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Loss to follow-up occurs in randomized controlled trials. Missing data methods, including multiple imputation
(MI), can be used but often rely upon untestable assumptions. Sensitivity analysis can quantify violations of
these assumptions. Since an adequate sensitivity analysis requires evaluation of multiple scenarios, presenting

g{:tp " this information in an easily interpretable manner is challenging.
Binary We propose to graphically represent a thorough sensitivity analysis displaying all possible outcomes for

loss to follow-up in randomized controlled trial data relating a completely observed binary exposure to a bi-
nary outcome. We describe plausible results under different missingness mechanisms using data from the EA-
GeR Trial (n = 1228) on low-dose aspirin versus placebo on pregnancy and live birth, in which 140 partici-
pants had early withdrawal. For the effect of aspirin on live birth, sensitivity analysis risk ratios (RR) for all
potential outcome scenarios ranged from 0.88 to 1.34, applicable to any possible missingness mechanism. MI
produced RR = 1.10; 95% confidence interval: (0.98, 1.22). RRs from individual imputations ranged from
1.04 to 1.16, the range of results that could have been observed if data were missing at random. Under this
mechanism, the conclusions about the efficacy of low-dose aspirin could have been sensitive to the missing
outcome data. Rather than limiting sensitivity analysis for loss to follow-up to a few scenarios that can be pre-
sented tabularly, results of a complete sensitivity analysis can be presented in a single plot, which should be
implemented in all studies with missing outcome data to convey certainty or uncertainty, confidence or cau-
tion.

Selection bias

1. Introduction

Loss to follow-up occurs in nearly every longitudinal epidemio-
logic study [1,2], including randomized controlled trials. While it can
be a source of selection bias [3], its impact is rarely quantified. Nu-
merous techniques, commonly complete-case analysis and, increas-
ingly, multiple imputation, can be used to produce unbiased estimates
accounting for missing data, including loss to follow-up. Implicit to all
missing data techniques are assumptions about the underlying missing
data and the manner or mechanism by which it came to be unob-
served.

The impact of loss to follow-up on estimation depends on both the
degree of loss to follow-up and its independence with respect to mea-
sured or unmeasured variables that arise from certain causal struc-

tures [4-8]. Missing data is generally described in the literature as re-
sulting from one of three missingness mechanisms, missing completely
at random (MCAR), missing at random (MAR) and missing not at ran-
dom (MNAR). Detailed discussion of these mechanisms has been pro-
vided extensively in existing literature [1,7,9,10] but briefly, data
could be missing because loss to follow-up is independent of all other
measured or unmeasured variables (MCAR), or the missingness could
be dependent on observed (MAR) and/or unobserved (MNAR) vari-
ables. Violations of these assumptions can lead to bias and unfortu-
nately, some assumptions cannot be empirically tested. Since missing
data methods rely upon untestable assumptions about the missing
data mechanism, sensitivity analyses are necessary to quantify the po-
tential impact of violations of these assumptions [9]. Despite a robust
literature on missing data methods [11-17], and specifically, existing
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work on loss to follow-up and selection [18-20], randomized con-
trolled trials under-utilize sensitivity analysis in assessing the poten-
tial impact of loss to follow-up.

A complete sensitivity analysis consists of quantifying all potential
realizations of outcomes for the unobserved outcome data. Given this
potential large volume of results, researchers often limit their sensitiv-
ity analysis to a few scenarios that can be presented tabularly. Exist-
ing sensitivity analysis to account for loss to follow-up and selection
[18-20] have focused on bounding potential bias, but this neither
provides an intuitive understanding of all possible results, nor insight
into likely trial findings had all of the outcome data been observed.

