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Lung tissue is abundant with immune cells that form a powerful first defense against exotic particles and microbes. The malignant
phenotype of lung adenocarcinoma (LUAD) is defined not only by intrinsic tumor cells but also by tumor-infiltrating immune cells
(TIICs) recruited to the immune microenvironment. Understanding more about the immune microenvironment of LUAD could
function in sorting out patients more likely with high risk and benefit from immunotherapy. Twenty-two types of TIICs were
estimated based on large public LUAD cohorts from the TCGA and GEO datasets using the CIBERSORT algorithm. Then
principal component analysis (PCA), meta-analysis, and single-sample gene set enrichment analysis (ssGSEA) were used to
measure and evaluate the specific immune responses and relative mechanisms. Moreover, an immunoscore model based on the
percent of immune cells was constructed via the univariate and multivariate Cox regression models, which provided an in-depth
overview of the LUAD immune microenvironment and shed light on the immune regulatory mechanism. The differential
expression genes (DEGs) were acquired based on the immunoscore model, and prognostic immune-related genes were further
identified. GSEA and the protein–protein interaction network (PPI) further revealed that these genes were mostly enriched in
many immune-related biological processes. It is hoped that this immune landscape could provide a more accurate
understanding for LUAD development and tumor immune therapy.

1. Introduction

Lung adenocarcinoma (LUAD), a dominating subtype of
non-small-cell lung cancer, is acknowledged and regarded
as one of the most leading cause of cancer-related mortality
worldwide, with a five-year survival rate of only 22.1% [1].
The primary reason accounting for this disappointing prog-
nosis is that the majority of LUAD patients are diagnosed
at advanced stage III or IV and the uneven efficiency of
chemotherapy selection [2]. The admitted first-line treat-
ment for NSCLC without driver mutations is cytotoxic
chemotherapy, immune checkpoint inhibitors, or a combina-
tion of both modalities.

The lung surrounding contacting with with the outer
world is abundant with immune cells that construct a power-
ful defense against noxious particles and microbes. Various
immune cells, IFN response, immune checkpoints, HLA,

cytokine, inflammation factor, and adoptive cell transplanta-
tion have been proven to make a great contribution in the
progression of lung cancer. Immunotherapy, such as pro-
grammed cell death protein 1 (PD-1)/programmed death
ligand 1 (PD-L1) checkpoint inhibitors and CTLA4, concen-
trates on revitalizing immunologic cells to release molecular
components to defend against cancer cell in the tumor
microenvironment. Two anti-PD-1 agents, pembrolizumab
and nivolumab, and two anti-PD-L1 agents, atezolizumab
and durvalumab, have been authorized by FDA for the treat-
ment of lung tumor. It has been studied that pembrolizumab
and nivolumab exhibited a surprising antitumor activity in
advanced NSCLC with better overall survival (OS) and
progression-free survival (PFS) than traditional second-line
chemotherapy [3, 4]. Tumor PD-L1 expression is the only
identified clinical biomarker to screen out patients most
likely to respond to immunotherapy. Patients with high PD
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− L1 expression ½TPS� ≥ 50% (tumor proportion score) and
no EGFR or ALK genomic mutant are suitable for anti-PD-
L1 agents. Disappointedly, the response rates for acceptable
patients to PD-L1 have been variable. Only a proportion of
high PD-L1 LUAD patients effectively respond to immuno-
therapy and gained a satisfactory clinical benefit [5], whereas
some metastatic NSCLC patients given pembrolizumab were
shown to have obvious longer PFS and OS regardless of PD-
L1 expression [6]. More seriously, an increase of immuno-
therapy does take a leap of the probability of side effects with-
out survival benefit in many cases. There are many reasons
contributing to this phenomenon; anti-PD-L1 agents’ thera-
peutic effects are limited by many biological characters, such
as intratumoral heterogeneity and temporal change expres-
sion. At present, the clinical used flow cytometry and immu-
nohistochemistry could not precisely meter the expression
level of PD-L1, with low accuracy and credibility. In addition,
some researches provided that there existed some intrinsic
resistant mechanisms in the tumor immune environment
for immunotherapy, such as improving the expression of
immunosuppressive cells and checkpoint molecules such as
tumor-associated macrophages (TAMs), T follicular helper
(Tfh) and regulatory T cells (Tregs), and absence of antigenic
proteins and antigenic presentation [7, 8]. The disorder of
immune cells and molecules then generate the insensitivity
of T cells, reprogram the phenotype of macrophage, alternate
the traditional immune response signaling pathways, and
engender T cell exclusion, which shut the door for the pow-
erful immune therapy.

