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Abstract

Inter-individual differences in DNA repair systems may play a role in modulating the individual 

risk of developing colorectal cancer.

To better ascertain the role of DNA repair gene polymorphisms on colon and rectal cancer risk 

individually, we evaluated 15,419 single nucleotide polymorphisms (SNPs) within 185 DNA 

repair genes using GWAS data from the Colon Cancer Family Registry (CCFR) and the Genetics 

and Epidemiology of Colorectal Cancer Consortium (GECCO), which included 8,178 colon 

cancer, 2,936 rectum cancer cases and 14,659 controls.

Rs1800734 (in MLH1 gene) was associated with colon cancer risk (p-value=3.5×10−6) and 

rs2189517 (in RAD51B) with rectal cancer risk (p-value=5.7×10−6). The results had statistical 

significance close to the Bonferroni corrected p-value of 5.8×10−6. Ninety-four SNPs were 

significantly associated with colorectal cancer risk after Binomial Sequential Goodness of Fit 

(BSGoF) procedure and confirmed the relevance of DNA mismatch repair (MMR) and 

homologous recombination pathways for colon and rectum cancer, respectively.

Defects in MMR genes are known to be crucial for familial form of colorectal cancer but our 

findings suggest that specific genetic variations in MLH1 are important also in the individual 

predisposition to sporadic colon cancer. Other SNPs associated with the risk of colon cancer (e.g. 

rs16906252 in MGMT) were found to affect mRNA expression levels in colon transverse and 

therefore working as possible cis-eQTL suggesting possible mechanisms of carcinogenesis.

Keywords

Colon cancer; rectal cancer; DNA repair; single nucleotide polymorphisms; cancer susceptibility; 
genome-wide association studies

Introduction

Cancer is the consequence of the complex interactions between genetic susceptibility and 

environmental factors. Among the genes playing a role in cancer susceptibility, DNA repair 

genes are important candidates since cancer is associated with inherited deficiencies of DNA 

repair 1. Defects in DNA repair cause genetic instability leading to increased rates of 

somatic mutations, providing the biological bases of this phenomenon 2. Concerning the 

gastro-intestinal tract, the Lynch syndrome, which is most commonly clinically manifested 

as hereditary nonpolyposis colorectal cancer (HNPCC), is one of the most characterized 

inherited forms bound to defects in the DNA mismatch repair (MMR) pathway and it 

accounts for about 1–5% of all colorectal cancer cases 3. According to a multistep model of 

carcinogenesis 4, unrepaired mismatched bases (e.g. arising during DNA replication) cause a 

progressive accumulation of somatic mutations, predisposing replicating tissues with high 

turnover (such as the colon epithelium) to the malignant transformation 5. The role of 

surveillance operated by MMR seems pivotal for colonocytes, as deficiencies within this 
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pathway are observed also at somatic level in 7–10% of the sporadic forms conferring the 

so-called “microsatellite instability” (MSI) phenotype 3, 6.

On the basis of the observations in HNPCC families, it has been hypothesized that moderate 

inter-individual differences in the activity of DNA repair systems could also play a role in 

modulating the individual risk to develop sporadic form of colorectal cancer in the general 

population 7–9. Thus, various hypothesis-driven case-control studies have been carried out to 

evaluate the association between the risk of sporadic colorectal cancer and polymorphisms 

within candidate genes such as OGG1, APEX, POLB, XRCC1, and MUTYH (base excision 

repair, BER), ERCC1, ERCC2, XPC, and ERCC5 (nucleotide excision repair, NER), 

XRCC2 and XRCC3 (double-strand breaks repair, DSB), and Poly(ADP-ribose) polymerase 

(PARP) 9, 10. Positive associations were described for single-nucleotide polymorphisms 

(SNPs) within APEX, ERCC1, MUTYH, OGG1, XPC, XPG, XRCC1, and XRCC3 genes 
11–16, but some results were either discordant or not replicated 9, 11, 16–19 likely as the 

consequence of a limited statistical power. Genome-wide association studies (GWASs) could 

not confirm most of the positive associations within the DNA repair genes previously 

described 20–23. Similarly, GWASs carried out on other types of cancer detected only few 

