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ABSTRACT Intrinsically disordered proteins are proteins whose native functional states represent ensembles of highly diverse
conformations. Such ensembles are a challenge for quantitative structure comparisons because their conformational diversity
precludes optimal superimposition of the atomic coordinates necessary for deriving common similarity measures such as the
root mean-square deviation of these coordinates. Here, we introduce superimposition-free metrics that are based on computing
matrices of the Ca-Ca distance distributions within ensembles and comparing these matrices between ensembles. Differences
between two matrices yield information on the similarity between specific regions of the polypeptide, whereas the global struc-
tural similarity is captured by the root mean-square difference between the medians of the Ca-Ca distance distributions of two
ensembles. Together, our metrics enable rigorous investigations of structure-function relationships in conformational ensembles
of intrinsically disordered proteins derived using experimental restraints or by molecular simulations and for proteins containing
both structured and disordered regions.
SIGNIFICANCE Important biological insight is obtained from comparing the high-resolution structures of proteins. Such
comparisons commonly involve superimposing two protein structures and computing the residual root mean-square
deviation of the atomic positions. This approach cannot be applied to intrinsically disordered proteins (IDPs) because IDPs
do not adopt well-defined three-dimensional structures; rather, their native functional state is defined by ensembles of
heterogeneous conformations that cannot be meaningfully superimposed. We report, to our knowledge, new measures
that quantify the local and global similarity between different conformational ensembles by evaluating differences between
the distributions of residue-residue distances and their statistical significance. Applying these measures to IDP ensembles
and to a protein containing both structured and intrinsically disordered domains provides deeper insights into how
structural features relate to function.
INTRODUCTION

Comparing the high-resolution structures of proteins is crit-
ical for understanding their function and evolutionary history
(1,2). Structural comparisons rely on quantitative similarity
measures. The most common measure is the root mean-
square deviation (RMSD) of the atomic positions between
two structures, which is minimized upon rigid-body superim-
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position of these structures (3,4). But, the RMSD is often not
very informative because it averages out differences across
regions of the structures with varying similarity levels. There-
fore, superimposition-independent measures relying on inter-
residue distances have been proposed that are, moreover,
invariant under reflection, unlike the superimposition-based
RMSD (5). Distance-based metrics have been used to
compare well-defined protein structures (4–6), simulated or
experimentally restrained conformational ensembles (7–10),
or unfolded states of proteins (11–13).

Similar to the unfolded state, intrinsically disordered pro-
teins (IDPs) and intrinsically disordered regions (IDRs)
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Comparing Protein Structure Ensembles
must be described as ensembles of heterogeneous,
rapidly interconverting conformations. Characterizing and
comparing such ensembles is therefore particularly chal-
lenging. By employing restraints primarily obtained by
nuclear magnetic resonance (NMR) and small-angle x-ray
scattering (SAXS), conformational ensembles have been
characterized for many functionally important IDPs, such
as a-synuclein (14), Sic1 (15), p27Kip1 (16), and tau (17),
and these are made accessible in the Protein Ensemble Data-
base (PED) (18). Owing to their high conformational vari-
ability, however, adequately characterizing an IDP or IDR
ensemble from a limited amount of experimental data is
an inherently underdetermined problem (19). A given disor-
dered protein may therefore be modeled as multiple, seem-
ingly equivalent ensembles, representing alternative fits to
the experimental data (18). Although these alternative en-
sembles may carry functionally relevant structural informa-
tion (20,21), their critical analysis and comparative
evaluation are particularly challenging and have so far not
been attempted for two main reasons. First, their extreme
conformational heterogeneity makes it difficult to evaluate
the degree of global similarity between two ensembles by
any measure, let alone by RMSD-based metrics. Second,
the function of disordered proteins is often mediated by
short, sequentially contiguous binding motifs (22,23) adopt-
ing locally relevant conformations. The latter are intercon-
nected through more structurally variable linkers (24) that
determine the relative overall configuration of these impor-
tant motifs. Therefore, the similarity of the IDP and IDR en-
sembles must be evaluated at both the local and global levels
in a statistically meaningful approach.

To address these issues, we developed superimposition-in-
dependent measures for evaluating the local and global sim-
ilarity between two ensembles. The local similarity between
specific regions of the polypeptide is evaluated from the dif-
ferences between the distance distributions of individual res-
idue pairs and their statistical significance. The global
similarity is captured by the RMSD-like quantity represent-
ing the root mean-square difference between the medians
of the inter-residue distance distributions of the two ensem-
bles (ens_dRMS). We show that our superimposition-free
structural similarity measures are effective in describing
both global and local differences between conformational en-
sembles of IDPs and IDRs derived using experimental re-
straints or by molecular simulations and that they also
conveniently quantify the structural similarity of proteins
containing both structured and disordered regions.
MATERIALS AND METHODS

Data sets of protein conformational ensembles

Conformational ensembles of IDPs and IDRs

Data on conformational ensembles of the fully disordered K18 segment of hu-

man tau protein (130 residues) and themeasles virus (MeV)N-tail protein (132
residues (17))weredownloaded from thePED(18),whichcurrently stores such

data for 16 different protein systems or fragments thereof, comprising more

than 50 ensembles of 24 fully or partially disordered protein regions. For

both tau-K18 and the MeV N-tail, five ensembles comprising 199 conforma-

tionswere retrieved. These ensemblesweregeneratedby combining conforma-

tional sampling with an ensemble selection based on NMR data from residual

dipolar coupling and chemical shift analyses (17,25). Random pool ensembles

for the two systems (comprising 100 ensembles of 200 conformers each) were

obtained from the authors (M. Blackledge, personal communication). These

random pools were generated as previously described (25).

Conformational ensembles generated using molecular dy-
namics simulations with different force fields

Five distinct ensembles of the intrinsically disordered 24-residue serine-

arginine (SR)-rich peptide (residues 22–45 of SR-rich splicing factor 1)

were generated using microsecond-timescale replica exchange molecular

dynamics (MD) simulations (26) with GROMACS 4.5.4 (27) using

CHARMM (28) (CHARMM22* (29) and CHARMM36 (30)) and AMBER

(31) (99sb*-ildn (29) and 03w (32)) force fields, and also with CAMPARI

using the ABSINTH implicit solvent model (33). Here, using simulation pa-

rameters identical to those previously described (31), with GROMACS

2016.3 and the CHARMM22* force field with CHARMM-modified

TIP3P water, three independent, high-temperature (600 K), 0.2-ms-long

MD simulations were used to generate a model for the random coil

ensemble of the same system, denoted as the ‘‘High-T’’ ensemble.