The ultimate aim is to identify distinguished LUAD
patients that would benefit from immunotherapy, ensure
optimal clinical response, minimize immune related adverse
events, and decrease treatment costs. Therefore, it is war-
ranted to propose other predictive immune therapy markers,
not merely PD-L1, for the effectiveness of LUAD immuno-
therapy. Many ongoing clinical trials have been investigated
focusing on the identification of predictive and prognostic
biomarkers for immunotherapy. For example, peripheral
blood inflammatory parameters have been shown to be cor-
related with poor prognosis and lower response rate to
immune therapy in NSCLC [9, 10]; high tumor mutational
burden level was associated with greater expression of neoan-
tigens, which fosters anticancer immune response [10]; high
LDH seems to negatively correlate with cytotoxic T lympho-
cyte activation and impairs aerobic glycolysis, which partici-
pated in the prediction of immune therapy [11]. However,
the efficiency of these single indicators is still low and could
not convince the public. They ignored the essence property
of tumor immune microenvironment but concentrated on
the index only reflecting - one side face of immunological
indicators, impossibly whole. Thus, it is necessary to lucu-
brate the complexity of the LUAD microenvironment and
identify subclasses of the tumor immune microenvironment
existing in the LUAD tissues, which is beneficial for predict-
ing and administering corresponding immunotherapeutics.

A comprehensive analysis of the tumor immune micro-
environment in LUAD is imperatively required. In this study,
we systematically described the constitutive pattern of the
immune cell proportions and how it influenced progression

of tumor development. Moreover, we constructed an immu-
noscore signature model to predict 1-, 3-, and 5-year overall
survival for patients, with the hope to select patients for adju-
vant immunotherapy and guide the development of new
treatment options.

2. Materials and Methods

2.1. Data Acquisition. This study utilized data from a public
database. We retrospectively selected the LUAD gene expres-
sion and its clinicopathological data from the TCGA (https://
cancergenome.nih.gov/) and GEO datasets (https://www
.ncbi.nlm.nih.gov/geo/). We searched the key words “lung
cancer” and “Homo sapiens”. All matrices with LUAD gene
expression data (containing at least 20 samples) were consid-
ered eligible, with no specific exclusion criteria. All candidate
series were assessed by two independent reviewers. A total of
371 normal and 990 LUAD cases were eligible for subsequent
research. Raw microarray data Affymetrix were downloaded
and normalized using the limma package. The platform pro-
files of the Affymetrix matrix were listed in table S1. The
relevant clinical data from TCGA were retrieved and
organized manually. The concrete working algorithm was
demonstrated in Figure 1.

2.2. Inference of Infiltrating Immune Cells. Normalized gene
expression data were used to calculate the proportions of 22
types of infiltrating immune cells via the CIBERSORT
algorithm. CIBERSORT is a gene expression- based
deconvolution algorithm, which infers cell type propor-
tions in data from bulk tumor samples of mixed cell
types using support vector regression [12]. CIBERSORT
derives P values for the deconvolution for each sample
using the Monte Carlo sampling, providing the confi-
dence of the outcomes. At a threshold of P ≤ 0:050, the
results of the inferred fractions of immune cell popula-
tions produced were considered precise and accurate
[13]. Then, patients with CIBERSORT P ≤ 0:050 were
considered eligible for the following analysis.

2.3. Systematic Meta-Analysis. Meta-analysis was referred as
the standard method, offering an average impact estimate
of the heterogeneity of effects across a series of results.
In this study, we take advantage of the meta-analysis to
layout the expression of particular immune cell infiltrate.
Continuous outcomes were estimated as a standard mean
difference (SMD) with a 95% confidence interval (CI). Set-
ting P < 0:05 as the cut-off, we deeply explored the com-
position of TIICs in the LUAD to implement more
convincing conclusions.

2.4. Evaluation of Tumor Immune Reaction Score. We
obtained a series of genes in the immune-relative pathways
from KEGG and published articles [13], then applied the
single-sample gene set enrichment analysis (ssGSEA) to
quantify the score by the GSVA and GSEABase packages
[14]. The definition of each immune term was listed in the
table S2. The correlation of the composition of the TIICs
and the immune reaction were calculated by the Pearson
correlation and showed by heat map.
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2.5. Independence of the Prognostic Immunoscore for LUAD
Survival Prediction. Only patients with CIBERSORT P ≤
0:050 were selected for further survival analyses. Survival
package was used to perform univariate Cox proportional
hazard regression analysis to filter out prognostic immune
cell, and then, multivariate Cox regression analysis was used
to construct a powerful predictive immunoscore model. The
optimal cut-off value was evaluated by the survminer pack-
age. With the median score established as the cut-off line,
these LUAD patients were divided into the high- and low-
immunoscore groups. The results of Cox regression analysis
were showed by forest plot. A nomogram was generated via
the survival, rms, and ggplot2 packages.

