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Unsupervised generative and 
graph representation learning for 
modelling cell differentiation
Ioana Bica1,2,4,7 ✉, Helena Andrés-Terré2,7 ✉, Ana Cvejic   3,5,6,8 ✉ & Pietro Liò2,8

Using machine learning techniques to build representations from biomedical data can help us 
understand the latent biological mechanism of action and lead to important discoveries. Recent 
developments in single-cell RNA-sequencing protocols have allowed measuring gene expression 
for individual cells in a population, thus opening up the possibility of finding answers to biomedical 
questions about cell differentiation. In this paper, we explore unsupervised generative neural 
methods, based on the variational autoencoder, that can model cell differentiation by building 
meaningful representations from the high dimensional and complex gene expression data. We use 
disentanglement methods based on information theory to improve the data representation and 
achieve better separation of the biological factors of variation in the gene expression data. In addition, 
we use a graph autoencoder consisting of graph convolutional layers to predict relationships between 
single-cells. Based on these models, we develop a computational framework that consists of methods 
for identifying the cell types in the dataset, finding driver genes for the differentiation process and 
obtaining a better understanding of relationships between cells. We illustrate our methods on datasets 
from multiple species and also from different sequencing technologies.

As technology continues to drive biomedical research forward, new challenges arise with the surge of high vol-
ume, information-dense and multivariate data that are generated. The extraction of critical information from 
such data remains an open problem in biomedical research, which can be significantly aided by the incorporation 
of machine learning techniques. In particular, unsupervised learning methods have the potential to uncover the 
underlying structure in biomedical data and therefore propel research on biological processes and diseases that 
have not yet been fully understood.

This paper aims to build unsupervised neural methods that can be applied to understand cell differentia-
tion using gene expression data. Recent technology for performing single-cell RNA sequencing has resulted in 
high-throughput experiments capable of measuring gene expression levels for individual cells in a population, 
thus achieving a granularity not previously possible. In-depth analysis of this high-dimensional and complex 
gene expression data about the cells can lead to important biomedical discoveries about the factors influencing 
the differentiation process. However, gene expression data is in general high dimensional, as there are thousands 
of gene expression measurements for each cell, and very complex.

We propose using a disentangled generative probabilistic framework to model single-cell RNA sequencing 
gene expression data and build a low dimensional representation that can help us discovering latent biological 
mechanisms. In this framework, we develop novel methodology that can be used to identify the different cell 
types in such single-cell RNA-seq datasets using the learned latent representations. We show that we can cor-
rectly identify the different cell types in two datasets: one dataset consisting of hematopoietic stem and differen-
tiated cells in zebrafish obtained using Smart-Seq21, and another dataset consisting of humans pancreatic cells 
obtained using CEL-Seq22. We also show and discuss some limitations of our methods on a dataset with human 
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hematopoietic cells3. In addition, we explore performing perturbations to the latent representation to study how 
the stem or progenitor cells can be changed into differentiated cells. Moreover, we propose a graph representation 
learning method based on an autoencoder consisting of graph convolutional layers that can be used to analyze 
links between single cells.

Current methods for analysing single-cell RNA-seq data are based on the combination of dimensionality 
reduction techniques and clustering algorithms, at either gene or cell level analysis. The identification of cell 
lineages and trajectories is one of the main fields of study where single-cell scRNA-seq has had a great influence. 
The most widespread computational tools include Waterfall or Wishbone4,5, which are based on principal com-
ponent analysis (PCA). Monocle uses independent component analysis (ICA) and SCUBA pseudotime focuses 
on t-distributed stochastic neighbour embedding (tSNE)6,7. However, some of these methods, particularly the 
ones based on linear approaches such as PCA, are not able to capture the complex relationships between the input 
dimensions and can disregard meaningful information within the data. In addition, Yeung and Ruzzo8 showed 
that using PCA before clustering gene expression data has a negative effect on the quality of the clusters. Despite 
these findings, a lot of research in gene expression analysis9–11 is based on applying PCA before clustering cells to 
identify their types.

Autoencoders can be used to perform non-linear dimensionality reduction, but also to extract biologically 
relevant latent features from transcriptomics data. Related work shows the effectiveness of these models in analys-
ing gene expression data. Way and Greene12 trained a variational autoencoder on pan-cancer RNA-seq data from 
The Cancer Genome Atlas13 to explore the biological relevance of the latent space produced by the autoencoder. 
Tan et al.14 built a denoising autoencoder capable of modelling the response of cells to low oxygen and finding 
differences between strains in gene expression from Pseudomonas aeruginosa. Eraslan et al.15 used autoencoders 
for denoising purposes, developing a method that is linearly scalable with the number of cells and outperforms 
existing methods for data imputation. Talwar et al.16 proposed an autoencoder-based method to perform gene 
expression imputation, while Wang and Gu17 use variational autoencoders for dimensionality reduction and vis-
ualization of single-cell data. Finally, Rashid et al.18 used a variational autoencoder to identify tumour subpopula-
tions, marker genes, as well as differentiation trajectories for the malignant cells using scRNA-seq genomic data. 
Compared to our proposed models, these methods do not use a training objective to enforce disentanglement in 
the latent representation12,18 and focus on different applications such as denoising14,15, visualization17 and missing 
data imputation16.

This work represents the first application, to the best of our knowledge, of disentanglement, perturbation and 
graph-based methods for variational autoencoders with the aim of analysing cell differentiation using single-cell 
RNA-seq data. We emphasise the importance of building interpretable models, by analysing the relationship 
between the embedding and gene expression spaces. We also explore the robustness and variability of the latent 
space by introducing perturbations. Graph representation learning represents a new powerful generation of 
methodologies for graphs. We show how predicting links between cells can provide insights into differentiation 
trajectories.