Conformational ensembles of the human prion protein

Three distinct conformational ensembles of truncated human prion protein

(huPrP; full length: 231 amino acids (aa)) determined by NMR were down-

loaded from the Protein Data Bank (PDB) (34). These were two huPrP (90–

226) structures, PDB: 2LSB (35) and PDB: 5L6R (36), and one huPrP (90–

231), PDB:5YJ5 (37).
Distance-based metrics for comparing
conformational ensembles

To compare the two conformational ensembles A and B, we use metrics

based on the Ca-Ca distances within individual conformers in the ensem-

bles. Because IDRs of proteins display very diverse conformations, Ca-Ca

distances of a given pair of residues i,j of the polypeptide follow a distribu-

tion of values across conformers. This distribution differs between residue

pairs and may therefore provide useful information on the variation of the

spatial proximity of specific regions along the polypeptide. To derive this

information, two matrices are computed for each of the two ensembles

(Figs. 1 and 2 A). One is a matrix whose elements represent the median

of the Ca-Ca distance distributions dm(i,j) for equivalent residue pairs i,j

in the conformations belonging to the same ensemble. The other matrix

contains the strandard deviations ds(i,j) of the corresponding distributions.

For each pair of conformational ensembles A and B, we then compute a

difference matrix (Fig. 1, bottom, and Fig. 2 A, center) in which the i,j el-

ements above the diagonal represent the absolute values of the difference

between the median distances between residues i,j:

Diff dmði; jÞ ¼ jdmAði; jÞ--dmBði; jÞ j ; (1)

whereas the i,j elements below the diagonal contain the absolute differences

between the corresponding SDs:

Diff dsði; jÞ ¼ jdsAði; jÞ--dsBði; jÞ j : (2)

Because the difference matrix evaluates differences of i,j distance

distributions, it is important to assess the statistical significance of these

differences (Fig. 2 B, center). This is done using the nonparametric
Biophysical Journal 118, 2952–2965, June 16, 2020 2953



FIGURE 1 Composite heatmaps representing

the dm(i,j) and ds(i,j) and Diff_dm(i,j) and Diff_d-

s(i,j) matrices. (A) Upper left: shown is a heatmap

in which the upper triangle displays the median of

the inter-residue distance distributions dm(i,j)

(computed between Ca atoms) for equivalent resi-

due pairs i,j in the conformations of one ensemble

(E4 of the MeV N-tail domain). The lower triangle

displays the SDs ds(i,j) of the corresponding distri-

butions. Upper right: shown is an example of the

distribution contributing to one element of the

dm(i,j) and ds(i,j) composite heatmap. (B) Lower

left: a heatmap is shown in which the upper trian-

gle depicts the Diff_dm(i,j) matrix, whose elements

are the absolute differences of the medians of the

Ca-Ca distance distributions between two ensem-

bles (E2 and E4 of the MeV N-tail domain); the

lower triangles displays the absolute differences

between the corresponding SDs of Diff_ds(i,j).

Lower right: an example is shown of two distance

distributions contributing to one element of the

Diff_dm(i,j) and Diff_ds(i,j) composite heatmap.
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Mann-Whitney-Wilcoxon test so that the resulting difference matrix dis-

plays Diff_dm(i,j)- and Diff_ds(i,j)-values only for statistically different

d(i,j) distributions (p < 0.05).

The difference matrices of Eq. 1 deal with differences between median

values of distances, which themselves may span a wide range of sizes

(from 3 to 20 Å). The same Diff_dm(i,j)-value of, say, 5 Å amounts to a

more drastic distance variation for a median distance of 10 Å than for

that of 50 Å. To account for this bias, we also compute normalized differ-

ence matrices:

%Diffdmði;jÞ ¼
�
Diffdmði;jÞ100

���ðdmAði; jÞ þ dmBði; jÞÞ
2

�
:

(3)

To provide a single global measure of the differences between the two

conformational ensembles A and B, we computed the ens_dRMS, defined

as the following:

ens dRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

X
i;j

½ðdmAði; jÞ � dmBði; jÞÞ�2
s

; (4)

where dmA(i,j) and dmB(i,j) are the medians of the distance distributions of

i,j residue pairs in ensembles A and B, respectively, and n equals the num-

ber of i,j pairs. The ens_dRMS is computed over all i,j pairs of the confor-

mations in the two ensembles to enable comparison between different

ensembles of the same polypeptide.

In addition to these distance-based metrics, we compute the radius of

gyration, Rg, of the conformations in the ensemble, using only Ca atom coor-

dinates. We use it as a global measure of the ensemble dimensions (Fig. 2 C).

Using the median of the Ca-Ca distance distributions instead of their av-

erages as the basis for our ensemble-comparison metrics has the advantage of

representing a more robust measure. A significant fraction of these distances
2954 Biophysical Journal 118, 2952–2965, June 16, 2020
is not normally distributed; their average value may therefore be more readily

affected by a few outlier values than the distribution median. Clearly, howev-

er, difference matrices computed using the two measures are closely related,

and our approach could readily accommodate either measure. Indeed, differ-

ence matrices were obtained for pairs of experimentally derived ensembles

using the median and the root mean-square average d(i,j)-value (or the

average d(i,j)-value) (see Supporting Materials and Methods, Section S1.1),

respectively, to display virtually identical patterns. Nevertheless, the Diff_d-

m(i,j) matrix exhibits more prominent features than the difference matrix

based on the root mean-square average d(i,j)-value in line with the more

robust nature of the median, as illustrated in Fig. S1, A and B. Global mea-

sures based on d(i,j) averages computed for the 10 pairs of experimentally

characterized human tau-K18 IDP and IDR ensembles are also highly corre-

lated (Pearson’s r ¼ 0.87 or 0.89) with the ens_dRMS-values.

We also note that measuring the differences in the distances between the

backbone atoms (here, Ca-Ca distance) in IDP ensembles is a reasonable first

step. In these ensembles, including those generated by MD simulations, side

chains remain highly flexible. They sample, on average, a much wider range

of orientations than inglobular proteins, andhence, their interactions areweaker

in general. In support of this view, we find that considering Cb-Cb distance dis-

tributions instead of those between Ca-atoms yields indistinguishable results,

as illustrated in Fig. S2, A and B. When dealing with proteins containing struc-

tured regions or when formation ofmore long-lived contacts with side chains is

of interest, our backbone-centric approach would need to be refined to quantify

differences in contacts between both the side chains and backbone atoms.
Relation to other metrics for comparing
ensembles

Metrics for quantifying global differences between ensembles

The ens_dRMS of Eq. 4 is related to, but distinct from, several other intu-

itive or published metrics that quantify the global difference between two

conformational ensembles.