2.6. Random Grouping Method. The LUAD patients were
randomly divided into the training and validation groups in
a ratio of 6 : 4 using the stratified randomization method,
which generated random values from a normal distribution
with specified mean (0) and standard deviation (1) values
and ordered them from high to low. These training and val-
idation groups were both used to validate the precision of
the immune model.

2.7. GSEA and PPI Analysis. We used the GSEA program to
derive the enrichment scores of each immune-related term
by calculated immunoscore [15]. Normalized gene expres-
sion data arranged by immunoscore were analyzed via the
limma package to identify the immune DEGs, with P ≤ 0:05
and ½logFC� ≥ 1:5 as the cut-off criterion. The connectivity
degree of each node of the network was calculated by the
STRING database and reconstructed via Cytoscape software.

2.8. Statistical Analysis. Continuous variables were exhibited
for means, medians, range, and standard deviation (SD) and
compared using an independent t-test or Wilcoxon test; cat-
egorical variables were compared between two groups by
means of the Chi-squared test. Spearman’ correlation coeffi-
cient was used for variable correlation. The associations of
immune cell infiltrates and corresponding overall survival
(OS) were analyzed by log-rank survival test, and the results
were shown in the forest plot. To identify prognostic immune
cells, the Cox proportional hazard regression model was
employed. All statistical tests were two sided and P < 0:050
was considered statistically significant. Statistical analyses
were conducted using R software and Stats.
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Figure 1: Study flowchart detailing the flow of sample collection and analysis.
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3. Results

3.1. The Immune Landscape of the Microenvironment in
LUAD. After applying data filter criteria, 564 annotated lung
adenocarcinoma samples with immune cell fraction were
available for further analyses. We systematically described
the immune microenvironment pattern of LUAD tissues
from the TCGA cohort. As shown in Figures 2(a) and 2(b),
the proportions of TIIC displayed distinct group bias cluster-
ing and expression pattern between normal and cancer tis-
sues. The proportions of B cell memory, plasma, T cell CD4
memory activated, T cell follicular helper, T cell regulatory,
and macrophage M1 were significantly improved, whereas
the proportions of T cell CD4 memory resting, NK cell rest-
ing, monocytes, macrophage M2, and mast cell resting were
downregulated (Figure 2(c)).

To confirm the accuracy of the results of this study, the
researchers inferred its accuracy in other independent LUAD
datasets both containing rental tumor and adjacent normal
specimens. Figure S1 summarized the compromise of TIIC
subpopulations of each normal (Figure S1A) and LUAD
tissues (Figure S1B) and CIBERSORT P value (Figure S1C).
Although these LUAD cohorts were obtained from different
platforms (Table S1) and variable signature matrix
influences the accuracy of inferred TIIC constitutes, they
did not show evident cohort bias both in normal and
cancer tissues. We summarized each selected matrix and
then eliminate the interaction between the components of
the original data by PCA analysis (Figures 2(d) and 2(e),
Figure S1). Then, precisely offering an average impact
estimate of the heterogeneity of effects was performed to
validate the proportions of each TIIC. Obviously, B cell
memory (95% CI, 0.92-1.29; P < 0:01, I2 = 97%), plasma
(95% CI, 3.58-4.67; P < 0:01, I2 = 91%), T cell CD4 memory
activated (95% CI, 0.68-1.17; P < 0:01, I2 = 91%), T cell
follicular helpers (95% CI, 1.42-2.06; P < 0:01, I2 = 96%),
Treg (95% CI, 0.27-0.44; P < 0:01, I2 = 93%), and
macrophage M1 (95% CI, 3.47-4.19; P < 0:01, I2 = 76%)
exhibited a decreasing tendency, whereas T cell CD4
memory resting (95% CI, -2.75–-1.49; P < 0:01, I2 = 92%),
NK cell resting (95% CI, -1.16–-0.57; P < 0:01, I2 = 94%),
monocytes (95% CI, -3.05–-2.58; P < 0:01, I2 = 98%),
macrophage M2 (95% CI, -3.09–-1.75; P < 0:01, I2 = 92%),
Mast cell resting (95% CI, -4.11–-3.71; P < 0:01, I2 = 100%),
and eosinophils (95% CI, -0.21–-0.06; P < 0:01, I2 = 94%)
exhibited an increasing tendency (Figure 3). Together, we
provided an in-depth overview of the LUAD TIIC
subpopulation, which was tightly bounded with LUAD
development and immune therapy.