We propose conducting the complete sensitivity analysis for loss to
follow-up and employing a graphical representation to visualize possi-
ble and probable trial findings, had all of the outcome data been ob-
served. We do this by identifying and mapping three components of
the graphical representation: 1) point estimates from complete-case
and MI based on the observed data, 2) all combinations of potential
outcomes for the unobserved outcome data bounded by the extremes
of what could have been observed, and 3) what is likely to have been
observed under assumptions about the mechanism behind the missing
outcomes. Estimation based on the observed data (component 1) is
not a sensitivity analysis but acts as the anchor and reference for com-
ponents 2 and 3. This sensitivity analysis and resulting plot are lim-
ited to the relation of a binary exposure to a binary outcome, in
which one variable (most often exposure or treatment assignment for
a randomized controlled trial) is completely observed.

As motivation for a sensitivity analysis, we introduce the Effects of
Aspirin in Gestation and Reproduction (EAGeR) trial on the effective-
ness of low-dose aspirin on improvement of pregnancy and live birth
rates that was impacted by withdrawals. We apply this sensitivity
analysis to the EAGeR trial data to demonstrate the interpretation of
the sensitivity plots, and discuss the necessity and implications of ap-
plying this sensitivity analysis to other trials with missing binary out-
come data.

1.1. Example: The EAGeR trial

The Effects of Aspirin in Gestation and Reproduction (EAGeR) trial
[21], a placebo-controlled randomized trial of 81 mg low dose aspirin
(LDA) focused on the effects on pregnancy and live birth among
women with a history of pregnancy loss. The trial block randomized
1228 women by site and two eligibility strata (Original: 1 docu-
mented pregnancy loss less than 20wks gestation in the prior 12
months, Expanded: 1 or 2 documented pregnancy losses at any gesta-
tional age or timing). The withdrawal rate in the trial was 11.4%
(140/1228), 12.7% (78/615) in the low-dose aspirin arm, and 10.1%
(62/613) in the placebo arm (eTable 1). A complete-case, intent-to-
treat analysis of the 1088 women with complete follow-up yields rela-
tive risks (RR) and 95% confidence intervals (CI) of 1.10 (0.99, 1.23)
and 1.09 (1.02, 1.18) for live birth and positive pregnancy test (PPT),
respectively, overall (Table 1). Multiple imputation using M = 500
datasets results in nearly identical estimates for both live birth and
PPT (Table 1). The imputation model only consisted of treatment ran-
domization (low-dose aspirin = 1, placebo = 0) for both PPT and
live birth outcomes. Due to borderline significant findings, the 140
withdrawals have the potential to impact trial interpretation and con-
clusions, making it an ideal setting to investigate the impact of loss to
follow-up. The Institutional Review Board at each study site and data
coordinating center approved the trial protocol and obtained ap-
provals. All participants provided written informed consent prior to
enrolling.
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Table 1

Relative risks and 95% confidence intervals for live birth and positive preg-
nancy test (PPT) in the EAGeR trial, overall and by eligibility stratum (origi-
nal and expanded) using complete case analysis, multiple imputation, and for
bounding missing outcome data scenarios.

Outcome Overall Live Expanded Overall PPT Expanded
birth
Eligibility stratum Original Original
Complete case 1.10 1.17 1.04 1.09 1.16 1.04
(0.99, (1.00, (0.90, (1.02, (1.05, (0.94,
1.23) 1.36) 1.22) 1.18) 1.29) 1.15)
Multiple imputation  1.10 117 1.04 1.09 1.15 1.04
(0.98, (1.00, (0.89, (1.01, (1.04, (0.94,
1.22) 1.36) 1.21) 1.18) 1.28) 1.16)
Poor outcomes 1.07 1.12 1.02 1.07 1.13 1.02
regardless of the (0.95, (0.96, (0.87, (0.98, (1.00, (0.90,
exposure 1.20) 1.32) 1.20) 1.16) 1.27) 1.14)
Positive outcome 1.10 1.17 1.05 1.09 1.15 1.04
regardless of the (1.01, (1.02, (0.92, (1.02, (1.05, (0.95,
exposure 1.21) 1.33) 1.19) 1.16) 1.26) 1.14)
Positive outcome in ~ 0.88 0.96 0.81 0.93 1.01 0.87
the placebo and (0.79, (0.83, (0.70, (0.86, (0.91, (0.78,
poor outcome in 0.98) 1.12) 0.94) 1.00) 1.12) 0.96)
the treatment
assignment and
vice versa
Positive outcome in ~ 1.34 1.36 1.32 1.25 1.29 1.22
the treatment and (1.21, (1.17, (1.14, (1.16, (1.16, (1.10,
poor outcome in 1.49) 1.58) 1.53) 1.35) 1.43) 1.35)