FIGURE 2 The ensemble-comparison approach: an overview. (A) Three heatmaps are displayed. Two represent a composite matrix for each of the ensem-

bles E1 and E2 that are being compared. The upper triangle of each map displays the medians of the inter-residue distance distributions dm(i,j). The lower

triangle displays the SDs ds(i,j) of the corresponding distributions. The third heatmap depicts the composite difference matrix (E1 and E2) between the two

ensembles; its upper triangle depicts the Diff_dm(i,j) matrix whose elements are the absolute differences between the dm(i,j) distributions in the two ensem-

bles; its lower triangles represents the absolute differences between the corresponding SDs of Diff_ds(i,j) (see Materials and Methods for details). The inter-

residue distances and differences thereof are given in angstroms. (B) A heatmap is given, highlighting only Sig_Diff_dm(i,j) for the E1-E2 pair, i.e., elements

of the Diff_dm(i,j) matrix representing statistically significant differences between the corresponding d(i,j) distributions (p < 0.05) (upper triangle) and the

corresponding Diff_ds(i,j)-values (lower triangle). The highlighted differences concern d(i,j) distance distributions between a segment spanning residues

473–493 and the N-terminal region (residues 405–420) of the polypeptide. Flanking this map are cartoon models depicting the backbones of individual con-

formations of the E1 (left) and E2 (right) ensembles. The conformations are color coded from blue (N-terminus) to red (C-terminus) and are superimposed

onto the equivalent helical segment (orange ribbon) in both ensembles. (C) Shown are the graphs of the local flexibility properties and conformational pref-

erences of the E1-E2 ensembles (E1 local and E2 local). Shown are the lower graph plots of the medians and 95 percentile confidence interval of the local

backbone RMSD distributions for conformations of the E1 and E2 ensembles. The upper graph shows the fraction of the conformations in each ensemble,

adopting backbone (f,j)-values mapped onto the corresponding four regions of the Ramachandran map (Fig. S10; red: a-helix; yellow: left-handed helix;

blue: b-strand; and green: polyproline I and II) (17). The RMSD-values are computed as described in Materials and Methods. The local plots are flanked by

bar graphs showing the Rg distributions of conformations in each ensemble (E1 global and E2 global) that indicate that the E2 ensemble is somewhat more

compact than E1.

Comparing Protein Structure Ensembles
One obvious metric is the difference between the average Rg-values of

the conformations in each of the two ensembles that are being compared.

Another example is the difference between the inter-residue distance-based

versions of the ensemble ‘‘structural radius’’ originally defined using posi-

tion-dependent RMSD (38). The latter is expressed as the root mean-square

average pairwise RMSD between all pairs of conformations in a given

ensemble and captures the structural diversity of the ensemble.

Using the five experimentally characterized IDP and IDR ensembles of

the human tau-K18 and MeV N-tail proteins of our data set (representing

10 pairwise comparisons for each system), respectively, we evaluated the

relationships between these two metrics and the ens_dRMS of Eq. 4. The

difference between average Rg-values of two ensembles was computed as

the following: Diff_ensRg ¼ j<Rg(A)> � <Rg(B)>j, where < and > indi-
cate ensemble averages and A and B are different ensembles. The derivation

of the distance-based version of the ‘‘structural radius’’ for each ensemble,

dRstruct, is provided in the Supporting Materials and Methods. The differ-

ence between the dRstruct-values of two ensembles was computed as the

following: Diff_dRstruct ¼ jdRstruct(A) � dRstruct(B)j.
This analysis revealed a moderately high correlation between the

ens_dRMS- and Diff_ensRg-values (Pearson’s r ¼ 0.69) computed for the

same pairs of ensembles but a very low correlation of ens_dRMS with

Diff_dRstruct (Fig. S3, A and B). The low correlation with Diff_dRstruct

was mainly due to the very low correlation between these two quantities

for the 10 pairs of the MeV N-tail ensembles caused by the more compact

nature of one of the ensembles (Fig. S3D; Table S1). These results confirm

that the ens_dRMS is indeed a distinct measure from metrics such as
Biophysical Journal 118, 2952–2965, June 16, 2020 2955
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Diff_ensRg and Diff_dRstruct. The ens_dRMS directly computes averages

over the difference in median distances of individual residue pairs in con-

formations from different ensembles. The other two metrics first compute

averages over distances within conformations within the same ensemble

(Rg) or over the difference in distances between conformations, again

within the same ensemble (dRstruct). Both metrics then use these ensemble

averages to quantify the between-ensemble differences. Interestingly, we

find that Diff_ensRg and Diff_dRstruct are only moderately correlated with

one another (Pearson’s r ¼ 0.53), indicating in turn that even these seem-

ingly related measures quantify the distinct average global features of the

conformational ensembles (Fig. S3 C).

Metrics based on the Kullback-Leibler divergence of two dis-
tributions

Our distance-dependent metrics evaluate quantities that capture differences

between the distance distributions of two ensembles, but do not evaluate the

differences between the distributions themselves. A classical measure of the

difference between two distributions is the Kullback-Leibler divergence

(KLD) (39).

Several studies have illustrated the effectiveness of KLD-based metrics in

comparing conformational ensembles of globular proteins generated by

molecular simulations and modeled using experimental restraints

(8,40,41). These studies analyzed distributions of different structural pa-

rameters (e.g., pairwise global RMSD-values between conformations or

backbone and side chain dihedral angles) and preprocessed the underlying

conformational ensembles in different ways. They also clearly indicate that

extracting statistically significant values from such KLD-based metrics re-

quires a large sample size and is computationally intensive. Given the small

size of the experimentally restrained IDP data sets analyzed here, esti-

mating the statistical significance of KLD-based metrics, which measure

differences between the underlying d(i,j) distributions, remains chal-

lenging. This makes it difficult to compare such metrics with our dis-

tance-dependent local (Diff_dm(i,j) and Diff_ds(i,j)) and global

(ens_dRMS) metrics.

We nevertheless performed a rough comparison of the symmetrized form

of the KLD between two distance distributions (symKLD_d(i,j)) and our

Diff_dm(i,j) metric for the 10 pairs of the tau-K18 IDP ensembles of our

data set (see Supporting Materials and Methods, Section S2.3 for details).

The results showed moderate correlation coefficients (Pearson’s r ¼
0.42–0.51) between the two metrics for pairs of ensembles exhibiting

significantly different d(i,j) distributions, but a negligible correlation for

ensemble pairs displaying no significantly different d(i,j) distributions

(evaluated by the Mann-Whitney-Wilcoxon test) (Fig. S4). Interestingly,

however, a much higher correlation (Pearson’s r ¼ 0.8) was obtained be-

tween the two global metrics, ens_dRMS- and ensKLD-values (the

ensemble-averaged symKLD_d(i,j)-values) between two ensembles

computed for the 10 pairs of tau-K18 ensembles (Table S2).

Taken together, these results suggest that symKLD_d(i,j) and Diff_dm(i,j)

capture the differences between distinct aspects of the individual d(i,j) dis-

tributions (or differ because of the small sample size) and these differences

are averaged out when the global metrics are compared, hence suggesting

that our simple global metric, ens_dRMS, captures the differences between

the underlying d(i,j) distributions of two ensembles rather well. Clearly

such comparisons need to be repeated using a careful formulation of

KLD-based metrics that depend on inter-residue distances as well as larger

data sets. Furthermore, such metrics may themselves be a useful addition to

the toolbox of methods, enabling the analysis of a more complete range of

properties of IDP ensembles than the metrics proposed here.
Measuring local backbone flexibility and
conformational biases within ensembles

To evaluate possible biases of individual ensembles toward specific local

backbone conformations (a-helix, left-handed helix, extended b-strand,
2956 Biophysical Journal 118, 2952–2965, June 16, 2020
etc.) as well as the extent of local backbone flexibility, we carry out super-

impositions of backbone atoms for overlapping five-residue segments along

the polypeptide chain for pairs of conformations within a given ensemble

(Fig. 2 C, center). The average and the 95 percentile confidence interval

of the classical backbone RMSD-values computed across all k,l pairs of

conformations are computed for each segment and assigned to the first res-

idue of the segment, representing the residue number n along the polypep-

tide serving as the segment anchor:

hRMSDnðk; lÞik;l ¼
1

P

X
k;l

RMSDnðk; lÞ; (5)

where P is the total number of k,l pairs of conformations in the ensemble.