DNA repair SNPs (see the GWAS catalog https://www.ebi.ac.uk/gwas/home) such as in 

breast cancer the rs999737 near RAD51L1, likely affecting the DSB DNA repair 24. Most 

probably, the low number of disease-associated DNA repair SNPs in GWAS could be due to 

the very small effect of each SNP or to moderately penetrant, rare, and population-specific 

alleles having various extents of linkage disequilibrium (LD) with the polymorphisms 

typically analyzed using commercial microarrays. Moreover, the effect of each SNP could 

be diluted in typical GWAS of overall colorectal cancer cases including tumors with 

different tumor molecular pathologies, as each risk allele is conceived to differentially 

influence specific carcinogenic mechanisms 25. However, a previous study with adequate 

statistical power showed that the set of DNA repair SNPs, as a whole, could be associated 

with colorectal cancer risk 20. Meta-analyses suggested also positive associations for 

rs1052133 and rs861539, respectively within hOGG1 26 and XRCC3 27 genes. These 

associations were observed only in specific ethnic groups, indirectly confirming the 

hypothesis of the moderately penetrant population-specific alleles 28. In summary, further 

investigations are needed, in particular in large populations. In order to overcome the 

limitations imposed by the statistical power and in the attempt to draw more robust 

conclusions, we evaluated available SNPs within the full set of DNA repair genes in a large 

number of cases and controls combining data from two consortia: the Genetics and 

Epidemiology of Colorectal Cancer Consortium (GECCO), and the Colon Cancer Family 

Registry (CCFR) 29. We hypothesize that specific DNA repair pathways could be relevant in 

better describe risk association for colorectal cancer with particular care for cancer site 

subtypes. The large sample size allowed in fact to better investigating the role of DNA repair 

genes by stratifying for colon and rectal cancer separately.
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Material and methods

Study population and genotyping

We included 14 studies from the CCFR and GECCO consortia as described previously and 

in the Supplementary Material (Text S1) and Table 1 29–31. All colorectal cancer cases were 

defined as colon or rectal adenocarcinoma and confirmed by medical records, pathologic 

reports, cancer registries, or death certificates. All analyses were restricted to individuals of 

European ancestry.

Methods of array-based genotyping, quality assurance/quality control and imputation, 

average sample and SNP call rates, and concordance rates for blinded duplicates have been 

previously published 32. In brief, for quality insurance SNPs were excluded based on call 

rate (<98%), lack of Hardy-Weinberg Equilibrium (HWE) among controls (setting a 

threshold of p<10−4), and low minor allele frequency (MAF) <0.05. We imputed the 

autosomal SNPs of all studies to the Northern Europeans from Utah (CEU population) in 

HapMap II. List of SNPs was restricted based on per-study minor allele count > 5 and 

imputation accuracy (r2 >0.3). After imputation and quality-control exclusion, 

approximately 2.7M SNPs were available as complete genotype dataset. Imputations were 

done using the Haplotype Reference Consortium (HRC) r1.0 reference panel and Michigan 

Imputation Server, with phasing option set to ShapeIT v2.r790 33–35.

Selection of candidate genes and SNPs

To evaluate the association between polymorphic DNA repair genes and risk of colon and 

rectal cancer, we initially selected genes involved in many aspects of DNA repair processing 

as listed in: https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-

repair-genes.html. A total of 185 genes (Supplementary Table 1; Figure 1) were retrieved 

and for each of them all known SNPs reported for the gene region (including 5’ and 3’ near 

regions, as classified and reported in dbSNP) were evaluated. As one example, see MLH1 at 

URL: https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?

showRare=on&chooseRs=all&go=Go&locusId=4292 The complete list of 15,419 SNPs is 

reported in Supplementary Table 1.

In silico analyses

In order to evaluate possible biological effects of specific SNPs, computational predictions 

were performed with the use of bioinformatics tools (Figure 1). First, we analyzed the 

presence of blocks of LD (r2>0.8) by using “LD TAG SNP selection” available at http://

archive.broadinstitute.org/mpg/snap/ldsearch.php and Haploreg V4.1 (http://

archive.broadinstitute.org/mammals/haploreg/haploreg.php). The latter is based on the 

ENCODE database and provides information for the analysis of the non-coding genome. 