3.2. TIIC Subpopulation Closely Correlated with Immune
Signatures in LUAD. To explore the correlation between var-
ious tumor immunity cell activities, we found that different
TIIC subpopulations were weakly to moderately correlated,
specially for T cell CD4 memory activated and T cell CD8
(Figure 4(a)). Next, we obtained a set of genes of the relative
immune system from KEGG and published articles, and then
used ssGSEA to quantify important immune signatures,

including HLA expression, T cell cosimulation,
inflammation-promoting mechanism, PD-L1 reaction, type
II IFN response, type I IFN response, check point reaction,
T cell coinhibition, parainflammation, and CCR. As shown
in Figure 4(b), plasma, macrophage M0, and macrophage M2
were negatively correlated with immune signatures, whether
macrophage M1 and T cell CD8 in mice. Moreover, we deeply
explored the concrete association between TIIC checkpoint
response (Figure 4(c)), PD-L1 reaction (Figure 4(d)), and
inflammation-promoting mechanism(Figure 4(e)).

3.3. Establishment of Immunoscore for LUAD Patients.
Considering the important role of the composition of the
TIICs in the prognosis, we further explored their clinical
significance. The unadjusted HRs and 95% confidence
intervals for the median proportion of TIIC subsets were
depicted in Figure 5(a). Macrophage M1 and dendritic cell
resting were significantly associated with LUAD survival.
Then, to identify a more predictive model with the best
explanatory and informative efficacy, 4 subgroup immune
cells were further selected to build an immunoscore model.
We yielded the immune score for each tumor sample
based on its immune proportion profiles: Formula = ðthe
percentage of NK cell activated × 0:066Þ + ðthe percentage of
macrophageM1 × 0:035Þ − ðthe percentage of dendritic cell
resting × 0:028Þ + ðthe percentage of dendritic cells activated
× 0:088Þ. As shown in Figure 5(b), patients were divided
into a high-immune and a low-immune group based on
the median immunoscore. The overall survival of patients
with a high-immune score was worse than that of those
with a low-risk score (P = 0:814 − e04, Figure 5(c)). This
immunoscore also had strong predictive power for T and
M stages (Figure 5(d)).

To further investigate the prognostic value of the
immune signature model, univariable and multivariable
Cox regression analyses were performed considering
immune score, sex, T stage, N stage, M stage, and pathologi-
cal stage. The results of univariable and multivariable analy-
ses of the above clinicopathological variables were presented
in Figures 5(e) and 5(f). In conclusion, the immunoscore was
a significantly independent prognostic factor for LUAD
patients.

3.4. Variation in Prognostic Effect of Immunoscore in Intra-
and Extracohort. To confirm that the proposed immunoscore
model has a powerful prognostic value in different popula-
tions, the formula was applied to the validation cohort and
also to the other cohort. We randomly divided total patients
in the primary and validation cohort. Consistent with the
findings in the total TCGA cohort, patients in the high-
immunoscore group had a significantly lower overall survival
rate than those in the low-immunoscore group in both the
validation cohort (HR = 2:57, 95% CI: 1.537-4.301) and the
training cohort (HR = 1:419, 95% CI: 1.152-1.844)
(Table 1). In line with these findings, the immunoscore
model was also validated to be independently associated with
survival in extracohort GSE101929 and GSE6857 (Figure S2,
only this two cohorts possessed clinical information in the
above meta-analysis data).
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Figure 2: Landscape of microenvironment TIIC composition in LUAD. (a) The composition of TIICs of normal and RCC tissues. (b) The
proportions of immune cells from normal and LUAD displayed distinct group bias clustering and individual differences in the TCGA
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Figure 3: Continued.
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Figure 3: Continued.
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3.5. Prognostic Nomograms for Prediction of LUAD Patients’
Overall Survival. To develop a practical method for clinicians
to predict the LUAD survival probability, we constructed a
prognostic nomogram that integrated the immunoscore,
age, sex, T stage, N stage, M stage, and pathological stage.
These variables from the Cox proportional analysis were all
considered. As shown in Figure 6, the immunoscore contrib-
uted the most risk points (ranged 0 to 10), whereas the other
clinical factors contributed much less (ranged 0 to 20). In
general, the immunoscore was an independent risk predictor
for the overall survival for LUAD patients.

3.6. Functional Analysis of Immune-Relative Genes.We com-
pared the gene expression profiles between the high and low
immunoscores and identified the KEGG pathways that were
enriched in the cancerous immune activity by GSEA. It sug-
gested that the high-immunoscore group was significantly
enriched in B cell receptor signaling pathway, autoimmune
disease, primary immunodeficiency, and T cell receptor sig-
naling pathway (Figure S3). These results confirmed the
elevated immune activity in the progression of LUAD.