These local backbone comparisons are complemented with an analysis of

the frequencies of backbone (f,j) torsion angle values, mapped onto re-

gions of the Ramachandran map corresponding to the four common second-

ary structure motifs: a-helix, b-strand, polyproline, and left-handed a-helix

(see Fig. S10; (17)).
Code availability

The code is available from https://github.com/lazartomi/ens-dRMS.
RESULTS AND DISCUSSION

Comparing conformational ensembles of IDPs

We propose a general approach for comparing conforma-
tional ensembles that combines several complementary met-
rics (Fig. 2). At its core are novel, to our knowledge,
distance-based metrics quantifying the global and local sim-
ilarity between two conformational ensembles by
comparing distributions of inter-residue distances.

Essential components of the distance-based metrics are
two matrices for each of the ensembles E1 and E2 to be
compared (E1 and E2 heatmaps Fig. 2 A). One contains
the medians of the inter-residue distance distributions
dm(i,j) (computed between Ca atoms) for equivalent residue
pairs i,j in conformations of the ensemble (top right half of
the heatmaps). The second contains the SDs ds(i,j) of the
corresponding distributions (bottom left half of the heat-
maps). For a given pair of ensembles, two difference
matrices are computed (E1 and E2, Fig. 2 A): the Diff_d-
m(i,j), matrix containing the absolute differences between
the medians of inter-residue distance distributions of the
two ensembles (top right half of the heatmaps), and the ma-
trix containing the absolute differences between the corre-
sponding SDs, Diff_ds(i,j) (bottom left half of the
heatmaps). Because the Diff_dm(i,j) matrix evaluates differ-
ences between distributions, the statistical significance of
these differences is evaluated, and the resulting difference
matrices list only the values for the significantly different
d(i,j) distributions (p < 0.05) (E1 and E2 in Fig. 2 B; for
further details, see Materials and Methods), named Sig-
Diff_dm(i,j) and Sig-Diff_ds(i,j).

To obtain a single global measure of the differences be-
tween the two conformational ensembles E1 and E2, we

https://github.com/lazartomi/ens-dRMS
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compute the RMSD between the median distance elements
dm(i,j) of the conformations in the two ensembles, denoted
as ens_dRMS (see Materials and Methods).

The distance-based metrics are complemented with
several classical measures applied to individual ensembles
(Fig. 2 C and Materials and Methods). The local backbone
variability within one ensemble is quantified by the distribu-
tions of the average backbone RMSD-values of five-residue
segments along the polypeptide computed over pairs of
conformations in each ensemble. Local conformational
preferences within a given ensemble are evaluated by the
frequencies of backbone (f,j) torsion angles of individual
residues mapped onto the regions of the Ramachandran
map corresponding to secondary structure motifs (see Mate-
rials andMethods). We see, for example, that the region near
residue 490 of the polypeptide in the analyzed ensembles
displays low backbone variability and adopts a helical
conformation in both E1 and E2 ensembles (E1 local and
E2 local, Fig. 2 C) but that the same region adopts different
spatial positions relative to the N-terminus of the polypep-
tide in the two ensembles (residues 400–430) (E1 and E2
heatmaps, Fig. 2 B).

Global conformational parameters of individual ensem-
bles are also quantified from the distribution of the radius
of gyration (Rg) of conformations within an ensemble,
with examples presented below.
Application to conformational ensembles of
specific protein systems

To illustrate the potential of our approach, we apply it to
experimentally characterized IDR ensembles of the two pro-
teins. One is the N-tail region (132 residues) of the MeV
nucleoprotein, which includes a short transient a-helix
that mediates the interaction with the C-terminal X domain
of the MeV phosphoprotein (42,43), which is important for
the replication of the viral genome. The second is the K18
segment (130 residues) of human tau protein, a microtu-
bule-associated protein, which binds microtubules via four
imperfect microtubule-binding repeats (R1–R4) located
within the K18 segment (44,45) and promotes microtubule
polymerization and stability (see Fig. S5 for the sequences
of these domains). For each of these proteins, five ensembles
comprising 199 conformations were retrieved from the PED
database (see Materials and Methods). These ensembles
represent distinct modeling solutions derived by sampling
TABLE 1 ens_dRMS-Value for Pairs of Ensembles of the tau-K18 a

tau-K18

ens_dRMS E2 (Å) E3 (Å) E4 (Å) E5 (Å)

E1 1.91 1.72 1.83 1.98

E2 – 2.15 1.84 1.93

E3 – – 1.47 2.06

E4 – – – 2.04
random coil conformations, denoted here as ‘‘random
pool,’’ followed by ensemble selection based on the fit to
NMR data (residual dipolar coupling and chemical shift
data) as described in references (17) and (25).

The ens_dRMS-values for the 10 pairs of conformational
ensembles of the tau-K18 and MeV N-tail segments (Table
1) span a very similar small range: 1.47–2.15 Å (tau-K18)
and 1.48–2.90 Å (MeV N-tail), suggesting a substantial
average structural similarity between the conformations of
the five ensembles of each protein. This similarity was
also reflected by indistinguishable Rg distributions of the
conformations in the corresponding ensembles.

To evaluate how conformational properties between
ensembles differ, we examine pairs of ensembles in each pro-
tein system featuring the largest and smallest ens_dRMS-
values in Table 1. For each of these pairs, we examined the
dm(i,j) matrices as well as the difference matricesDiff_dm(i,j)
and Diff_ds(i,j). Results show that the Diff_dm(i,j) matrix for
the least similar E2-E3 pair of tau-K18 (ens_dRMS¼ 2.15 Å)
features four regions with the largest Diff_dm(i,j)-values
(>4.8 Å) (Fig. 3 I). Only three of these regions (residues
578–582 and 619–622, 585–600 and 630–660, and 620–
640 and 660–680) represent statistically significant differ-
ences of the distance distributions between segments at me-
dium separation (30–40 residues) along the polypeptide. In
contrast, the Diff_dm(i,j) matrix of the most similar E3-E4
pair of tau-K18 (ens_dRMS ¼ 1.47 Å) features only very
small regions with Diff_dm(i,j)-values >4.8 Å (Fig. 3 II),
none of which represent statistically significant differences
between the underlying distance distributions, indicating
that the E3 and E4 ensembles are indistinguishable at this
level of the analysis. This was the only pair of tau-K18 en-
sembles with indistinguishable distance distributions. All
the remaining pairs (including E2 and E3) display varying
patterns of significant differences but only between residues
positioned at medium to large separation (20–70 residues)
along the polypeptide (Fig. S6).