the placebo
assignment

2. Methods

Three graphical components are used to represent the sensitivity
analysis presented here. In the first component, point estimates are
calculated using complete-case analysis and multiple imputation, used
as a reference for the sensitivity analysis. In the second component,
all combinations of potential outcomes for the unobserved outcome
data are estimated. The last component includes a smaller range of re-
sults under a priori assumptions of MCAR or MAR for unobserved data
scenarios.

2.1. First component

Complete-case analysis [10], the most commonly employed and
easiest method of handling missing data, provides a fitting starting
point for a sensitivity analysis. Records with any missing data (here,
the outcome) are not utilized. This analysis provides an unbiased esti-
mate when data are MCAR. However, complete-case analysis may suf-
fer from inefficiency and bias under MAR and MNAR [1,5,7,9,10].
Specifically, in a randomized controlled trial, missing outcome data
could be MAR or MNAR if there was differential loss to follow-up by
exposure (MAR) and/or outcome status (MNAR). If, for example in
EAGeR, there was differential loss to follow-up by live birth status,
then the missingness mechanism would be MNAR. Only if not and
there was differential loss-to follow-up by aspirin treatment, then the
missingness mechanism would be MAR. MCAR could be realized if ex-
posure were blinded, there were no side effects of treatment that were
related to study withdrawal, participants who experienced an unde-
sired outcome did not differentially withdraw, and withdrawal was in-
dependent of one or more unbalanced covariates (measured or un-
measured). Of these criteria, side effects and undesired outcome re-
lated to withdrawal may be the most difficult to achieve in trial prac-
tice, though they are indeed trial specific, dependent upon trial treat-
ment and the desirability of a positive outcome, respectively. Missing
outcome data could also be MAR or MNAR by a measured or unmea-
sured covariate that by chance happened to be unbalanced between
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treatment strata (MAR if observed, MNAR if unobserved). Although
there are some causal structures in which complete-case analysis can
be used to provide unbiased estimates for data that are MAR [5], as-
suming MAR over MNAR is an untestable assumption. In our study in
which data are missing if the outcome is unobserved, if this missing-
ness is dependent upon the outcome, the mechanism is MNAR [5].
Unless the mechanism is known to be MCAR then sensitivity analysis
is needed.

Another common method for handling missing data is multiple im-
putation, which is more principled than complete-case analysis in that
missingness is directly addressed, rather than ignored. An extensive
literature exists for multiple imputation; briefly, the method models
the relation between the observed and missing data and imputes val-
ues from those models, forming multiple, complete datasets. Each im-
puted dataset is analyzed, and the resulting point estimates are com-
bined to produce a single unbiased estimate (given the data are MCAR
or MAR [15]) and a standard error that is appropriate for the modeled
data used in place of the unobserved data. Since all observations are
utilized, multiple imputation can be more efficient than complete-case
analysis. To impute missing data, multiple imputation requires build-
ing a model from observed data that characterizes the relation be-
tween variables and carries with it assumptions (often multivariate
normality) regarding the relation of the missing data and the observed
data, which in theory could lead to bias. However, multiple imputa-
tion has been shown to be fairly robust to model misspecification
[22].