To investigate the potentially altered molecular mecha-
nisms, immune-relative genes were selected by comparing
the high- and low-immunoscore groups. Totally, 24 genes
were upregulated and 24 genes downregulated. The relation-
ship and function of immune-relative genes were revealed
using the PPI network, and there exist three significant
immune relative modules (Figure 7). In the most significant
one (left), 95 edges involving 30 nodes were formed in the
network (Table S3). ALB, APDC3, LPA, APDC3, and CRP
were hub genes and remarkable for having many
connections with others.

4. Discussion

In many studies, the important impact of immune cells in
determining the progression of the LUAD pathogenesis has
been proven. However, owing to technical limitations, rela-
tive studies have only heavily relied on limited repertoire of
immune phenotypic markers. The defects of single-agent
immunotherapy are restricted to a small number of patients,
with a response rate of 11-21% [6]. Immunotherapy concen-
trates on the activation of immunologic molecular compo-
nents to defend against the cancer cell in the tumor
microenvironment. Thus, it is important to deeply explore
the influence of the tumor microenvironment on LUAD

immunotherapy, which is the key to overcoming de novo
resistance. Compared with traditional single-factor predic-
tors, a comprehensive systematic assessment of the immune
system is urgently needed to better understand the develop-
ment of LUAD.

In our study, LUAD gene expression data from the
TCGA database was analyzed based on CIBERSORT
method, we found that the proportions of TIICs varied
between the normal and cancer tissues. CD4 memory resting,
macrophage M0, and macrophages M2 ranked the top three
proportions of TIICs in LUAD. CD4 memory resting T cells
can differentiate into a variety of helper T cells and regulatory
T cells, which play an important role in adaptive immune
response, participating in humoral immunity and regulation
of cellular immunity [16]. Meanwhile, tumor-associated
macrophages (TAM) have been proved to be the most
important immune cells in the tumor stroma and played an
important role in the occurrence and development of malig-
nant tumors, accounting for more than 50% of the total num-
ber of immune cells in the tumor stroma [17, 18].

Further research showed that B cell memory, plasma
cells, T cell CD4 memory activated, T cell follicular helper,
Tregs, and macrophage M1 were significantly increased in
LUAD compared with the adjacent normal tissues. In con-
trast, T cell CD4 memory resting, NK cell resting, monocyte,
macrophage M2, mast cell resting, eosinophils, and neutro-
phils were decreased in LUAD compared with normal tis-
sues. Then, the proportions of TIIC were validated in GEO
the database, and the trend was consistent with our previous
results. The varying degree of infiltration of some immune
cells between the tumor and adjacent normal tissues sug-
gested that these cells played an important role in the devel-
opment of LUAD. Macrophages are the main immune-
infiltrating cells in tumors, the key cell types that link inflam-
mation and cancer [19]. The major states of macrophages,
macrophage M1 and macrophage M2, differently infiltrated
between the tumor and adjacent normal tissue. Macrophages
have a series of continuous functional states, and M1-type
and M2-type macrophages are the two extremes of this con-
tinuous state [20]. Macrophage M1 activates the production
cytokine, recruited the proimmunostimulating leukocytes
TME, which ultimately leads to the phagocytosis of tumor
cells [21]. However, macrophage M2 was reported to have
an opposite function in tumor; it promotes the development
of tumor via the breakdown of basement membrane, recruit-
ment of leukocytes recruitment, angiogenesis, and immune
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Figure 3: Meta-analysis verified each discrepant TIIC composition in LUAD.
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Figure 4: Continued.
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suppression [22, 23]. Interestingly, previous studies showed
that the increased level of macrophage M1 level was associ-
ated with better prognosis of tumor [24, 25], while the
increase of macrophage M2 indicates that the prognosis of
tumor patients is poor [26]. Studies have demonstrated that
cytotoxic activity in the environment of the tumor would
be increased through reversion of macrophages from M2 to
M1 phenotypes [27]. Thus, scientists proposed that repro-
gramming the macrophage from M2 to M1 phenotypes in
different ways increases the antitumor activity of macro-
phages and provides new ideas for the treatment of tumors.
Some studies have been carried out. For example, in a tail
metastasis model established by breast cancer, the activation
of NF-κB in macrophages lead to a reversion from macro-
phage M2 to macrophages M1 and ended up with an
increased apoptosis of tumor cells and a reduction of lung
metastases [28]. In addition, more studies reported that
plasma cells play a positive role in antitumor immunity, indi-
cating a positive prognostic effect in human cancers [29]. The
number of follicular T helper cells increased significantly in
MLD patients, and the proportion of follicular T helper cells
decreased in effective treatment patients, which could be used
as an indicator of efficacy [30]. Among the 13 immune cells,
other than those discussed above, some are poorly investi-
gated in LUAD. As for their biological function in LAUD,
we believe that further investigations are urgently needed.