Candidate regulatory SNPs were displayed together with their associated chromatin status 

and with the annotation of their protein binding sites (from the Roadmap Epigenomics and 

ENCODE projects). The information was also completed with the estimates of sequence 

conservation between mammals and the effects on the regulatory motifs and gene expression 

(from expression quantitative trait loci, eQTL, studies). Finally, for each SNP we examined 

gene expression levels as quantitative trait loci (cis-eQTLs), as available in GTEx Portal 
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(https://www.gtexportal.org) for intestinal tissues (i.e. transverse, n=246 and sigmoid, 

n=203).

Statistical analysis

The association between SNPs and colon or rectal cancer risk was estimated using multiple 

logistic regression model with log-additive genetic effect. The model was adjusted for sex, 

age, genotype phase, batch effect, and principal components (PCs) for ancestry. The 

adjustment for multiple testing was initially approached by employing the Bonferroni’s 

correction considering that, because of the presence of LD, about 4,300 independent 

haplotype-tagging SNPs (using a LD threshold with an r2≥0.8) could recapitulate the whole 

genetic variability contained in the full set of SNPs. The novel threshold of statistical 

significance was, then, 5.8×10−6 (considering 2 sets of statistical tests, one for colon and one 

for rectum)

Moreover, as an alternative hypothesis-generating approach, we also tested the Binomial 

Sequential Goodness of Fit (BSGoF) method for multiple test adjustment. BSGoF 

(described in 36) provides a good balance between false discovery rate (FDR) and power, 

particularly when the number of tests is large and the effect level is weak to moderate. We 

applied the BSGoF function to the total number of SNPs included in the study (n=15,419) to 

the p-value for SNP effect data (alpha=0.05, gamma=0.05).

Ethics statement

All participants provided informed consent and studies were approved by their respective 

Institutional Review Boards. The overall project was reviewed and approved by the Fred 

Hutchinson Cancer Research Center Institutional Review Board (approval number: 1177). 

Each study was approved by the local IRB [University of Hawaii Human Studies Program 

(Colo23, Hawaii CCFR, and MEC); University of Utah Institutional Review Board (DALS); 

Partners Human Research Committee (NHS and PHS); Harvard School of Public Health 

Institutional Review Board (HPFS); Fred Hutchinson Cancer Research Center Institutional 

Review Board (PMH-CCFR, Seattle CCFR, VITAL, overall study); CSMC Institutional 

Review Boards (Cedars-Sinai CCFR); Cleveland Clinic Institutional Review Board 

(Cleveland Clinic CCFR); Mayo Clinic Institutional Review Board (Mayo Clinic CCFR); 

Mount Sinai Hospital Research Ethics Board (Ontario CCFR (OFFCR)); University of 

Melbourne Health Sciences Human Ethics Sub-Committee (Australasia CCFR); Ethics 

Committee of the Medical Faculty of the University of Heidelberg (DKFZ); NCI Special 

Studies Institutional Review Board (PLCO)]. For each participating study, participants or the 

next of kin in the case of deceased volunteers, provided either written informed consent to 

participate (the following CCFR sites: Australasia, Cedars-Sinai, Cleveland Clinic, Hawaii, 

Mayo Clinic and Ontario CCFRs), Colo23, DACHS, DALS, MEC, PHS, PLCO, VITAL, 

WHI) or they provided implied written consent by the return of the mailed questionnaires 

(NHS, HPFS) or the completion of telephone questionnaires (Seattle CCFR, PMH-CCFR). 

Additional consent to review medical records was obtained through signed written consent.
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Data availability

All custom Infinium OncoArray-500K array and Illumina HumanOmniExpressExome-8v1–

2 array data used in the study have been deposited at dbGaP under accession number 

phs001415.v1.p1 and phs001315.v1.p1, respectively. Genotype data for the studies have 

been deposited at dbGaP under accession number phs001078.v1.p1.