2.2. Second component

Given point estimates from complete-case analysis and multiple
imputation, the next step is to map the space of all potential results
that could have been observed had the outcome data been complete.
This space is constructed by attributing every combination of poten-
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tial outcomes for the missing data beginning with the bounding sce-
narios. For a clinical trial with loss to follow-up, these bounds are cre-
ated by assigning all individuals with missing outcome to: 1) poor
outcomes regardless of the exposure; 2) positive outcomes regardless
of the exposure; 3) positive outcomes in the placebo and poor out-
comes in the treatment assignment and vice versa, 4) positive out-
comes in the treatment and poor outcomes in the placebo assignment.

These four scenarios correspond to the corners of the sensitivity
plot in Fig. 1. The axes of Fig. 1 are the percent of the missing in the
treatment and control group assigned to a positive outcome, such that
the figure origin (0,0) corresponds to scenario 1, (100,100) corre-
sponds to scenario 2, and the points (0,100) and (100,0) correspond
to scenarios 3 and 4, respectively. Since the four estimates form the
bounds of the potential analysis results, any potential realization of
missing outcome data will lie in the space of Fig. 1, regardless of the
missingness mechanism.

2.3. Third component

Within these bounds of all possible complete data scenarios, we
can identify and compare subsets of scenarios within Fig. 1, which we
define a priori, that are more plausible given the observed data and/or
prior knowledge.

A reasonable scenario would be that missing data could be in
alignment with the null hypothesis. This corresponds to the 45° diago-
nal in Fig. 1 (labeled non-differential imputation), in which the per-
cent of missing with a positive outcome is non-differential by treat-
ment group. This null scenario is not tied to any missingness mecha-
nism and leaves any existing relation in the observed data unchanged,
so does not necessarily correspond to a null estimate for the trial over-
all.

Other plausible scenarios rely on the same assumption of MCAR or
MAR necessary for the complete-case and multiple imputation estima-

Sensitivity Region
for MCAR

Estimates

(Complete Case and MI)

Sensitivity Region
for MAR

75 100

Treatment Group:
% missing allocated to Positive Outcome

Fig. 1. Plot of sensitivity analysis of the relative risk for the relation between a binary exposure and a binary outcome with missingness in the outcome. The dot-
ted line (white region) depicts the percent of missing allocated positive outcome in each group for the overall trial results to be null (relative risk, RR = 1.0); in-
creasing darker gradation reflects further departures from the null. The full plot encompasses any potential mechanism, including MNAR.

3



E.F. Schisterman et al.

tors, respectively. Reasonable under MCAR would be that the missing
data could mirror observed data, in which the positive outcome
prevalence in the missing data would equal the observed prevalence
within treatment groups. In this scenario, missing outcomes would be
imputed in the observed proportions, corresponding to the vertical
and horizontal lines of Fig. 1, which intersect at the point estimate for
complete-case analysis. Finally, reasonable under MAR would be the
modeled multiple imputation datasets, represented in Fig. 1 by the
cloud of points. Multiple imputation is a technique for handling miss-
ing data where the relations and variability within the observed data
are imposed by filling in the unobserved data to form multiple com-
plete datasets. Rather than marginalizing results across potential sce-
narios (as is done for a multiple imputation point estimate), we con-
sider the individual estimates in the context of all possible potential
outcomes for the missing outcome data. Each point in Fig. 1 consti-
tutes a random draw from a conditional distribution that captures dif-
ferential relations between the observed data and the imputed out-
come. Banding these estimates by a 95% elliptical confidence region
produces a distinct sensitivity region for MAR. This MAR region in
Fig. 1 is generated assuming the default bivariate t-distribution within
the “stat_ellipse” function in R.

Interpretation of results within and between each component pro-
vides insight into the sensitivity of the results from a given dataset. To
further aid interpretation, other key plot features can be added such
as a line depicting percent of missing allocated positive outcome in
each group for the overall trial results to be null. This is represented
in Fig. 1, as the dashed line, which depicts a trial relative risk of 1.0
for the estimator of interest. If p-values from hypothesis testing are of
interest, a boundary line of significance can additionally be added.
These components comprise a thorough sensitivity analysis for loss to
follow-up that is easy to interpret graphically and can convey main
analysis reliability.