Disentangled generative probabilistic framework
We propose using a generative probabilistic framework19 to model the biological processes that lead to the 
changes in the observed gene expression for cells at different stages in the differentiation process. Let = =D x{ }i

i
N( )

1 
be a high-dimensional single-cell RNAseq dataset consisting of the gene expression of N i.i.d cells. Each gene 
expression vector x(i) is an observation from a continuous random variable x, having distribution pdata(x). The 
gene expression data is assumed to be generated by some random process, modelled by an unobserved continu-
ous random variable z with parametrised prior distribution pθ(z). The marginal likelihood pθ(x), also known as 
the evidence, is computed by integrating over the possible latent representations:

Z Z
p p p px x z z x z z z( ) ( , )d ( ) ( )d (1)z z∫ ∫= = | .θ θ θ θ∈ ∈

Computing the integral involves spanning the space of values for z which is often intractable. For inference, 
the posterior p p p pz x x z z x( ) ( ( ) ( ))/ ( )| = |θ θ θθ  has to be computed, which is also intractable, as it requires the mar-
ginal likelihood.

To learn in such a framework we use variational inference and we approximate the posterior using the varia-
tional distribution qφ(z|x). We thus build a variational autoencoder model19 and we use a multivariate Gaussian 
N z( ; , diag( ))2σµ  distribution with mean μ and variance σ2 to approximate qφ(z|x). An encoder neural network 
is trained to estimate qφ(z|x). In addition, an isotropic multivariate Gaussian prior is assigned to the latent rep-
resentation: Np z z 0 I( ) ( ; , )=θ . The decoder neural network is trained to reconstruct (generate) the gene expres-
sion data from the latent representation and thus estimate pθ(x|z). See Fig. 1a for a graphical illustration of the 
model. The training objective of the standard variational autoencoder model19 penalises the mutual information 
between the input gene expression and the latent representation20 and it also does not encourage disentaglement 
in the latent representation21. Disentanglement is desirable in our case because, ideally, the latent representation 
Z should be able to separate the biological factors that have led to the development of various cell types.

We introduce DiffVAE, a variational autoencoder that can be used to model and study the differentiation of 
cells using gene expression data. DiffVAE is an MMD-VAE, part of the InfoVAE family of autoencoders21 and is 
trained to maximize the following objective:

θ φ = −θ φ θφ
 p q px x z z z( , ; ) [log ( )] MMD( ( ) ( )), (2)qDiffVAE z x( )

L
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where  θφ
p x z[log ( )]q z x( )

 represents the reconstruction accuracy and the maximum mean discrepancy (MMD)22–24  
divergence between qφ(z) and pθ(z) measures how different the moments of two probability distributions are. The 
intuition behind the MMD divergence is given by the fact that two probability distributions are identical if and only 
if their moments match. Zhao et al.21 prove that using this training objective will always prefer to maximizes mutual 
information between the input and the latent representation. Moreover, minimising the divergence MMD(qφ(z)||p
θ(z)), will encourage qφ to be similar to the prior p z z 0 I( ) ( ; , )=θ N  with diagonal covariance matrix, which will 
lead to disentanglement in the latent dimension. Using the MMD to measure discrepancy between distributions 
achieves best performance in the InfoVAE model family21. The MMD also achieved good results when used in the 
training objective of other autoencoder models23,25,26. For further analysis we use as the latent representation z the 
mean μ of the distribution q(z|x) learnt by DiffVAE. The reason for this choice is the fact that the mean of the dis-
tribution q(z|x) represents the maximum likelihood estimate of the latent distribution learnt by DiffVAE for the 
cells in the dataset.

The DiffVAE model consists of two fully connected layers in the decoder and encoder networks. See the 
Methods section for more details about the DiffVAE model. The models in this paper were implemented in 
Python using Keras27.

Identifying cell types using DiffVAE
Data details and pre-processing.  The unsupervised models and the methodology developed in this paper 
are used to analyse single-cell gene expression data from hematopoietic stem and differentiated cells in zebrafish1 
and in human3 and also from human pancreatic cells2. Let a scRNA-seq dataset be denoted as = =D x{ }i

i
N( )

1, where 
= …x x xx [ ]i i i

k
i T( )

1
( )

2
( ) ( )  consists of the transcriptomics data for cell (i). The zebrafish dataset consists of k = 1845 

gene expression measurements from N = 1422 cells. We used the same 1845 genes identified by1 to be the most 
highly variable ones among the 1422 zebrafish single cells. The dataset with human pancreatic cells consists of 
N = 2285 cells with measurements from the k = 4000 most highly variable genes. The dataset with human hemato-
poietic cells contains N = 1034 cells with k = 700 measurements from the most variable genes. In all cases, we 
consider that the cell states are initially unknown and we show how the methodology developed in this paper can 
be used to identify them. Note that some of the results on these datasets are also presented in the supplementary 
materials.

The transcriptomics data used is log-normalized. However, to use the transcriptomics data as input to 
DiffVAE, we performed additional normalization through Min-Max scaling such that the expression values for 
the genes were scaled to the range [0, 1]. This way we model the gene expression for each cell as a multivariate 
Bernoulli distribution in our probabilistic framework.