Essentially, the same observations were made for the five
ensembles of the N-tail region of MeV nucleoprotein (Figs.
S7 and S8), although among the 5 N-tail ensembles, mem-
bers of two pairs (E2 and E4 and E1 and E5) were statisti-
cally indistinguishable.

These results suggest that the five experimentally derived
conformational ensembles of the two IDP and IDR domains
closely adopt similar local structures but display significant
differences in their nonlocal structures, i.e., how short
nd MeV N-Tail IDR

MeV N-tail

ens_dRMS E2 (Å) E3 (Å) E4 (Å) E5 (Å)

E1 2.83 2.90 2.43 1.62

E2 – 1.74 1.48 2.10

E3 – – 1.82 2.14

E4 – – – 1.75
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FIGURE 3 Comparisons of experimentally characterized tau-K18 IDR ensembles. Illustrated are the similarities between the E2-E3 and E3-E4 pairs of

tau-K18 ensembles, displaying the largest (2.15 Å) and smallest (1.47 Å) ens_dRMS-values in Table 1, respectively. (I) Top: shown are the heatmaps of dm(i,j)

and ds(i,j) matrices for the individual E2 and E3 ensembles. Middle left: shown are the heatmaps of the Diff_dm(i,j) and Diff_ds(i,j) computed for the E2-E3

pairs, featuring four regions with the largest differences (>4.8 Å). Middle right: shown are the heatmaps depicting only the statistically significant elements

of these maps (Sig-Diff_dm(i,j) and Sig-Diff_ds(i,j)). These elements span three regions (residues 578–582 and 619–622, 585–600 and 630–660, and 620–640

and 660–680), representing distances between segments with medium range separation (30–40 residues) along the polypeptide. Bottom: shown is a histogram

of the distributions of the gyration radii (Rg) of E2 and E3, which were found to be statistically indistinguishable (p ¼ 0.3). (II) Results for E3-E4 pair are

displayed. The top, middle, and bottom panels display the same quantities as in (I), computed for this most similar pair. The Diff_dm(i,j) and Diff_ds(i,j)

matrices computed for this pair highlight similar differences to those of the E2-E3 pair, but these differences are not statistically significant, resulting in

the virtually empty Sig-Diff_dm(i,j) and Sig-Diff_ds(i,j) heatmap. The Rg distributions of the E3-E4 pair (bottom plot) are likewise statistically indistinguish-

able (p ¼ 0.9).
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segments located at medium to large separations along the
polypeptide are positioned relative to each other. Consid-
ering that the NMR data used to model the ensembles pro-
vide only local-structure restraints (17), the observed
differences in the nonlocal structure likely represent the
random ‘‘noise’’ of the IDP and IDR ensemble solutions,
which is not functionally relevant, and they contribute little
to the average global conformational properties. This is a
reasonable assumption considering that the function of
IDPs and IDRs tends to be mediated by short recognition
motifs that are interspersed between longer flexible linker
regions adopting highly variable conformations (24), as
will be further discussed below.
Experimentally derived versus random-pool
ensembles

To further characterize the experimentally derived and
apparently very similar ensembles, it is important to eval-
uate how they differ from the ensembles of random coil con-
formations (random pools) from which they were selected
2958 Biophysical Journal 118, 2952–2965, June 16, 2020
based on the NMR data. To this end, we combined all the
conformations from the five tau-K18 and MeV N-tail en-
sembles (199 conformers � 5 ensembles per protein),
respectively, and compared them with those of the random
pools of each protein (100 ensembles � 200 conformers)
generated by the authors of the ensembles (17).

The results show that the experimental ensembles of the
tau-K18 and MeV N-tail proteins display similar average
conformational parameters to those of their random-pool ver-
sions. The two types of ensembles feature somewhat distinct
Rg distributions for tau-K18 (p¼ 0.08; Fig. 4 A) but indistin-
guishable distributions in the case of theMeVN-tail (p¼ 0.4;
Fig. 4 B). The differences in the ens_dRMS distributions be-
tween the experimental and random-pool ensembles (Fig. 4,
C and D) are more noticeable (although not statistically sig-
nificant (p ¼ �0.4) because of the small sample size: there
are only five experimental ensembles for each system). Those
of the experimental ensembles span a narrower range (1.5–
2.2 Å for the tau-K18 and 1.5–2.9 Å for the MeV N-tail)
than their random-pool counterparts (1.0–3.0 and 1.0–
3.4 Å, respectively), with a somewhat wider range for the



FIGURE 4 Experimental ensembles compared with their random-pool versions. The conformations of all five tau-K18 and MeV N-tail ensembles were

combined and compared with those of the random-pool ensembles of each protein, respectively (25). (A and B) Shown are the histograms of the Rg distri-

butions of the experimentally restrained versus the random-pool ensembles for the tau-K18 and MeV N-tail IDR domains, respectively. The tau-K18 ensem-

bles are somewhat more compact than their random-pool version (p¼ 0.008), whereas both types of ensembles are indistinguishable for the MeV N-tail (p¼
0.36). (C and D) Shown are the histograms of the pairwise ens_dRMS (in Angstroms)-values for the conformations of the experimentally restrained tau-K18

and MeV N-tail ensembles (red bars), random-pool versions of the corresponding proteins (blue bars), and pairs comprising members of both types of en-

sembles (green bars), respectively. (E and F) Shown are the heatmaps of the statistically significant portions of the normalized version of the difference

matrix and the corresponding SD differences for the tau-K18 and MeV N-tail IDR domains versus their random-pool versions, respectively. The normalized

version of the difference matrix%Diff_dm(i,j) is defined as the percent difference between the dm(i,j)-values from the two types of ensembles (see Materials

and Methods). (G and H) Shown are twin graphs highlighting the regions of the IDRs with different backbone flexibility and local-structure preferences in

conformations of the experimental and random-pool ensembles. Bottom graph: given are the medians and 95% confidence interval of the local backbone

RMSD distributions for conformations of the merged pool (blue) and experimental (pink) ensembles of the tau-K18 (G) and MeV N-tail (H) ensembles,

respectively, with the overlapping portions of the plots appearing in purple. Top graph: fractions of the conformations are given with specific (f,j) prefer-

ences (see the legend of Fig. S10 for details).
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experimental MeVN-tail than the tau-K18 ensembles. On the
other hand, pairs of conformations from both types of ensem-
bles (experimental versus random pool) follow distinct distri-
butions of ens_dRMS-values from those of pool-pool pairs
(p ¼ 2.8e�13 and 2.5e�3 for tau-K18 and MeV N-tail,
respectively). These distributions display a small shift toward
higher values (Fig. 4, C and D), indicating that the conforma-
tions in the experimental ensembles tend to differ more from
random-pool conformations than random-pool conforma-
tions among each other.