Results

In this work, we included 14 studies from CCFR and GECCO consortia as described in the 

Supplementary Material (Text S1) and Table 1 and elsewhere 29–31. Overall, 15,419 SNPs 

within the 185 DNA repair genes were tested for different genotype distributions between 

14,659 controls, 8,178 colon and 2,936 rectum cancer cases. The complete set of results is 

reported in Supplementary Table 2, whereas extracts concerning the htSNPs with the lowest 

p-values of association are showed grouped by gene in Tables 2 and 3 for colon and rectum, 

respectively.

The SNP rs1800734 in MLH1 was significantly associated with the risk of colon cancer 

after Bonferroni’s adjustment (OR=1.13, 95%CI= 1.07–1.18, p=3.5X10−6; Table 2). Other 

two htSNPs within MLH1, i.e. rs6784088 (OR=0.94, 95%CI= 0.90–0.98, p= 3.3×10−3) and 

rs9855475 (OR=0.94, 95%CI= 0.90–0.98, p=3.4X10−3), were associated with the risk of 

colon cancer when BSGoF was applied (Table 2). These two latter were mildly in LD each 

other (r2=0.71), whereas the strongest signal rs1800734 had a weak LD with them (r2 = 0.33 

and = 0.30, respectively). This SNP showed also an association with the risk of colorectal 

cancer, although at a lesser extent (OR=1.09; 95%CI= 1.04–1.14; p=5.6×10−5).

Concerning rectal cancer, the strongest signal was found for rs2189517 within RAD51B 
(OR=1.15, 95% CI=1.08–1.22, p-value=5.7×10−6), a gene involved in Homologous 

recombination repair (HR), statistically significant also following the Bonferroni’s 

correction (Table 3). Interestingly, other 14 htSNPs were found associated at a lesser extent 

with the risk of rectal cancer, being statistically significant only when BSGoF was applied. 

The list of these SNPs includes rs12587232, rs187645011, rs7350713, rs6573841, 

rs111611396, rs1989974, rs117544253, rs77726787, rs8016488, rs11628293, rs113020754, 

rs80085210, rs113300322, and rs74933543. The significance levels ranged from 4.37×10−5 

to 1.6X10−3 with the highest risk (OR=0.71 corresponding to 1.41 for the common versus 

the rare allele) for rs187645011. Rs2189517 was not in LD with the others (r2<0.3) with the 

exception of rs12587232, having r2 of 0.77. The 14 htSNPs were not in LD each other as 

well (max r2<0.6). Rs2189517 was associated also with colorectal cancer risk (OR= 1.05, 

95%CI= 1.02–1.09, p=1.7×10−3) although statistically significant only following BSGoF 

correction.

When more exploratory and hypothesis-generating analyses were performed by considering 

statistically significant SNPs following BSGoF adjustment, several genes had multiple 

htSNPs associated with the risk of colon carcinoma, such as ATM (rs11212592, 

rs61915066), FANCA (rs2238526, rs3743860), FANCE (rs6907678, rs10947550), and LIG1 
(rs1971775, rs73054038). Because htSNPs are mostly independent each other, the presence 

of multiple signals provides a more robust indication for the role of the gene in the 
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susceptibility to the disease. Other genes, such as EXO1, FEN1, PMS2, RBBP8, and 

TP53BP1, had only one positive htSNPs (Table 2). For rectal carcinoma, multiple hits were 

found within BLM (rs2518967, rs35787687), PMS1 (rs1233258, rs1233262) and RAD51B 
(14 hits). Single hits were found for ATM and DCLRE1C (Table 3).

Bonferroni’s-positive htSNPs were also evaluated as potential cis-eQTL by investigating in 
silico their association with the gene expression using GTex portal. Rs1800734 was 

associated with MLH1 expression in colon transverse but the statistical significance did not 

reach the genome-wide level (p=9.9×10−4, normalized effect size, NES, of 0.12). On the 

other hand, rs2189517 lacked completely any association with the expression of RAD51B in 

colonic tissues as well as in all other tissues available in GTex portal. To further investigate 

the role of these SNPs as eQTL or any other functional annotations, we have searched other 

databases (http://www.exsnp.org/; http://www.scandb.org/newinterface/about.html; and 

http://bioinfo.life.hust.edu.cn/PancanQTL/). However, no additional information were 

retrieved since data on these SNPs are largely missing.

