Table 2.
Clustering method | Dim size (m) | Latent representation | T-SNE embedding of latent representation | ||||||
---|---|---|---|---|---|---|---|---|---|
DiffVAE | VAE | AE | PCA | DiffVAE | VAE | AE | PCA | ||
k-means | 20 | 0.803 | 0.771 | 0.799 | 0.633 | 0.809 | 0.738 | 0.699 | 0.717 |
50 | 0.829 | 0.775 | 0.811 | 0.629 | 0.831 | 0.801 | 0.759 | 0.709 | |
100 | 0.844 | 0.831 | 0.815 | 0.627 | 0.815 | 0.796 | 0.806 | 0.680 | |
DBSCAN | 20 | 0.007 | 0.004 | 0.001 | 0.0002 | 0.753 | 0.717 | 0.556 | 0.506 |
50 | 0.474 | 0.243 | 0.223 | 0.0009 | 0.710 | 0.667 | 0.573 | 0.590 | |
100 | 0.154 | 0.018 | 0.011 | 0.002 | 0.813 | 0.799 | 0.749 | 0.570 |
Mean ARI obtained for clustering the latent representation and the t-SNE embedding of the latent representation for three settings of the reduced dimension size m. The clustering algorithms used are k-means and Gaussian Mixture Models.