Taken together, these observations suggest that the two
experimental IDP ensembles analyzed here represent con-
formationally biased subsets of the random-pool ensemble,
with the extent of bias depending on the protein system and
the quality of the experimental data. It is therefore difficult
to define an ens_dRMS threshold that reliably distinguishes
experimental ensembles from their random-pool versions.

To evaluate the nature of the conformational bias intro-
duced by experimental restraints and their functional
relevance, we examine differences in more local conforma-
tional parameters between the experimental and random-
pool ensembles. Merging the conformations of all five
experimental tau-K18 ensembles (5 � 199 conformations)
and those of the 100 random-pool ensembles (100 � 200
conformations) together, we compute the distance-based
difference matrices between these two sets of ensembles.
Fig. 4 E plots the normalized version of the Diff_dm(i,j) ma-
trix and the differences in the corresponding SDs (see the
legend of Fig. 4 and Materials and Methods for details).
Interestingly, the most prominent differences are observed
not between more distant regions of the tau-K18 but along
the diagonal of the matrix, along which three regions span-
ning residues 580–604, 615–632, and 647–665 display
significantly nonrandom local conformational preferences.
These regions correspond to the structurally constrained
microtubule-binding motifs of tau repeats (44,45), suggest-
ing that the differences captured by comparing experimen-
tally restrained and random ensembles are functionally
relevant. By the same logic, the significant differences in
the relative positions of more distant segments often
observed between the experimental ensembles are probably
not functionally relevant, as already suggested above.
Biophysical Journal 118, 2952–2965, June 16, 2020 2959
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Local conformational preferences are likewise observed
in the experimental versus random-pool difference plots of
the MeV N-tail domain (Fig. 4 F). They concern a contig-
uous segment (residues 487–507) along the diagonal, which
is a-helical in the MeV N-tail ensembles but a random coil
in the pools. Because this helix is critical in mediating the
interaction of the MeV nucleoprotein N-tail with the X
domain of phosphoprotein (42,43), the strong signal around
this motif confirms the important discriminatory power of
comparing the two types of ensembles. The specific local-
structure preferences of the tau-K18 and MeV N-tail IDP
domains are confirmed by the plots of per-residue RMSD
distributions and backbone (f,j) values (Fig. 4, G and H).
TABLE 2 ens_dRMS-Values for Pairs of Ensembles of the SR-

Rich Peptide Derived Using MD Simulations with Five Different

Force Fields and Additionally One at High-T

ens_dRMS 99sb (Å) ABSINTH (Å) c22 (Å) c36 (Å) High-T (Å)

03w 6.91 1.76 1.78 5.74 1.80

99sb – 8.13 5.51 2.26 7.47

Absinth – – 2.83 6.72 1.37

c22 – – – 4.32 2.07

c36 – – – – 6.09
Comparing flexible peptide ensembles generated
by MD with different force fields

MD simulations are the technique of choice for modeling
the dynamic properties of proteins (46) and should be a
valuable tool for modeling the highly dynamic conforma-
tional states of IDPs and IDRs. For IDPs of small enough
size, one may indeed expect de novo MD simulations to
generate realistic models of conformational ensembles
without experimental restraints, provided appropriate force
fields are used and conformational space is sufficiently
sampled (47).

This was the rationale of an earlier study of Rauscher
et al. (26), in which microsecond-timescale MD simulations
were run using eight different force fields and solvent model
combinations to generate conformational ensembles for the
intrinsically disordered 24-residue SR-rich peptide (residues
22–45 of SR-rich splicing factor 1). These ensembles were
then evaluated for their consistency with NMR chemical
shifts, scalar couplings, and hydrodynamic radius derived
from SAXS data, measured for the same system. This com-
parison allowed the authors to identify the force fields that
produced ensembles that were in agreement with the exper-
imental data (26).

Here, we illustrate how our ensemble-comparison mea-
sures may be used to obtain useful insights into the differ-
ences between ensembles of the SR-rich peptide generated
using five different force fields, as described in reference
(26). Furthermore, we evaluate how these ensembles differ
from a ‘‘random’’ ensemble generated by MD simulations
of the same system at a high temperature (600 K) using
the CHARMM22* force field with the CHARMM-modified
TIP3P water model, denoted as the ‘‘High-T’’ ensemble (see
Materials and Methods for details).

An analysis of the Rg and ens_dRMS-values of the
different ensembles (Fig. S9; Table 2) confirms earlier find-
ings (26) that the Amber-99sb*-ildn and CHARMM36 force
fields produce the most compact ensembles. These ensem-
bles are shown here to differ most from the High-T
ensemble, as witnessed by the larger corresponding
ens_dRMS-values. Ensembles produced by the Amber-
2960 Biophysical Journal 118, 2952–2965, June 16, 2020
03w, ABSINTH, and CHARMM22* force fields feature
similar Rg distributions to those of the High-T ensemble
and the smallest ens_dRMS-values relative to that ensemble.

Fig. 5 illustrates the detailed results for two ensembles:
those produced with the CHARMM22* and CHARMM36
force fields, reported as featuring the best fit and a poor fit
to the experimental data in the original study, respectively
(26). The small normalized Diff_dm(i,j)-values (%10%) be-
tween the CHARMM22* and High-T ensembles (Fig. 5 C)
confirm the close structural similarity between the two en-
sembles, also reflected by their similar wider Rg distribu-
tions (Fig. 5 D).

Significantly larger normalized Diff_dm(i,j)-values,
reaching up to 60%, are observed when comparing the
CHARMM36 ensemble with both the CHARMM22*
version and the High-T ensemble (Fig. 5, F and I). The
largest differences occur between the C-terminus and resi-
dues 22–36 of the peptide and more locally in the segment
spanning residues 24–34. The latter segment is highly en-
riched in the left-handed helix conformations in the
CHARMM36 ensemble, as clearly visible on the per-resi-
due secondary structure frequency plot (Fig. 5, B, E, and
H). As a result, this ensemble is also more compact
(<Rg> ¼ 9 Å) than the other two ensembles (Fig. 5 D).
Considering the poor fit of the CHARMM36 ensemble to
the experimental data, the formation of this helical structure
was deemed an artifact of the CHARMM36 force field in the
original study.