Figure 1.  Pipeline for identifying the cell types in a dataset using DiffVAE. Illustration on the zebrafish 
dataset. (a) Train DiffVAE to map the gene expression measurements for each cell to a m-dimensional latent 
representation z. (b) Apply T-SNE on the latent representation z and clustering to find the different cell clusters 
in the dataset. (c) Identify which latent dimensions in z encode the differentiation of the cells in each cluster. (d) 
Find the high weights genes for the relevant latent dimensions. (e) Map the clusters to cell types based on the 
high weight genes for each cluster.
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Pipeline for identifying the cell types.  In this section, we describe how DiffVAE can be used to find the 
different cell types in each dataset. Figure 1 shows the methodological pipeline for this process, with the specific 
details described in further subsections.

Using DiffVAE to obtain cell clusters.  DiffVAE was trained to map the gene expression data for the single cells 
to a latent representation of m dimensions (Fig. 1a). For the datasets with hematopoietic cells (both zebrafish 
and human), we used m = 50 latent dimensions, while for the dataset with the human pancreatic cells, we used 
m = 100 latent dimensions. The large number of latent dimensions is needed to capture the complex biological 
processes influencing cell differentiation. To visualize the data and identify the different cells, we further use 
t-Distributed Stochastic Neighbour Embedding (t-SNE)28 to obtain a 2-dimensional embedding for each cell. In 
the zebrafish dataset, K-means clustering is applied to the t-SNE embedding to obtain 5 cell clusters (Fig. 1b). In 
the datasets with human cells, we used DBSCAN clustering. We further develop the methodology for mapping 
each cluster to a cell type.

Latent dimensions encoding cell differentiation.  DiffVAE was designed to model the data generating process 
giving rise to the observations in our dataset D. Thus, this method should be able to identify the biological mech-
anisms that result in the observed gene expression value for our cells. Consider the analysis of a latent dimension 
k for any of the models. Let = …z z zz [ ]k k k k

N T(1) (2) ( )  be the predicted value of the encoder for zk across all of the 
cells in the dataset. Let μk and σk be the mean and standard deviation of zk. We define:

z zx{ } (3)k
i

k
i

k k
i

k
( ) ( ) ( )D D µ σ µ σ= ∈ | ≥ + ∨ ≤ −

as the set of cells at least a standard deviation from the mean in latent dimension k. By computing the percentage 
distribution of the cells in Dk across the distinct cell clusters found in the dataset, we can evaluate how well the 
latent dimension is encoding the differentiation of the cells in a particular cluster (Fig. 1c). Thus, for each cluster 
C we compute the percentage of cells from cluster C in each of ∈ …D k, {1,2, ,50}k . The latent dimensions rele-
vant for the differentiation of cells in cluster C will be the ones with the top 10 highest percentage of cells from 
cluster C in Dk.

Identifying high weight genes.  The decoder in DiffVAE learns to reconstruct the original gene expression data, 
and therefore, the weights in the decoder indicate the contribution of each gene in the biological process. By find-
ing the high weight connections between the latent dimensions relevant for each cell cluster and the reconstructed 
gene expression, we can identify the marker genes for each cell cluster. This will help us identify the cell types.

The high weight connections can be obtained using the weight matrices in the decoder. The decoder consists 
of a two fully connected layers. Let   ∈ ∈ ∈ ′ ∈ Rz h h x, , ,m n n n(1) (2)1 2 , be the sequence of layer activations 
in the decoder, where the latent dimension z represents the input, h(1), h(2) are the hidden layers and x’ is the out-
put. The weight matrices for the connections between the layers in the decoder can be described by 

  ∈ ∈ ∈× × ×W W W, ,m n n n n n(0) (1) (2)1 1 2 2 . Let ω ∈ ×m n be the weight matrix for the connections between 
the latent dimension and the output. ω can be computed by multiplying the weight matrices between the individ-
ual fully connected layers, as follows: ω = ⋅ ⋅W W W(0) (1) (2), where the matrix element ωij indicates the weight 
of the connection between latent dimension i and gene j. For each latent dimension, the genes are sorted by the 
absolute value of their weight. The genes having the highest of such weights are referred to as the high weight genes 
(Fig. 1d).

For each cluster, we selected the latent dimensions that distinguished the best the cells in the clusters and then 
computed the high weight genes. The high weight genes found for the clusters in the zebrafish dataset are given in 
Table 1. Using knowledge from biomedical literature about marker genes for blood cells, we mapped each cluster 
to a cell type. Thus, Cluster 1 corresponds to HSPCs, Cluster 2 to Neutrophils, Cluster 3 to Monocytes, Cluster 4 
to Erythrocytes and Cluster 5 to Thrombocytes. The same process was used to map the clusters to cell types in the 
dataset with human pancreatic cells; see Supplementary Table 1 for the high weight genes found for the clusters in 
the human pancreatic dataset and their mapping to cell types.

Our results for identifying the different cell types in the zebrafish dataset are validated by1 who computation-
ally reconstructed the differentiation trajectories using the Monocle2 algorithm29 and found the same cellular 
states. In particular, there is 89.9% overlap between the cell types identified using DiffVAE and the cell types 
obtained by1. Conversely, for the dataset with the human pancreatic cells, we found there is a 96.2% overlap 
between the cells types obtained using DiffVAE and the ones reported by Murano et al.2. In addition, DiffVAE 
identified all the different cell types in the dataset except for the epsilon cells. However, note that are only 4 epsi-
lon cells in the dataset and Murano et al.2 also did not identify them computationally, but rather based on the 

Cluster 1 
(HSPCs)

Cluster 2 
(Neutrophils)

Cluster 3 
(Monocytes)

Cluster 4 
(Erythrocytes)

Cluster 5 
(Thrombocytes)

si:ch211-
161c3.61, 
cad1,40, pcna40

illr41, ponzr6, 
npsn41, abcb942, 
lyz43

lgals2a1, c1qc, 
c1qa1, s100a10b, 
mafbb44,45

alas21, ba1l1, aqp1a.11, 
hbaa11, slc4a1a46,47, 
ba11, si:xx-by187g17.1

fn1b1, itga2b1,48, bmp6, 
thbs1b1, fhl1a, ctgfa, 
apln

Table 1.  Zebrafish. High weight genes computed using the high weight connections to the latent dimensions 
with the highest percentage for differentiating the corresponding cell type. Using references from scientific 
literature each cluster found using DiffVAE is mapped to a cell type.
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expression of the GHRL gene. See Supplementary Fig. 1 for the clusters found using DiffVAE on the dataset with 
human pancreatic cells.