Discussion

In the present study, we comprehensively analyzed variations in 185 DNA repair genes in 

over 27,000 individuals 29 to ascertain their implication for colon and rectal cancer risk. Two 

SNPs in MMR and HR pathways (i.e. rs1800734 in MLH1 and rs2189517 in RAD51B) 
were associated in a statistically significant way with increased risk for cancer in colon and 

rectum, respectively.

Differences in the activity of DNA repair systems could play a role in modulating individual 

cancer risk according to tumor location in the gut 7–9. Mutations within MLH1 (MMR) 

predispose to HNPCC type-2 37. Somatic mutations as well as hyper-methylation of the gene 

promoter were frequently observed also in sporadic colorectal cancer tissues associated with 

a MSI phenotype 38. Rs1800734 encodes for a G to A transition at −93 from the 

transcription start site within the promoter region and it falls within NF-IL6 and GT-IIB 

transcription factor binding sites. The polymorphism has been associated with promoter 

methylation and gene silencing 39, 40 and a meta-analysis by Wang and colleagues 41 

reported that carriers of the A-allele are at increased risk of colorectal cancer, in agreement 

with the present results. The association was even stronger among cases positive for MSI. 

However, according to another recent meta-analysis results were not conclusive 42. Our 

results, carried out on a very large series of patients, suggest that rs1800734 plays a role 

particularly in colon, perhaps causing a decreased activity of the MMR in this tissue 39, 43. 

This hypothesis is corroborated by the data from GTEx reporting that rs1800734 could act 

as a cis-eQTL by affecting mRNA expression levels in colon transverse (p=9.9×10−4 with 

NES of 0.12). Discrepancies among past studies could be ascribed to statistical limitations or 

to differences in the composition of colon/rectal cancer patients and to variable proportions 

of patients with MSI phenotypes.

Concerning the second positive association (i.e. rs2189517), it is important to observe that 

RAD51B is an important gene within the HR pathway. Interestingly, previous studies 

reported that various RAD51B SNPs in LD with those reported in our study were associated 
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with the susceptibility to prostate and breast cancer 44. Finally, rs2189517 has been recently 

related to the risk of prostate cancer in a GWAS 45. Furthermore, it should be stressed that 

other SNPs within the last intron of RAD51B, and not in LD with those presented here, were 

involved in the susceptibility to breast cancer in males 46, and females 47. Germline 

mutations within RAD51B were also found to confer predisposition to familial breast and 

ovarian cancer 48, and cutaneous melanoma 49.

Subsequently, we also investigated the potential, although minor, involvement of other SNPs 

in DNA repair by a hypothesis-generating approach, which means a less conservative 

adjustment for multiple testing as applies for Bonferroni adjustment. Various htSNPs 

resulted significantly associated after BSGoF correction for multiple testing and confirmed 

and provided further evidence for our hypothesis of the relevance of DNA MMR and HR 

pathways for colon and rectal subtypes, respectively. In fact, MMR showed more signals 

such as rs12112229 in PMS2, rs4658549 in EXO1, and rs72812338 in MSH2 associated 

with increased colon cancer risk. It should be also noted that PMS2 forms heterodimers with 

MLH1 to generate MutL-alpha complex. This last, together with MutS heterodimers, is 

pivotal for MMR to correct small insertion-deletion mispairing formed during DNA 

replication or recombination. Interestingly, MSH2 and EXO1 are also physically interacting 

each other for MMR activity 50. Additionally, together with the RAD51B SNPs found in the 

present study, other htSNPs within the same gene resulted associated with risk of rectal 

cancer being the association of rs2189517 with the lowest P-value while that of rs187645011 

with the highest OR. In summary, according to all these observations, RAD51B and HR 

appear as pivotal in the individual susceptibility to various types of tumors, including rectal 

carcinoma.