Thus, when ensembles are modeled de novo, e.g., in the
absence of experimental restraints, situations may arise in
which statistically significant differences between an
ensemble and its random counterpart have no physical or
functional relevance but merely reflect biases introduced
by the modeling procedure.
Comparing conformational ensembles of partially
disordered proteins

The PDB contains many examples of proteins that feature a
mix of structured domains and IDRs. These are mainly
smaller proteins whose structures are determined by NMR
and represented as conformational ensembles often span-
ning both the structured and disordered domains.
Comparing such ensembles is challenging. It often involves
structural superimpositions of the structured domains,



FIGURE 5 Comparing ensembles of an intrinsically disordered peptide generated using molecular simulations. Shown is a pictorial summary of the

comparative analysis of two ensembles generated using de novo molecular dynamics (MD) simulations for the 24-residue serine-arginine (SR)-rich peptide

(residues 22–45 of SR-rich splicing factor 1). These ensembles were generated with the CHARMM22* and CHARMM36 force fields, previously reported as

featuring the best fit and a poor fit to the experimental data in the original study, respectively (26). (A) Shown is a cartoon representation of the superimposed

first 15 conformations from the SR-rich peptide ensemble generated using the CHARMM22* force field, which is color coded from blue (N-terminus) to red

(C-terminus). (B) Given are twin plots highlighting the regions of the peptide with different backbone flexibility and local-structure preferences in confor-

mations of the CHARMM22* ensemble. Bottom graph: medians and 95 percentile confidence interval of the local backbone RMSD distributions for con-

formations of the ensemble are given. Top graph: fractions of the conformations are given with specific (f,j) torsion angle preferences (see the legend of

Fig. 1 C for details). (C) Shown is a heatmap displaying the statistically significant portions of the Diff_dm(i,j) and Diff_ds(i,j) matrices computed between

the CHARMM22* ensemble and an ensemble generated by the high-temperature MD simulations (High-T) using the same force field. This map shows only

small differences, indicating a rather high degree of conformational similarity between the CHARMM22* ensemble and its High-T counterpart. (D) Shown is

a histogram of the Rg distributions of the ensembles generated using the CHARMM22*, CHARMM36, and denatured (High-T) ensembles, respectively,

illustrating the higher compactness of the CHARMM36 ensemble relative to the other two versions. (E) Shown are twin plots that are analogous to those

in (B) computed for the High-T ensemble. (F) Shown is a heatmap displaying the statistically significant portions of the Diff_dm(i,j) and Diff_ds(i,j) matrices

computed between the CHARMM22* and CHARMM36 ensembles. (G) A cartoon representation is given of the superimposed first 15 conformations from

the SR-rich peptide ensemble generated using the CHARMM36 force field, which is color coded as in (A). (H) Shown are twin plots highlighting the regions

of the peptide with different backbone flexibility and local-structure preferences in conformations of the CHARMM36 ensemble. (I) Shown is a heatmap

displaying the statistically significant portions of the Diff_dm(i,j) and Diff_ds(i,j) matrices computed between the CHARMM36 and High-T ensembles.
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which are then used to derive positional backbone and side
chain fluctuations for the superimposed residues, whereas
the IDRs are usually described only qualitatively.

Here, we show that our ensemble-comparison protocol
enables a quantitative description of such systems, which
provides deeper insights into the structure-function relation-
ship than analyses based on classical RMSD-values. As an
example, we use huPrP, which is considered the causative
agent of diverse prion diseases in humans, such as Creutz-
feldt-Jakob disease, kuru, and fatal insomnia (48). huPrP
can undergo an autocatalytic, self-templated structural rear-
rangement to an infectious, transmissible scrapie state that
causes propagation of the disease (49). The protein features
an intrinsically disordered N-terminal domain (1–125) and a
folded, a-helical C-terminal domain (126–226) (35). We
analyze three NMR ensembles of huPrP with 20 conformers
each downloaded from the PDB. Two are of a construct of
huPrP (90–226) (PDB: 2LSB (35) and PDB: 5L6R (36))
containing the folded domain and the adjoining 35 residues
of the disordered domain, and one is for a somewhat
different construct of huPrP (91–231) (PDB: 5YJ5 (37)).

Fig. 6 summarizes the main results for the huPrP system.
It lists the average pairwise backbone RMSD-values (Fig. 6,
RMSD tables) corresponding to four different structural su-
perimpositions of the conformations from the three consid-
ered ensembles. Relatively low RMSD-values (1.9–2.9 Å),
Biophysical Journal 118, 2952–2965, June 16, 2020 2961



FIGURE 6 Comparing ensembles of truncated huPrP comprising both a structured and an IDR. The results are displayed for the superimposed backbone

structures of the three NMR ensembles with 20 conformations each. Given are two structures of huPrP (90–226) (PDB: 2LSB and PDB: 5L6R) and one of

huPrP (91–231) (PDB: 5YJ5). Also displayed are the tables listing the corresponding ens_dRMS and average classical RMSD-values (in Angstroms). (A and

D) Superimpositions and analysis were performed considering only the C-terminal-structured huPrP domain (residues 126–226) (A) or only the N-terminal

IDR segment (residues 90–125) (D), respectively. (B) Shown is the analysis of huPrP (90–226 and 91–231) after superimposing the structured domain. (C)

Shown is the analysis of huPrP (90–226 and 91–231) after superimposing the entire polypeptide (see the main text for details). (E) Shown are the Diff_dm(i,j)

and Diff_ds(i,j) heatmaps of the two huPrP NMR ensembles displaying the largest ens_dRMS difference (PDB: 5YJ5 and PDB: 5LR6), depicting prominent

differences involving the disordered segments (90–125). (F) Given are the medians and 95% confidence intervals of the local backbone RMSD distributions

for conformations of the same two ensembles, highlighting the local differences in backbone flexibility of the 10-residue segment immediately preceding the

structured domain. (G) Shown are cartoon models of the two huPrP ensembles highlighting the different conformations of the 10-residue IDR segment rela-

tive to the C-terminal-structured domain. (F and G) The 115–125 segment of the IDR domain features more diverse conformations in PDB: 5YJ5 than in the

PDB: 5L6R structure, whereas the turn segment of the structured domain (residues 160–170) adopts more diverse conformations in PDB: 5L6R.
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implying clear structural similarity, are only obtained when
superimposing the C-terminal structured domain (residues
126–226; Fig. 6 A) and evaluating the corresponding back-
bone deviations. On the other hand, rather large RMSD-
values indicative of low structural similarity are achieved
for the full huPrP fragment (90–226) after superimposing
its backbone (�16 Å) (Fig. 6 C) or only the backbone of
the structured domain (�26 Å) (Fig. 6 B). However, some-
what lower RMSD-values (9–13 Å) obtained comparing
only the N-terminal IDR segment (90–125) (Fig. 6D) reflect
some structural similarity for this segment, which is
completely blurred by large variations of its orientation rela-
tive to the structured domain when considering the full
huPrP fragment (Fig. 6, B and C).

In contrast, structural similarities between the three huPrP
ensembles can be clearly concluded from the superimposi-
tion-free ens_dRMS measure, even when comparing only
the IDR segment (Fig. 6, ens_dRMS tables). The ens_dRMS
and RMSD-values are comparable for the structured domain
2962 Biophysical Journal 118, 2952–2965, June 16, 2020
(Fig. 6 A), confirming that the distance-based measure is
effective in quantitatively describing similarity of folded
proteins (5). Moreover, this measure is clearly superior to
the RMSD when evaluating the similarity of the full huPrP
fragment (90–226) because it features low values (Fig. 6, B
and C), indicating very close structural similarity, which is
not recognized by the RMSD-based analysis. Importantly,
the ens_dRMS measure also detects a clear structural relat-
edness of the IDR segments, particularly in the PDB: 5L6R
and PDB: 2LSB PDB entries (ens_dRMS: �2.5 Å), which
may explain why this particular pair features a significantly
smaller ens_dRMS (�1.9 Å) than the remaining two pairs
(�6 Å) for the full PrP fragment.