Overall
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3. Example revisited: Sensitivity analysis in the EAGeR trial

Given point estimates from complete-case analysis and multiple
imputation (first component), conducting the sensitivity analysis as
outlined follows with constructing complete datasets under each of
the four bounding scenarios (second component) and all possibilities
contained within. For women lost to follow-up in EAGeR, these
bounds are constructed by consecutively imputing 1) no live births 2)
all live births 3) all live births in placebo arm and none in LDA arm 4)
all live births in LDA arm and none in placebo arm. These relative risk
bounds are listed in Table 1 and correspond to the corners of the plots
in Fig. 2, in which the x- and y-axes are the percentages of the missing
outcomes assigned a positive outcome (live birth or PPT) in the LDA
and placebo arms, respectively. Bounds are similarly constructed for
the pregnancy sensitivity analysis (Table 1). The plots in Fig. 2 con-
tain trial relative risks that include all possible combinations of out-
comes for the 140 individuals with unobserved outcome data. No-
tably, the dotted line in the white region reflects the missing outcome
scenarios for the overall trial results to be null (RR = 1.0), with in-
creasing darker gradation reflecting further departures from the null.

Within the boundaries of possible scenarios are features corre-
sponding to more likely scenarios (third component). The 45° diago-
nals in Fig. 2 correspond to all scenarios of no treatment effect of LDA
on live birth and pregnancy among the missing observations. The ver-
tical and horizontal lines in Fig. 2 correspond to the observed rate of
live birth and pregnancy in the LDA and placebo arms, respectively.
Intuitively, these two lines intersect at the point estimate for com-
plete-case analysis. Under a MCAR mechanism, the triangular region
formed by these two lines and the main diagonal uses the point esti-
mate under the MCAR assumption as the strongest potential effect in
the missing data, and only considers alternatives towards a non-
differential effect of treatment among the missing outcome data.

Expanded
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Placebo : % of missing allocated to Pos. Pregnancy
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Fig. 2. Sensitivity plots of relative risks for a randomized controlled trial accounting for all possible missing outcome (live birth and positive pregnancy test
(PPT)) scenarios. Percent of missing allocated to positive outcome within the aspirin and placebo treatment arms is displayed on the x- and y-axis, respectively.
Trial results are displayed overall (first column) and stratified by two block randomized eligibility strata (original — second column, and expanded - third col-
umn). The dotted line (white region) depicts the percent of missing allocated positive outcome in each group for the overall trial results to be null (relative risk,
RR = 1.0); increasing darker gradation reflects further departures from the null. The full plot encompasses any potential mechanism, including MNAR.
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Also for the third component, we plot the 500 individual datasets
from multiple imputation as points in Fig. 2, with the ellipse forming
a defined region that captures 95% of the imputed datasets. We con-
sider this a reasonable region under a MAR mechanism (as with the
multiple imputation point estimate) for sensitivity to missing live
birth and pregnancy. Code for implementation is provided in the sup-
plementary material.

Interpretation of the resulting plots in Fig. 2 is now largely intu-
itive. The plots display the bounds for the potential for sensitivity due
to missing outcomes, with shading variability corresponding to rela-
tive risk sensitivity. Within the Original stratum of Fig. 2, it is easy to
see that results for live birth are more sensitive than for pregnancy
displayed by the stronger difference in gradation. The plots for the
Original stratum also show that there is no scenario whereby missing
outcomes could lead to a null or harmful point estimate for preg-
nancy, as the null line is absent from the plot. However, a null point
estimate is possible for live birth, depicted by the presence of the null
line. We use the triangular and the elliptical regions to refine our in-
terpretation from what is possible to what is more reasonable. These
respective regions represent MCAR and MAR mechanism assumptions,
whereas the full plot encompasses any potential mechanism, including
MNAR. The sizes of these regions relative to one another and the full
plot show the potential for sensitivity of point estimates under MCAR
relative to MAR, and each relative to any potential mechanism. This
will largely depend on the groupwise prevalence of missingness,
meaning that larger magnitudes of sensitivity are possible with in-
creasing missing outcome prevalence.