The interaction of programmed cell death ligand-1 (PD-
L1) interaction with programmed cell death protein-1 (PD-
1) provides an important target for blockade-based immuno-
therapy in LUAD [3, 31, 32]. Thus, based on our researches,
we would like to explore the association between TIICs and
PD-L1 reaction was further explored. The results showed

that the expression of PD-L1 was positively associated with
macrophage M1, T cell CD8, and T cell CD4 memory acti-
vated. The association between macrophages and anti-PD-1
therapy has been reported before. Previous studies of anti-
PD-1 therapy in osteosarcoma (OS) have shown that anti-
PD-1 therapy can cause phenotypic metastasis of macro-
phages from M2 to M1, resulting in regression of OS pulmo-
nary metastasis. Macrophage depletion significantly reduced
the efficacy of anti-PD1, confirming their role in anti-PD-1
against OS pulmonary metastasis [33]. Another study
showed that the expression of PD-L1 negatively correlates
with phagocytic ability against tumor cells, and the blockade
of PD-1-PD-L1 increased the phagocytosis ability of macro-
phage and reduced the progression of tumor, as well as pro-
longed survival time of mice in mouse models of cancer,
indicating that anti-PD-1 therapy may function through a
direct effect on macrophages [34]. In conclusion, the above
results suggested that macrophage cells played a key role in
the anti-PD-1 therapy of LUAD and can be a potential target
of immunity therapy of LUAD in the future.

The result of univariate analysis showed that not overall
immune cell infiltration but a certain TIIC subpopulation
was related to the prognosis of LUAD. In this way, a Cox
regression model was constructed based on the estimated
fractions of signature immune cells. In recent years, several
models based on immunoscore have been published to quan-
tify the immune contexture and provide a statistically robust
parameter for prognosis in patients with various types of
solid tumor. Our study showed that patients with high
immune scores have shorter survival time than patients with
low immune scores, and this result was validated in a testing
dataset and two independent databases from the GEO
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Figure 4: TIIC subpopulation was closely correlated with immune signatures. (a) The Spearman correlation matrix of all 22 immune cell
proportions in the TCGA cohort. (b) The Spearman correlation between the proportions of infiltrating immune cells and specific immune
signatures. (c) Correlation matrix of all 22 immune cell proportions and checkpoint response; (d). Correlation matrix of all 22 immune
cell proportions and PD-L1 activity. (e) Correlation matrix of all 22 immune cell proportions and inflammation-promoting mechanisms.
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Figure 5: Continued.
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database. Further studies showed that the immune score was
significantly related to the T stage and M stage. TNM staging
system was limited in clinical practice, due to the ignorance
of age, gender, or clinical stage of patients [35]. We believe
our immunoscore signature is a great complement to TNM
staging system. Thus, a nomogram based on age, gender, T
stage, N stage, M stage, tumor stage, and immunoscore signa-
ture was constructed, with which we can accurately predict
the prognosis of LUAD patients.

The potential mechanism for the differences in immune
score was explored through GSEA. The results showed that

a series of pathways associated with immune responses were
significantly enriched in patients with high immune score.
Moreover, DEGs of the high- and low-immune score group
were identified and sent to PPI network. The results show
that ALB, APOC3, LPA, AGT, and SSX1 were the hub gene
of the module of immune-related cells. Totally, the above
results suggested that immune responses play a critical role
in the development, diagnosis, and treatment of LUAD and
strong attention should be paid to it.

Despite the remarkable results of our research, we
should also recognize the limitations. Firstly, our model
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Risk score

Multivariable Cox regression
P value Hazard ratio
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Figure 5: Construction of the immunoscore model. (a). Forest plots showed the association between each immune cell subsets and overall
survival in the total TCGA dataset. Unadjusted hazard ratios are shown with 95 percent confidence intervals. (b). The distributions of the
immune score and survival status for each LUAD patients. (c). Kaplan-Meier curves for the high- and low-immune score subgroup. (d)
Association between the TIICs and clinicopathological features. Infiltrating immune cell function in distinguishing T and M stages. (e)
Forest plot summary of the univariable analyses of overall survival of the immune score model. (f). Forest plot summary of the
multivariable analyses of overall survival of the immune score model.

Table 1: Validation of the immunoscore results in the training and validation cohort in the TCGA database.