The small ens_dRMS-values between the PDB: 5L6R -
PDB: 2LSB pair likely result from a bias toward similar
conformational ensembles in the corresponding NMR struc-
tures because these structures were determined by some of
the same authors (35,36). On the other hand, the larger
ens_dRMS-values for the other two pairs of huPrP
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ensembles (�9–10 Å for the IDR (Fig. 6 D) and �5–6 Å for
the full huPrP fragment (Fig. 6, B and C)) likely reflect the
different conformational properties of the huPrP PDB: 5YJ5
(37), to which the two other ensembles are compared.

Indeed, for the PDB: 5YJ5 - PDB: 5L6R pair with the
largest ens_dRMS (6.3 Å), the ensembles of the full huPrP
fragments display distinct patterns of local backbone fluctu-
ations notably in the C-terminus of the IDR domain (resi-
dues 115–125) (Fig. 6 F). This 10-residue segment, which
immediately precedes the structured domain of huPrP,
stands out as displaying large differences in median dis-
tances (40–50%) relative to three specific regions of the
structured domain in the vicinity of residues 130, 155, and
190 (Fig. 6 E). These various features are illustrated in the
molecular models of Fig. 6 G. It is noteworthy that this
10-residue huPrP segment overlaps with the palindromic
sequence (AGAAAAGA) thought to be critical for the tran-
sition to the scrapie form (50) and was reported to be buried
in PrP fibrils (51).
CONCLUSIONS

This study presented a novel, to our knowledge, approach
for evaluating the global and local similarity of conforma-
tional ensembles of the same protein employing metrics
that forego superimposition of the atomic coordinates and,
instead, compare the distributions of inter-residue distances.
These metrics are based on quantities that capture the differ-
ences between the distributions of residue-residue distances
and their statistical significance. Computing these quantities
is inexpensive, and the results can be readily interpreted by
researchers with basic knowledge in molecular modeling.
Furthermore, we showed that our global similarity metric,
the ens_dRMS, is distinct from other inter-residue
distance-dependent global similarity metrics that evaluate
the radius of gyration (Rg) or the so-called ‘‘structural
radius’’ (Rstruct) (38), reformulated here using inter-residue
distances. The latter metrics first average intramolecular dis-
tances of individual conformations or compare individual
conformations within ensembles, whereas the ens_dRMS
directly averages differences between medians of individual
inter-residue distance distributions across different
ensembles.

The power of our simple approach was illustrated in
comparative analyses of multiple ensembles of three
different systems: those of the MeV N-tail and tau-K18
IDR segments modeled using restraints derived from
NMR experiments, ensembles of the intrinsically disordered
SR-rich peptide generated by MD simulations, and NMR
conformational ensembles of the huPrP, a protein containing
a structured and an intrinsically disordered domain.

Comparison of the inter-residue distance distributions
within the experimentally derived MeV N-tail and tau-
K18 IDR ensembles and between these ensembles and the
random-pool versions from which they were selected
readily identified previously reported regions with enhanced
preferences for specific local conformational features.
These regions adopted a similar pattern of inter-residue
distance distributions in all the experimentally derived en-
sembles of both systems. However, this pattern differed
significantly from that adopted by the same regions of the
polypeptide in the corresponding random-pool ensembles.
It was particularly satisfying to verify that these very regions
are functionally relevant. For tau-K18, they comprise the
microtubule-binding motifs, whereas for the MeV N-tail,
it corresponds to the helical region mediating the interaction
with the X domain of MeV phosphoprotein.

This notwithstanding, the experimental ensembles were
not necessarily less conformationally diverse than their
random-pool versions in terms of distance distributions be-
tween more remote regions of the polypeptide. The two
types of ensembles also displayed similar global compact-
ness as measured by the corresponding gyration radii (Rg)
distributions, suggesting in turn that nonlocal conforma-
tional features of the experimental ensembles that are not
subjected to the restraints provided by the NMR data
conserve a ‘‘noisy,’’ random-pool-like character. This could
potentially be remedied by the inclusion of the SAXS data
in the ensemble calculation (52,53).

Our superimposition-free structural similarity measures
were likewise effective in detecting the conformational
biases in ensembles of the intrinsically disordered, 24-resi-
due, SR-rich peptide generated by room-temperature MD
simulations using different force fields and water models.
One of these ensembles was previously reported as featuring
a left-handed helix conformation that was incompatible with
the experimental data available for this system (26). Our
approach singled out this particular ensemble as the most
globally compact and locally structurally constrained that
differed significantly from the ensembles derived using
other force fields or from the ensemble generated by a
high-temperature MD simulation (Fig. 5).

Lastly, applying our ensemble-comparison protocol to
three NMR ensembles of huPrP comprising both structured
and IDRs provided a highly informative description of this
system. In stark contrast to the RMSD-based comparisons,
the superimposition-free ens_dRMS metric revealed sizable
structural similarities between the NMR ensembles of the
huPrP (90–226) fragment that includes the C-terminal
segment (�35 aa) of the disordered PrP domain. The
ens_dRMS also detected a particularly close structural relat-
edness between both the full-length (90–226) and IDR por-
tions (90–125) in two of the huPrP structures, which, as we
subsequently verified, were determined by some of the same
authors. Also quite remarkably, in the third huPrP structure,
our analysis discovered significant differences in the median
distances between the IDR segment around residues 115–
125 and residues of the adjoining structured domain, which
we could attribute to the substantial differences of the local
backbone flexibility and orientation of the 10-residue
Biophysical Journal 118, 2952–2965, June 16, 2020 2963
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disordered segment in the huPrP structures (Fig. 6, E–G). It
was gratifying to find that this very segment is believed to be
critical for the transition of huPrP to the disease-associated,
scrapie form.

Our distance-based structural similarity measures should
be very useful for evaluating the global and local similarity
between conformational ensembles of the same or closely
related IDPs and IDRs or proteins with both structured
and disordered regions. By quantifying the structural relat-
edness of these flexible systems, a task that classical
RMSD-based analyses strain to accomplish, a deeper insight
is provided into how their structural features relate to
function.
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simulations of intrinsically disordered proteins: force field evaluation
and comparison with experiment. J. Chem. Theory Comput.
11:3420–3431.

48. Prusiner, S. B. 1998. Prions. Proc. Natl. Acad. Sci. USA. 95:13363–
13383.

49. Singh, J., and J. B. Udgaonkar. 2015. Molecular mechanism of the mis-
folding and oligomerization of the prion protein: current understanding
and its implications. Biochemistry. 54:4431–4442.

50. Baumann, F., M. Tolnay,., A. Aguzzi. 2007. Lethal recessive myelin
toxicity of prion protein lacking its central domain. EMBO J. 26:538–
547.

51. Peretz, D., R. A. Williamson,., D. R. Burton. 1997. A conformational
transition at the N terminus of the prion protein features in formation of
the scrapie isoform. J. Mol. Biol. 273:614–622.
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