The representations built by DiffVAE on the human hematopoietic cells do not display separable clusters, 
which makes it difficult to identify all of the cell types. Velten et al.3 also indicate that the hematopoietic stem cells, 
multipotent progenitors and multilymphoid progenitors cells form a unique continuous group when applying 
clustering methods to the dataset. Refer to Supplementary Fig. 2 and the corresponding section for a discussion 
of the limitations of DiffVAE in this case and directions for future work.

Characterization of cell states.  For the zebrafish dataset, we also explored the possibility of changing the 
state of cells through perturbations on the latent dimension. This could help us learn more about the type of bio-
logical changes in gene expression that cause a less specialised cell such as an HSPC to differentiate in a more spe-
cialised cell such as a Monocyte. For this, we trained a neural network classifier capable of labelling Monocytes, 
Neutrophils, Erythrocytes and Thrombocytes using the full gene expression data with 99.5% accuracy. See the 
Methods section for more details.

Assume that we have identified, that latent dimension j encodes the differentiation of a type of mature blood 
cells, such as Monocytes. Let μj and σj be the mean and standard deviation of z z zz [ ]j j j j

N T(1) (2) ( )= …  the predicted 
value of the encoder for zj across all of the cells in the dataset. We can say that if latent dimension j identifies 
Monocytes, it means that the ratio of the number of Monocytes in D D z zx{ }j

i
j
i

j j j
i

j j
( ) ( ) ( )µ σ µ σ= ∈ | ≥ + ∨ ≤ −  

is larger than for the other cells. This strongly suggests that shifting zj
i( ) by the standard deviation σj of latent 

dimension j could potentially change the cell x(i) label into a Monocyte.
The method proposed for changing a less specialised cell (an HSPC) into Monocytes involves shifting several 

of the latent dimensions encoding the differentiation of Monocytes proportionally with their standard deviations. 
The proportionality factor is the parameter λ. The method is illustrated in Fig. 2 and it can be generalised to any 
of the mature cell types that the embedding can separate.

Figure 3 shows the results after performing this kind of perturbations to change HSPCs into all of the mature 
blood cells in our dataset. For each cell type, we shifted the top 5 latent representation encoding their differen-
tiation. We illustrate the results for both λ = 0.5 and λ = 1.0. We notice that there is a difference in how easy is 
to change the HSPCs into the different mature blood cell types which indicates that there is some heterogeneity 
among the HSPCs. In this context, we can also learn the minimum number of genes that need to be modified to 
change the cell type, and particularly, to determine which genes get upregulated and which genes get downregu-
lated in this processes.

Let x(i) be the input gene expression measurements for cell (i). After performing the perturbations on the latent 
representation z(i) of cell (i) and putting the results through the decoder, we obtain the reconstructed gene expres-
sion measurement y(i). Assume y(i) is then classified by the neural network as a mature blood cell. By looking at the 
difference y(i) − x(i) we can learn which genes have changed the most in the process of performing perturbations 
on the latent dimension. Then, by only changing the expression of these genes in x and leaving the other ones the 
same, we can compute the maximum number of genes that need to be changed to reprogram HSPCs into mature 
blood cells.

For the shifting parameter λ = 1, we analyze the HSPCs that were classified as mature blood cells after the 
operations on their latent representation. Our analysis shows that for the 175 HSPCs that were converted into 
Erythrocytes, we needed to change a relatively small number of genes (up to 25) for each HSPC. Conversely, the 
70 HSPCs changed into Monocytes, gene perturbations needed to be performed on ~70% of the genes to change 
the cell type. For the 70 HSPCs that were classified as Thrombocytes after the perturbations, 50% of the cells were 
changed with modifications to only 20 genes; to change 100% of the 70 HSPCs into Thrombocytes almost all of 
the genes needed to be perturbed. Finally, only 3 HSPCs were changed into Neutrohpils so we did not perform 
any further analysis in this case. We would like to emphasize that these results are entirely computational and 
show how performing perturbations on the latent representation obtained from DiffVAE allows us to explore 
changing cell states. Nevertheless, biological experiments are required to validate such hypothesis generated by 
DiffVAE about cell reprogramming.

Figure 2.  Methodology proposed for changing the cellular states: HSPCs can be converted into Monocytes by 
shifting the latent dimensions differentiating Monocytes by a factor λ multiplied with their standard deviation. 
Increasing the shifting parameter λ will result in more of the HSPCs to be subsequently classified as Monocytes.
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Comparison of DiffVAE with other dimensionality reduction methods
After performing dimensionality reduction, standard single-cell RNA-seq workflows for identifying cell types 
involve clustering of the lower representation obtained for the gene expression data30. Using the zebrafish cell 
types found by Athanasiadis et al.1 and the human pancreatic cell types found by Muraro et al.2 as true labels, 
we compare DiffVAE with a standard variational autoencoder (VAE), a simple autoencoder (AE) and Principle 
Component Analysis (PCA) in terms of clustering performance. Their performance is compared using two clus-
tering algorithms that use different approaches in defining clusters: k-means and DBSCAN. We will cluster both 
the raw data obtained through dimensionality reduction for m ∈ {20, 50, 100} latent dimensions, as well as the 
2-dimensional embedding produced using t-SNE.