Variable
Training cohort Validation cohort

P value Hazard ratio (95% CI) P value Hazard ratio(95% CI)

M 0.897 0.810

M0 0.698 0.753 (0.180-3.149) 0.541 0.642 (0.155-2.663)

M1 0.647 0.723 (0.180-2.898) 0.622 0.699 (0.168-2.901)

N 0.621 0.759

N0 0.505 0.617 (0.149-2.554) 0.766 0.710 (0.074-6.828)

N1-3 0.329 0.581 (0.196-1.727) 0.457 0.693 (0.264-1.822)

T 0.241 0.813

T1 0.152 0.285 (0.051-1.586) 0.314 7.388 (0.203-14.299)

T2 0.459 0.590 (0.146-2.385) 0.806 0.842 (0.214-3.317)

T3 0.606 0.842 (0.438-1.620) 0.990 0.922 (0.266-3.700)

T4 0.800 1.724 (0.279-5.236) 0.796 1.208 (0.288-5.067)

Stage 0.144 0.785

Stage1 0.133 0.408 (0.126-1.315) 0.326 0.520 (0.141-1.921)

Stage2 0.023 1.263 (1.016-1.832) 0.389 0.555 (0.145-2.119)

Stage3-4 0.418 0.802 (0.470-1.368) 0.711 0.877 (0.438-1.757)

Gender 0.648 0.782 0.682 (0.216-1.243)

Man 0.369 0.781 (0.455-1.340) 0.619 0.856 (0.463-1.582)

Woman 0.364 0.787 (0.469-10320) 0.546 1.207 (0.655-2.223)

Immune score 0.029 2.570(1.537-4.301) 0.001 1.419(1.152-1.844)

0.062 1.016(0.969-1.021) 0.325 1.027(0.988-1.036)
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was built based on the TCGA database and was validated
in the GEO dataset, and multicenter clinical date should
be collected to validate our model. Secondly, the level of
tumor-associated immune cells was estimated using

CIBERSORT method, and future studies should be needed
to confirm the findings.

In summary, we provided an in-depth review of TIIC
subsets in LUAD, which were closely related to the
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Figure 6: The nomogram to predict the 1-, 3-, and 5-year overall survival rates of LUAD patients.
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development of LUAD and immunotherapy. The immune
score signature was constructed based on four survival-
related immune markers. In addition, a nomogram was con-
structed by combining the characteristic immune score sig-
nature and meaningful clinical factor, providing an accurate
model for predicting the prognosis of patients with LUAD,
However, experimental researches on the mechanism
between immune cells and LUAD are still needed in the
future.

Data Availability

The data are available in the TCGA and GEO datasets.

Conflicts of Interest

The authors have declared that no conflict of interest exists.

Authors’ Contributions

Weiyang Cai conceived and designed the experiments.
Liping Tao performed the data collection. Weiyang Cai and
Yanyan Li analyzed the data and wrote the manuscript.
Yanyan Li and Liping Tao contributed equally to this work.

Acknowledgments

This work was supported by the Scientific Research Founda-
tion of the First Affiliated Hospital of Wenzhou Medical
University (Grant No. FHY2019002).

Supplementary Materials

Supplementary Figure 1: summary of GEO inferred GEO
TIIC composition. (A) Summary of GEO chips concrete
immune cell subset proportions of normal lung tissues. (B)
Summary of GEO chips concrete immune cell subset propor-
tions of LUAD tissues. (C) The proportion of samples with
different P value threshold between studies. Supplementary
Figure 2: validation of the immunoscore results in other
cohorts from the GEO database. Kaplan-Meier survival
curves showed that this immunoscore was associated with
overall survival in GSE101929 and GSE68571. Supplemen-
tary Figure 3: GSEA differentiates the molecular mechanism
between the high- and low-immune score group. Table S1:
the detailed information of GEO chips. Table S2: the specific
markers of immune signatures for ssGSEA. Table S3: the
specific construction of PPI interaction. (Supplementary
Materials)

References

[1] H. C. Kim, C. Y. Jung, D. G. Cho et al., “Clinical characteristics
and prognostic factors of lung cancer in Korea: a pilot study of
data from the Korean Nationwide Lung Cancer Registry,”
Tuberculosis and Respiratory Diseases, vol. 82, no. 2, pp. 118–
125, 2019.

[2] H. S. Park, K. B. C. Society, B. J. Chae et al., “Effect of Axillary
Lymph Node Dissection after Sentinel Lymph Node Biopsy on
Overall Survival in Patients with T1 or T2 Node-positive

Breast Cancer: Report from the Korean Breast Cancer Society,”
Annals of Surgical Oncology, vol. 21, no. 4, pp. 1231–1236,
2014.

