the spectral power contrast, activation could
present as positive or negative deflections from 0. We therefore identified both
peaks and troughs in the power contrast traces and analyzed the timing of the
peak/trough with the biggest deviation from 0;

Step 2: smooth the trace using a block function five time steps wide (50 ms);
Step 3: working from the time of the peak backward from the peak to the start of
the trace, find the first value of the smoothed trace that meets the following
requirements: (1) smaller than half of the peak value; (2) derivative smaller than
threshold dipes, remaining below this threshold for at least n, time points. In this
manuscript, we used dy,., = mtan 7, ie., a derivative falling below five
degrees, and #n,= 3 time points, or 30 ms.

Pairwise time difference and bootstrapping. With the onset of the left/right
contrast detected for every trial on every lead, we set out to order the leads
according to their onset times. We took two different approaches, both illustrated
in Fig. 4a. In the first approach (“average of onsets”), we aggregated all onset times
of all leads in one brain area and computed the average onset. The average onsets
were then compared for all pairs of brain areas, creating a complete time difference
matrix. In the second approach (“trial-by-trial”), we instead compared the onset
times for every pair of leads on a trial-by-trial basis, producing a time difference per
trial and per lead pair. All single-trial onset time differences were then averaged
across all trials and pairs representing a particular pair of brain areas, producing a
time difference matrix that only included pairs of areas that were recorded together
in one or more of the patients. To ensure statistically sound results, we only
included areas with three or more leads in the described analyses.

To test the stability of our time difference estimates, we performed
bootstrapping for all temporal difference analyses. For each bootstrap, the data
obtained from one recording lead were removed and the time difference matrices
were recomputed and used in the analyses described in the following paragraphs.
Bootstrapping was repeated until all leads had been removed from the dataset once,
producing a total of 86 bootstraps.

Reconstruction of timeline (MDS) and bootstrapping. We then converted the
time difference matrices, which only contain relative differences in time, back to a
timeline, by using a MDS approach. We used the following iterative procedure to
reconstruct the timeline:

Step 1: assign all brain areas to a random point in time T? ,;

then, for every brain area i:

Step 2: compute the error D) (in seconds) between the time difference on the
timeline with the desired time difference from the matrix for every other brain
area j.

Step 3: compute the desired update due to each brain area j, as follows:

o

e
%

AY = ﬁsgn(Di) (exp!”l — 1),

where f8 is a learning parameter, here set to 0.9, and g;; is the weight (in seconds)
assigned to the update. For the trial-by-trial method, we used the standard
deviation of difference distribution as weight, while all weights were set to 1 when
using the average onset approach.

Step 4: update the location of area i on the timeline: T}, = T!; — ﬁzj AP,
where N, is the number of brain areas.

Step 5: repeat Steps 2—4 for all brain areas i, until the relative locations of the brain
areas, i.e., the ranks, have not changed for five consecutive iterations, or the
maximum number of 1000 iterations is reached.

This timeline reconstruction method was used for both the average onset and
the trial-by-trial derived time difference matrices, as well as their bootstrapped
matrices. The algorithm converged in all cases, typically in <50 iterations. The
timeline reconstruction does not provide the time relative to the response, but only
relative to other areas, as a uniform shift of all coordinates still yields the same
difference distribution. To aid comparison, we translated the reconstructed
timelines such that 0 represented the onset of motor cortex (BA4). Note that the
bootstraps do not have to be centered around the data from the full dataset, as the
MDS approach can shift them relative to the main timeline.
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Rank conjunction and rank clustering score. In Fig. 5, the sequences of the two
pairwise time difference methods (average onset and trial-by-trial) and the two
signals (spectral power contrast and classifier decision values) are combined. To
this end, we determined the rank order for all 86 bootstraps of each of the four
methods and combined these data points into one rank distribution for each
brain area.

To assess whether the conjunction between methods was significant, we
computed, for every brain area, the rank clustering score C by calculating the
average distance between all data points obtained from bootstrapping for all four
methods (see “Pairwise time difference and bootstrapping” section), i.e.,:

C= ﬁh[ > k(e — 1), with Nyoor = 86 being the number of bootstraps and where

1, and r; is the rank of datapoint k and [, respectively, as obtained with the
procedure described in the previous section. We then compared the rank clustering
score of each area with rank clustering scores of 500 randomly drawn datasets,
containing the same number of data points as the original data. Brain areas of
which the average distance C was significantly smaller (a = 0.05) than that of the
randomized dataset were said to show significant rank clustering across the four
methods.

Software. All analyses were performed using MATLAB R2018a (The Mathworks,
Inc.). Unless otherwise stated, built-in functions were used. Where external func-
tions were used, those functions have been referenced in the relevant sections of the
“Methods”.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The following (fully anonymized) data underlying the results presented here have been
made publicly available (https://doi.org/10.6084/m9.figshare.c.4805487; ref. 70): (1) the
across-trial classifier performance for all leads (¢-values), for all trials combined, as well as
for rule, congruency, and stimulus features separately and their label-shuffled reference
distributions; (2) the single-trial classifier performance (D-values) for the significant
leads; and (3) the power spectra for the significant leads. Other data can be provided
upon reasonable request, provided doing so does not violate data protection and consent
restrictions. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
The custom written functions used to perform peak onset detection, MDS, and rank
statistics are available on (https://github.com/marijeterwal/seq-reconstruct]).
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