For each setting of m (size of latent dimension), the clustering algorithms (including the computation of 
the t-SNE embedding) were performed 50 times and each time the ARI between the true labels and the cluster 
labels was computed. The results reported in Table 2 represent mean ARI obtained on the zebrafish dataset. See 
Supplementary Table 2 for the results on the dataset with human pancreatic cells. For both datasets, the rep-
resentation built by DiffVAE gives the best overall clustering performance. In addition, computing the t-SNE 
embedding on top of the latent representation improves the clustering results.

Figure 3.  Results obtained after performing cell perturbations. We show in colour the cells of interested for 
each subfigure and in grey the rest of the cells. Each subfigure indicates how many of the HSPCs were converted 
into each type of mature blood cell after performing perturbations to the latent representations of DiffVAE. 
Notice that increasing the shifting parameter λ in the perturbations will result in more cells to be changed.

Clustering 
method

Dim 
size 
(m)

Latent representation
T-SNE embedding of latent 
representation

DiffVAE VAE AE PCA DiffVAE VAE AE PCA

k-means

20 0.803 0.771 0.799 0.633 0.809 0.738 0.699 0.717

50 0.829 0.775 0.811 0.629 0.831 0.801 0.759 0.709

100 0.844 0.831 0.815 0.627 0.815 0.796 0.806 0.680

DBSCAN

20 0.007 0.004 0.001 0.0002 0.753 0.717 0.556 0.506

50 0.474 0.243 0.223 0.0009 0.710 0.667 0.573 0.590

100 0.154 0.018 0.011 0.002 0.813 0.799 0.749 0.570

Table 2.  Zebrafish. Mean ARI obtained for clustering the latent representation and the t-SNE embedding of the 
latent representation for three settings of the reduced dimension size m. The clustering algorithms used are k-
means and Gaussian Mixture Models.
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Exploring links between cells
In this section, we shift the focus from just modelling the stochastic behaviour of gene expression across cell 
types and we also explore modelling the relations between different cell types. For this purpose, we propose 
Graph-DiffVAE, a graph variational autoencoder where the encoder and the decoder networks are graph convo-
lutional networks. Graph-DiffVAE is based on the graph variational autoencoder proposed by Kipf and Welling31 
and on the Graphite model developed by Grover et al.32.

In this context, we will consider the different cells in the zebrafish dataset as nodes in a graph, represented by 
the adjacency matrix A. The gene expression measurements for each cell will form the node features X. The 
encoder part of Graph-DiffVAE takes as input an initial graph structure for the cells and the input node features 
and computes a latent representation for cell |φq Z A X( , ), which in this case will be denoted as latent node fea-
tures. The decoder uses these latent node features and the initial adjacency matrix to predict additional links 
between the cells, which will be similar to the ones in the input graph.

The input graph can depend on specific applications. One option is to incorporate biological knowledge in the 
graph, where for instance, edges can represent potential differentiation trajectories for the cells in the dataset. The 
proposed architecture and training objective for Graph-DiffVAE results in additional edges between cells to be 
predicted in the output adjacency matrix. The predicted relationships between cells are similar to the ones in the 
initial graph given as input to the model.

In this paper, we aim to show a proof of concept for using Graph-DiffVAE with single-cell gene expression 
data. Thus, we propose building an initial graph for the cells where there is an edge between each cell and the 
cell most similar to it. For this purpose, we will use the Pearson correlation coefficient to measure the similarity 
between cells. This initial graph is undirected and is represented by a binary adjacency matrix where 1 indicates 
that there is an edge between two nodes (cells). For each cell in the dataset, we computed the Pearson correlation 
coefficient between its gene expression vector and the feature vectors of the rest of the cells in the dataset and we 
added an edge to connect it to the highest positively correlated cell.

Figure 4a illustrates the pipeline for using Graph-DiffVAE and Fig. 4b. shows the 2-dimensional t-SNE 
embedding of the node features predicted by Graph-DiffVAE, as well as specific links (both initial and predicted) 
between the HSPCs and differentiated cells. Figure 4c shows the adjacency matrix for the zebrafish dataset used as 
input to Graph-DiffVAE and Fig. 4d illustrates the predicted adjacency matrix. In Fig. 4b, it is noticeable that the 
latent representation built in the encoder exhibits a clustering structure between the different types of cells. This 
is expected and validates the behaviour of the model, as the cells that are highly correlated to each other are more 
likely to be part of the same cluster. We can also notice that having an initial edge between these types of cells 
encourages the prediction of similar types of edges. Moreover, in Fig. 4d this clustering behaviour represented 
in the encoder is emphasised in the output of the decoder, which predicts relatively well-defined clusters for the 
Monocytes, Neutrophils, Erythrocytes and Thrombocytes.

An interesting aspect of the predicted graph in Fig. 4c is that the HSPCs do not cluster together well. In par-
ticular, there are clear links between several HSPCs and all of the other cells in a cluster of mature blood cells. This 
means that among the HSPCs there are cells that have already started the process of differentiation towards one of 
the specific mature cells. Additionally, we can notice that Graph-DiffVAE predicted more edges between HSPCs 
and Erythrocytes compared to the other differentiated cells.