For live birth and positive pregnancy test Overall, Fig. 2 shows
that the complete-case result and the entire triangular region are of
similar shading, meaning that when using the point estimate under an
MCAR assumption as the strongest potential effect in the missing data,
and only considering alternatives towards a null effect of treatment in

Original
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the missing data, point estimates would likely have not meaningfully
changed had all of the data been observed. Further, Fig. 3, a “tipping-
point” plot [23], shows that the complete-case result and the entire
triangular region are non-significant for live birth and significant for
positive pregnancy test, indicating that under this same scenario up-
per bounded by the MCAR point estimate, significance would not
have changed and no tipping-point exists for live birth or positive
pregnancy test overall had all of the data been observed. However,
about 40% and 80% of the 500 imputations for live birth and positive
pregnancy test, respectively, lie in the significant region in Fig. 3.
When a decision point is considered, this implies that under MAR, the
conclusions about the efficacy of LDA could have been sensitive to the
missing data and warrant further investigation.

4. Limitations

To understand the potential effects of missing outcome data on
study results, we performed a sensitivity analysis in which all missing
data realizations were calculated, highlighting likely possibilities
based on reasonable missing data mechanisms, and presented our re-
sults in an easily interpretable plot instead of in multiple tables. In
context of the EAGeR findings, use of this methodology enabled us to
determine the sensitivity of estimates to withdrawal and display this
information completely in a single Figure (Fig. 2) rather than using a
subset of results and multiple tables. However, this sensitivity analysis
and plot are limited to binary exposure and outcome data. While we
applied this methodology to randomized controlled trial data for
which the exposure data are complete, this methodology has been
used in more complex settings such time-to-event data [24], and
could potentially be extended to the setting of observational data in
which exposure data are incomplete.
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full plot encompasses any potential mechanism, including MNAR.
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Since we do not typically know with certainty the data missingness
mechanism or the underlying causal structure, it is important to con-
sider a variety of missing data mechanisms and principled methods
that account for missing data. Here we utilized multiple imputation
for MAR scenarios because complete datasets are modeled and formed
as part of the standard procedure, and it can be easily performed on a
variety of statistically computing software platforms. Alternative
methods exist, such as maximum likelihood and inverse probability
weighting, that could also be used to generate point estimates and the
sensitivity analysis. With respect to missing data, these methods are
unbiased under different assumptions and researchers should choose
the method or methods best suited to their particular data. Each of
these cited methods depend on the untestable assumption that the
value of the outcome does not affect its probability of being observed
(assuming MAR vs. MNAR) and that there are no unmeasured com-
mon causes of the outcome and missingness. Since missing data tech-
niques do not address the other potential sources of bias that may ex-
ist, such as confounding or model misspecification, sensitivity analysis
interpretation should not be extended to the relation of interest be-
sides with respect to the missing data.

5. Conclusions

While principled estimation techniques such as multiple imputa-
tion are important, they only tell a portion of the story. The sensitivity
analysis demonstrated herein displays all possible trial results had all
the missing outcome data been observed (applicable for any missing-
ness mechanism), as well as likely results if the missing data mecha-
nism can be assumed to be MCAR or MAR. It is accordingly an impor-
tant tool in conveying certainty or uncertainty, confidence or caution
in results with missing data. The plots demonstrated here provide a
context and vehicle for intuitive interpretation of a broader assess-
ment of a result's sensitivity to missing data and should be imple-
mented in other studies with missing outcome data, as well as in
other areas of study, to allow researchers to understand how results
could have changed had all outcome data been observed.
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