Conclusions

All findings hereby presented suggest the importance of genetic variations within MMR 

genes (in particular those that could physically interact with each other for intact MMR 

activity) in the predisposition to non-inherited forms of colon cancer. In contrast, for rectal 

carcinoma, the strongest associations were observed for a SNP within RAD51B, a gene 

involved in HR. Thus, our results show that genetic variations within DNA repair genes, in 

particular MMR and HR, significantly affect the risk of colon and rectal carcinoma 

independently with a significant impact not only, as known, for the familial forms but also 

for the sporadic ones.
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NES normalized effect size

OR odds ratio

PARP poly(ADP-ribose) polymerase

PCs principal components

SNPs single-nucleotide polymorphisms
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Novelty & Impact Statements

The results presented in this study provide new insights on candidate SNPs (rs1800734 in 

MLH1 gene and rs2189517 in RAD51B) involved in DNA repair that may spur 

downstream investigation into the biology of risk for colon and rectal cancers with a 

reflection in improving drug development and clinical guidelines, such as personalized 

screening decisions.
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Figure 1. 
Workflow of the study
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Table 1

Description of study populations included in the Colon Cancer Family Registry (CCFR) and the Genetics and 

Epidemiology of ColorectalCancer Consortium(GECCO).

Study* Total** Sex Controls Cases Cancer site

Females Males N=14662 N=11898 Colon (proximal / distal) Rectum

ASTERISK 1839 763 1076 947 892 622 (249 / 373) 260

CCFR Set 1 2016 1010 1006 978 1038 700 (317 / 375) 448

CCFR Set 2 717 389 328 386 331 237 (97 / 127) 135

Colo 2&3 211 94 117 124 87 59 (35 / 24) 27

DACHS Set 1 3409 1393 2016 1702 1707 1037 (548 / 487) 668

DACHS Set 2 1164 435 729 498 666 385 (210 / 175) 281

DALS Set 1 1411 612 799 709 702 702 (329 / 358) 0

DALS Set 2 863 410 453 461 402 410 (209 / 185) 0

HPFS Set 1 456 0 456 229 227 158 (82 / 76) 48

HPFS Set 2 348 0 348 172 176 111 (54 / 57) 40

HPFS_AD 656 0 656 343 313 n/a n/a

MEC 672 311 361 346 326 241 (155 / 86) 81

NHS Set 1 1165 1165 0 774 391 305 (175 / 123) 82

NHS Set 2 339 339 0 181 158 112 (67 / 44) 35

NHS_AD 1090 1090 0 577 513 n/a n/a

OFCCR 1116 579 537 522 594 396 (204 / 164) 188

PHS 764 0 764 389 375 286 (122 / 121) 84

PLCO Set 1 2496 664 1832 1972 524 516 (323 / 193) 5

PLCO Set 2 889 379 510 414 475 320 (213 / 102) 161

PMH-CCFR 398 398 0 122 276 206 (132 / 72) 64

VITAL 566 267 299 287 279 215 (143 / 69) 66

WHI Set 1 1991 1991 0 1523 468 456 (308 / 147) 14

WHI Set 2 1984 1984 0 1006 978 704 (482 / 222) 249

Numbers may not add up to 100% of available subjects because of missing information; n/a information not available

*
For the complete list and description of the studies, see Supplementary materials. ASTERISK, Colo2&3, DALS Set 2, DACHS Set 1, PMH-

CCFR, MEC, PLCO Set 2, WHI Set 2 and VITAL were genotyped on the Illumina CytoSNP BeadChip. WHI Set 1 was genotyped using Illumina 
550K, 550K duo, and 610K platforms (only 550K and 550K duo if not utilizing hip fracture controls). PLCO Set 1 was genotyped using Illumina 
550K and 610K platforms (also the 550K Duo platform if using the PLCO rematch set). DALS Set 1 was genotyped using Illumina 610K and 
550K platforms. OFCCR was genotyped using Affymetrix GeneChip Human mapping 100K and 500K Array Set and a 10K non-synonymous SNP 
chip. CCFR was genotyped using Illumina Human1M and Human1M-Duo platforms. DACHS Set 2, HPFS, NHS, and PHS were genotyped on the 
OmniExpress platform.