For comparison in Fig. 4e we also illustrate a co-expression matrix built by computing the absolute value of the 
Pearson correlation between all cells. While the co-expression matrix also shows clustering behaviour, the clusters 
are less well-defined. Using different thresholds for the correlation to select edges in the co-expression matrix will 
also result in different connections between cells. Moreover, note that such co-expression matrix only accounts 
for linear relationships between cells, while Graph-DiffVAE allows us to model non-linearities.

Another important difference is that the predictions of Graph-DiffVAE are highly dependent on the input 
graph. If prior biological knowledge is available about existing links between cells, this can be incorporated into 
the input graph. Based on this, Graph-DiffVAE will be able generate hypothesis about other links between cells 
that share the same biological meaning as the input ones.

Discussion
In this paper, we explored unsupervised generative and graph representation learning methods for mod-
elling single-cell gene expression data and understanding cell differentiation by developing the DiffVAE and 
Graph-DiffVAE models. The two different models succeed in characterising different states of cell differentiation 
based on single-cell RNA-Seq data. We illustrated how to identify cell types using DiffVAE through a pipeline 
that involves clustering the latent representation, detecting important genes for each cluster and mapping from 
clusters to cell type. Many of the high-weight genes found by DiffVAE are well-known in the literature as key 
haematopoietic genes. In addition to these “usual suspects”, our method identified a number of novel genes that 
can be further explored for their role during cell differentiation. We have also shown that the pipeline is applica-
ble to datasets of different nature, providing powerful insight into the noisy information concealed by single-cell 
genetic data.

The embeddings obtained from DiffVAE can be used to generate artificial samples, allowing further explora-
tion and expansion of the current datasets. Moreover, we explored perturbations over the generative latent space 
to then analyse the effect on the gene expression and changes in cellular states. The computational results on 
performing perturbations can help us understand better how easy/difficult it is for the hematopoietic stem and 
progenitor cells to change into differentiated cells. Additional information can be gained in terms of the number 
of genes that need to be up-regulated or down-regulated to change cellular state. That can lead to future studies on 
the stability of cellular states, and robustness over genetic stochasticity.
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Through Graph-DiffVAE we explored a way of understanding the connections between cells, and in particu-
lar between HSPCs and differentiated cells. Investigating the predicted links of Graph-DiffVAE between HSPCs 
and the other differentiated cells could inform us about the HSPCs which have already chosen a lineage and 
have started differentiated. For instance, if in the adjacency matrix predicted by Graph-DiffVAE, an HSPC cell 
is strongly connected to differentiated cells of a single type, such as Erythrocytes, we can hypothesize that this 
HSPC cell may also differentiate into an Erythrocyte. Similarly, if the HSPC cell is connected to two types of 
differentiated cells that might indicate that the HSPC cell has the potential to become either of these two differ-
entiated cells. By analyzing the patterns in the gene expression of these types of cells may allow us to distinguish 
between the truly stem cells and the cells that have already started the differentiation process. Further analysis 
in this direction can also allow us to better understand cell differentiation trajectories. From a methodological 
perspective, future work could involve combining DiffVAE and Graph-DiffVAE into a single multitask learning 
framework33 and using Graph Attentional Layers34 as part of Graph-DiffVAE to better quantifying the importance 
of the links between cells.

Methods
DiffVAE.  DiffVAE receives as input expression levels from k genes. The autoencoder model was constructed 
such that both the encoder and decoder consist of two fully connected hidden consisting of h1 and h2 neurons 
respectively. The incorporation of multiple hidden layers helps to build a hierarchical representation of features, 
thus obtaining a more complex model. The size of the hidden layers is symmetric between the encoder and 
decoder. The latent representation z has m dimensions. The ReLU activation was applied in the hidden layers of 
both the encoder and decoder in order to introduce non-linearity in the network. The specific operations per-
formed by DiffVAE are as follows:

Encoder (Inference model): μ σ| =φ Nq z x( ) (z; , diag( ))2 .  The encoder consists of fully connected layers and has 
a Gaussian output. For numerical stability, the encoder network learns log(σ2) instead of σ2. The input to the 

Figure 4.  Methodology proposed for analyzing links between cells. (a) Graph-DiffVAE uses an initial 
adjacency matrix and individual node features to predict more links between cells. (b) Projection of cells onto 
2-dimensional t-SNE embedding of the latent node features learnt by Graph-DiffVAE and illustration of initial 
and predicted links between HSPCs and differentiated cells. (c) Adjacency matrix with input links between 
cells (the colour white indicates an input edge); each cell is connected to the highest positively correlated cell. 
(d) Adjacency matrix with predicted links between all cells by Graph-DiffVAE (the colour white indicates a 
predicted edge). (e) Co-expression matrix between all cells; each entry represents the absolute value of the 
Pearson correlation coefficient.
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encoder is ∈ ×x 1 1845, which, in our case, represents the gene expression data. The operations performed by the 
encoder network are summarised by:

x W x bReLU( ), (4)enc
(1)

enc
(0)

enc
(1)= +

x W x bReLU( ), (5)enc
(2)

enc
(1)

enc
(1)

enc
(2)= +

µ = +µ µWx bReLU( ), (6)enc
(2)

Wx blog ReLU( ), (7)2
enc
(2)σ = +σ σ

where ∈ ∈ ∈ ∈ ∈ ∈ ∈µ µ σ
× × × × × × ×      W b W b W b W, , , , , , ,k h h h h h h m m h m

enc
(0)

enc
(1) 1

enc
(1)

enc
(2) 1 12 2 2 1 1 1 1   

b m1∈σ
× are the trainable parameters in the encoder. The encoder also uses batch normalization35 to over-

come the problem of internal covariate shift.
Directly sampling the latent representation z can cause problems to the standard gradient-based algorithm, as 

it is not possible to compute gradients through the random sampling of z. To overcome these issues, Kingma and 
Welling19 proposed the reparameterisation trick that involves parameterising the latent code as follows:

µ ε σε = + .~ N 0 I z( , ), (8)

Decoder (generative model): |θp x z( ).  The output of the decoder has to reward the likelihood of the data we want 
to generate with this model. In our case, for each data point, the gene expression values can be modelled as sam-
ples from a multivariate Bernoulli distribution. Intuitively, each input gene is modelled as a Bernoulli random 
variable, and a sample from this distribution indicates whether the gene is expressed or not. To build a decoder 
with Bernoulli output, we need to apply the logistic activation function to compute the output of the decoder 
because it takes values in the range [0, 1].

