Skip to main content
. 2020 Jun 17;10:9790. doi: 10.1038/s41598-020-66166-8

Table 2.

Zebrafish.

Clustering method Dim size (m) Latent representation T-SNE embedding of latent representation
DiffVAE VAE AE PCA DiffVAE VAE AE PCA
k-means 20 0.803 0.771 0.799 0.633 0.809 0.738 0.699 0.717
50 0.829 0.775 0.811 0.629 0.831 0.801 0.759 0.709
100 0.844 0.831 0.815 0.627 0.815 0.796 0.806 0.680
DBSCAN 20 0.007 0.004 0.001 0.0002 0.753 0.717 0.556 0.506
50 0.474 0.243 0.223 0.0009 0.710 0.667 0.573 0.590
100 0.154 0.018 0.011 0.002 0.813 0.799 0.749 0.570

Mean ARI obtained for clustering the latent representation and the t-SNE embedding of the latent representation for three settings of the reduced dimension size m. The clustering algorithms used are k-means and Gaussian Mixture Models.