**
Sample sizes based on GECCO GIGSv3/HRCv1 data.
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Table 2

htSNPs with the lowest p-values for the association with risk of colon cancer, grouped by gene

Colon (proximal+distal)

ht SNP ID OR (95% CI) p-value for SNP effect BSGoF-Adjusted
p-value

ATM(DSBR)

rs11212592 0.92 (0.87–0.97) 3.30X10−03 0.021

rs61915066 1.13 (1.04–1.24) 4.81X10−03 0.021

EXO1 (MMR, EPN)

rs4658549 1.06 (1.02–1.11) 5.33X10−03 0.021

FANCA (DCLR)

rs2238526 0.94 (0.91–0.98) 3.98X10−03 0.021

rs3743861 0.94 (0.91–0.98) 6.13X10−03 0.021

FANCE (DCLR)

rs6907678 0.94 (0.90–0.98) 1.79X10−03 0.020

rs10947550 0.94 (0.90–0.98) 2.32X10−03 0.020

FEN1(BER, EPN)

rs4246215 0.93 (0.89–0.97) 1.59X10−03 0.020

LIG1(NER,BER)

rs1971775 1.06 (1.02–1.11) 4.38X10−03 0.021

rs73054038 0.92 (0.87–0.98) 5.32X10−03 0.021

MLH1 (MMR)

rs1800734 1.13 (1.07–1.18) §
3.48X10−06 0.019

rs6784088 0.94 (0.90–0.98) 3.28X10−03 0.020

rs9855475 0.94 (0.90–0.98) 3.42X10−03 0.021

PMS2 (MMR)

rs12112229 1.07 (1.02–1.13) 3.15X10−03 0.020

RBBP8 (HR)

rs113047993 1.15 (1.07–1.25) 2.36X10−04 0.019

TP53BP1 (NHEJ)

rs17782975 0.88 (0.82–0.96) 1.91X10−03 0.020

§
statistically significant after Bonferroni’s correction
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Table 3

htSNPs with the lowest p-values for the association with risk of rectal cancer, grouped by gene

Rectum

ht SNP ID OR(95% CI) p-value for SNP effect BSGoF-Adjusted p-value

ATM (DSBR)

rs11212592 0.87 (0.80–0.94) 1.67X10−03 2.86X10−03

BLM (DSBR)

rs2518967 1.14 (1.06–1.24) 5.97X10−04 1.35X10−03

rs35787687 1.14 (1.05–1.23) 1.07X10−04 2.32X10−03

DCLRE1C (NHEJ)

rs7920514 1.12 (1.04–1.21) 1.37X10−03 2.50X10−03

PMS1 (MMR)

rs1233258 0.87 (0.80–0.93) 2.37X10−04 7.22X10−04

rs1233262 0.89 (0.83–0.95) 1.21X10−04 2.32X10−03

RAD51B (HR)

rs2189517 1.15 (1.08–1.22) §
5.73X10−06 1.24X10−05

rs12587232 1.13 (1.06–1.20) 4.37X10−05 6.56X10−04

rs187645011 0.71 (0.61–0.84) 7.53X10−05 6.90X10−04

rs7350713 0.74 (0.63–0.87) 2.47X10−04 7.44X10−04

rs6573841 0.86 (0.80–0.93) 3.43X10−04 7.59X10−04

rs111611396 0.74 (0.63–0.87) 3.53X10−04 7.66X10−04

rs1989974 0.76 (0.65–0.88) 4.20X10−04 7.81X10−04

rs117544253 0.72 (0.60–0.86) 4.70X10−04 8.69X10−04

rs77726787 0.74 (0.63–0.87) 4.76X10−04 9.30X10−04

rs8016488 1.15 (1.06–1.25) 5.27X10−04 1.31X10−03

rs11628293 1.12 (1.05–1.20) 6.28X10−04 1.37X10−03

rs113020754 0.75 (0.64–0.88) 6.50X10−04 1.54X10−03

rs80085210 0.74 (0.62–0.88) 9.30X10−04 2.30X10−03

rs113300322 0.77 (0.66–0.90) 9.49X10−04 2.30X10−03

rs74933543 1.11 (1.04–1.19) 1.59X10−03 2.85X10−03

§
statistically significant after Bonferroni’s correction
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