The input to the decoder is the latent representation z. The decoder performs the following operations in order 
to obtain the reconstructed input x’:

= +x W z bReLU( ), (9)dec
(1)

dec
(0)

dec
(1)

= +x W x bReLU( ), (10)dec
(2)

dec
(1)

dec
(1)

dec
(2)

σ′ = +x W x b( ), (11)out
(2)

out

where σ is the logistic activation function and    ∈ ∈ ∈ ∈× × × ×W b W b, , , ,m h h h h h
dec
(0)

dec
(1) 1

dec
(1)

dec
(2) 11 1 1 2 2  

 ∈ ∈× ×W b,h k k
out out

12 are the trainable parameters in the decoder. As x’ is not sampled, we provide a maxi-
mum likelihood estimate for the reconstruction.

DiffVAE was trained using minibatch stochastic gradient descent to minimize −LDiffVAE:

‖θ φ = | − φ θθφ |
L q ppx x z z z( , ; ) [log ( )] MMD( ( ) ( )), (12)qDiffVAE z x( )



We used the Adam Optimizer36 and we trained DiffVAE for 100 epochs. The learning rate and batch size were 
selected as part of the hyperparameter optimization process.

Hyperparameter selection for DiffVAE.  DiffVAE consists of the following hyperparameters that need to 
be optimized before using it a new dataset: number of neurons in the hidden layers (h1 and h2), latent representa-
tion size (m),learning rate (α) and batch size (B). The original dataset was split such that 80% of the data points 
were used for training and 20% for validation. Each hyperparameter was optimised in a range of possible values, 
with the final one chosen based on the validation loss. A similar approach for hyperparameter optimization has 
been used by other methods modelling single-cell gene expression data using deep generative architectures37.

The possible values used for each hyperparameter are as follows: number of neurons h1 ∈ {256, 128}, latent 
representation size m ∈ {50, 100}, learning rate α ∈ {0.01, 0.001, 0.0001} and batch size B ∈ {64, 128, 256}. We set 
h2 = 2 · h1. The final hyperparameter values used for the zebrafish dataset are h1 = 256, h2 = 512, m = 50, α = 0.001 
and B = 128. For the dataset with human pancreatic cells we used h1 = 256 and h2 = 512, m = 100, α = 0.001 and 
B = 256. Finally, for the dataset with human hematopoietic cells, we used h1 = 256 and h2 = 512, m = 50, α = 0.001 
and B = 128.

To apply DiffVAE to a new dataset, a similar approach as described in this section can be used for selecting the 
most appropriate hyperparameters.

Additional implementation details for identifying cell types.  In the process of identifying cells using 
DiffVAE additional design choices came into play in terms of the number of latent dimensions and the number 
of high weight genes to select for each cluster. In the dataset with zebrafish cells, we have used the top 10 latent 
dimensions that were encoding the differentiation of cells in each cluster and for each latent dimension, we have 
investigated the top 3 high weight genes. On the other hand, for the dataset with human pancreatic cells, due to 
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the large number of clusters, we have only used the top 5 latent dimensions with the top 5 high weight genes. 
In Table 1 and Supplementary Table 1, we have reported the high weight genes that were common among the 
selected latent dimensions.

The main purpose of this process is to be able to identify the cell types in the dataset. In practice, the choice 
for the number of latent dimensions to analyze should depend on their ability to differentiate between the cells 
in the different clusters, as well as on the total number of clusters. Similarly, the selected number of high-weight 
genes should provide enough information to map clusters to cell types, but also allow for uncovering biological 
knowledge about new marker genes important for the differentiation process.

Additional models used as benchmarks.  To assess the performance of DiffVAE on clustering, we com-
pare it against the following benchmarks: standard VAE, standard autoencoder and PCA. For the standard VAE 
and the standard autoencoder, we used the same number of layers and neurons as we used for DiffVAE. For both 
models, we also used the Adam Optimizer with a learning rate of 0.001, a batch size of 128 and we trained them 
for 100 epochs.

The objective function maximised by the variational autoencoder is:

L ‖q pp Dx x z z x z( , ; ) [ log ( )] ( ( ) ( )) (13)q KLVAE z x( )
θ φ = | − | .φθ θφ |



The standard autoencoder model is trained to minimise the reconstruction error, which can be measured by 
the mean squared error loss function ω = −‖ ‖l dec encx x x( , ) ( ( )) 2, where ω consists of all of the parameters in 
the encoder and decoder networks.

Neural network for characterizing cell states.  The neural network trained for classifying the mature 
cell types takes as input the gene expression data for the cell and outputs the probability that the particular cell is a 
Monocyte, Neutrophil, Thrombocyte or Erythrocyte. The model consists of three hidden layers of sizes 256, 512, 
256 neurons with ReLU activation and an output layer with 4 neurons and softmax activation. The model was also 
trained using the Adam Optimizer for 300 epochs with a learning rate of 0.001 and a batch size of 128. The model 
architecture was chosen through hyperparameter optimization similarly to DiffVAE.

GraphDiffVAE.  Let =G V( , ) , with =V N  be an undirected and unweighted initial graph built from the 
cells, defined by the binary adjacency matrix ∈ ×A {0, 1}N N . Such an initial graph for the cells can be already 
available or it can be artificially built using the Pearson correlation between cells.

Let X be an N × F matrix consisting of node features, where F is the number of features for each node. In our 
case, the nodes are the different cells in the dataset, and the features are represented by the gene expression for 
each cell. Assume that each node is connected to itself, so that A has diagonal entries Aii = 1. Let D be the diagonal 
degree matrix of A: = ∑D Aii j ij.

Graph convolutional networks (GCN) were proposed by Kipf and Welling38 with the following layer wise 
propagation rule:

τ= =
∼

τ
+X AX W A H( ) GCN ( , ), (14)l l l

l
l( 1) ( ) ( )

,
( )

where = − −~A D AD1/2 1/2, τ is the activation function applied, X(l) and X(l+1) are the activations of the layers (l) and 
(l + 1) respectively, and W(l) are the weights. X(0) represents the input feature matrix X. The size of layer nl, repre-
sents by the number of node features computed at layer (l).

Through the layer-wise propagation rule, the graph convolutional network performs spectral graph convo-
lutions. The model can be regarded as the differentiable and generalised version of the algorithm proposed by 
Weisfeiler-Lehman on graphs39. In particular, the layer-wise propagation rule can be viewed as a message passing 
computation over the graph structure. Through one hidden layer, nodes in the graph pass information about their 
local structure to neighbours that are 1-hop away. Based on the information received from the neighbours, the 
nodes update their node features.

Graph-DiffVAE is a graph variational autoencoder where the encoder and the decoder networks are graph 
convolutional networks applying the layer-wise propagation rule. The architecture of Graph-DiffVAE is based on 
the ones in the graph variational autoencoder proposed by Kipf and Welling31 and in the Graphite model devel-
oped by Grover et al.32.

Inference model (encoder): qφ(Z|A, X).  The encoder in Graph-DiffVAE is represented by a graph convolutional 
network with multiple layers and with Gaussian output. The input to the encoder consists of the matrix with 
node features X and of the graph adjacency matrix A. The layers in the encoder network perform the following 
operations:

GCNX A X( , ), (15)enc
(1)

,11
= τ

GCN A X( , ), (16), enc
(1)

2
μ = τ µ

GCN A Xlog ( , ) (17)
2

, enc
(1)

2
σ = .τ σ
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where τ1 is the ReLU activation function and τ2 is the linear activation function. The number of node features 
computed in Xenc

(1)  is 512 and the number of node features in μ and σ2 is 50, thus forming a latent representation 
Z where each node has M = 50 features.

The encoder represents a factorised multivariate Gaussian distribution, such that:

∏ µ σ| = | | = | .φ φ φ
=

Nq q qZ A X z Z A z X A z( , ) ( , ), ( , ) ( , diag( ))
(18)i

N

i i i i i
1

2

The reparametrisation trick is used again to sample each zi:

μ ε σε = + .~ N 0 I z( , ), (19)i i i

It is important to notice that the latent representation Z build by the Graph-DiffVAE encoder contains infor-
mation from both the graph structure and the node features. Z encompass the latent representations for each 
node in the graph.

Generative model (decoder): pφ(A|Z, X).  The output of the decoder is an adjacency matrix Â representing an 
undirected and unweighted graph with predicted edges between nodes. Such an adjacency matrix can be repre-
sented by a factorised Bernoulli distribution.

The decoder network uses as input the initial adjacency matrix A and a concatenation of the input node fea-
tures X and the latent node features computed by the encoder Z, described by [Z|X]. The layers in the decoder 
network perform the following operations:

= | = ′ +τGCNX A Z X Z Z Z( , [ ]), 1
2
( ), (20)dec

(1)
,11

⁎

σ′ = =τGCNZ A X A Z Z( , ), ( ), (21)i j,2 dec
(1)

1
ˆ ⁎ ⁎

where τ1 is the ReLU activation function. The number of node features computed in Xdec
(1)  is 512. The decoder 

builds its own latent representation Z′ consisting of 50 node features which it then adds to the representation 
constructed through the encoder to obtain Z*.

Similarly with the standard framework of the variational autoencoder, we optimize the following objective for 
Graph-DiffVAE:

 ‖θ φ = | − |θ φ θ− φ |
L p q pX A A Z Z X A z( , ; , ) [ log ( )] KL( ( , ) ( )), (22)qGraph DiffVAE Z A X( , )

The model was trained for 200 epochs with a learning rate of 0.0001. The proposed architecture and training 
objective for Graph-DiffVAE results in additional edges between cells to be predicted in the output adjacency 
matrix Â. The predicted relationships between cells are similar to the ones in the initial graph given as input to the 
model.

Software
The code for DiffVAE and Graph-DiffVAE is publicly available in the GitHub repository: https://github.com/
ioanabica/DiffVAE.

Data availability
The zebrafish dataset used for this paper is made publicly available by Athanasiadis et al.1 on ArrayExpress under 
the accession numbers E-MTAB-3947, E-MTAB-4617 and E-MTAB-5530 and also at https://www.sanger.ac.uk/
science/tools/basicz. Similarly, the dataset with human pancreatic cells is made publicly available by Murarot 
al2. under accession number GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241GSE85241. 
Moreover, the dataset with human hematopoietic cells was made publicly available by Velten et al.3 under 
accession code GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75478GSE75478.
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