[3] H. Borghaei, L. Paz-Ares, L. Horn et al., “Nivolumab versus
docetaxel in advanced nonsquamous non-small-cell lung can-
cer,” New England Journal of Medicine, vol. 373, no. 17,
pp. 1627–1639, 2015.

[4] R. S. Herbst, P. Baas, D. W. Kim et al., “Pembrolizumab versus
docetaxel for previously treated, PD-L1-positive, advanced
non-small-cell lung cancer (KEYNOTE-010): a randomised
controlled trial,” Lancet, vol. 387, no. 10027, pp. 1540–1550,
2016.

[5] N. Hanna, F. A. Shepherd, F. V. Fossella et al., “Randomized
phase III trial of pemetrexed versus docetaxel in patients with
non-small-cell lung cancer previously treated with chemother-
apy,” Journal of Clinical Oncology, vol. 22, no. 9, pp. 1589–
1597, 2004.

[6] E. S. Nakasone, H. A. Askautrud, T. Kees et al., “Imaging
tumor-stroma interactions during chemotherapy reveals con-
tributions of the microenvironment to resistance,” Cancer Cell,
vol. 21, no. 4, pp. 488–503, 2012.

[7] P. Sharma, S. Hu-Lieskovan, J. A. Wargo, and A. Ribas, “Pri-
mary, adaptive, and acquired resistance to cancer immuno-
therapy,” Cell, vol. 168, no. 4, pp. 707–723, 2017.

[8] J. M. Sun, “Response to Costantini et al. "comments on
increased response rates to salvage chemotherapy adminis-
tered after PD-1/PD-L1 inhibitors in patients with non-small
cell lung cancer",” Journal of Thoracic Oncology, vol. 13,
no. 4, pp. e56–e57, 2018.

[9] A. J. Templeton, M. G. McNamara, B. Šeruga et al., “Prognos-
tic role of neutrophil-to-lymphocyte ratio in solid tumors: a
systematic review and meta-analysis,,” JNCI: Journal of the
National Cancer Institute, vol. 106, no. 6, 2014.

[10] M. T. Agullo-Ortuno, O. Gomez-Martin, S. Ponce et al.,
“Blood predictive biomarkers for patients with non-small-cell
lung cancer associated with clinical response to nivolumab,”
Clinical Lung Cancer, vol. 21, no. 1, pp. 75–85, 2020.

[11] N. L. Syn, M. W. L. Teng, T. S. K. Mok, and R. A. Soo, “De-
novo and acquired resistance to immune checkpoint target-
ing,” The Lancet Oncology, vol. 18, no. 12, pp. e731–e741, 2017.

[12] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enumer-
ation of cell subsets from tissue expression profiles,” Nature
Methods, vol. 12, no. 5, pp. 453–457, 2015.

[13] M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, and N. Hacohen,
“Molecular and genetic properties of tumors associated with
local immune cytolytic activity,” Cell, vol. 160, no. 1-2,
pp. 48–61, 2015.

[14] M. Foroutan, D. D. Bhuva, R. Lyu, K. Horan, J. Cursons, and
M. J. Davis, “Single sample scoring of molecular phenotypes,”
BMC Bioinformatics, vol. 19, no. 1, p. 404, 2018.

[15] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[16] A. E. Oja, B. Piet, D. van der Zwan et al., “Functional heteroge-
neity of CD4(+) tumor-infiltrating lymphocytes with a resi-
dent memory phenotype in NSCLC,” Frontiers in
Immunology, vol. 9, p. 2654, 2018.

[17] C. Ngambenjawong, H. H. Gustafson, and S. H. Pun, “Progress
in tumor-associated macrophage (TAM)-targeted

14 BioMed Research International

http://downloads.hindawi.com/journals/bmri/2020/5858092.f1.pdf
http://downloads.hindawi.com/journals/bmri/2020/5858092.f1.pdf


therapeutics,” Advanced Drug Delivery Reviews, vol. 114,
pp. 206–221, 2017.

[18] M. Yang, D. McKay, J. W. Pollard, and C. E. Lewis, “Diverse
functions of macrophages in different tumor microenviron-
ments,” Cancer Research, vol. 78, no. 19, pp. 5492–5503, 2018.

[19] E. M. Conway, L. A. Pikor, S. H. Y. Kung et al., “Macrophages,
inflammation, and lung cancer,” American Journal of Respira-
tory and Critical Care Medicine, vol. 193, no. 2, pp. 116–130,
2016.

[20] R. Tamura, T. Tanaka, Y. Yamamoto, Y. Akasaki, and
H. Sasaki, “Dual role of macrophage in tumor immunity,”
Immunotherapy, vol. 10, no. 10, pp. 899–909, 2018.

[21] R. Evans and P. Alexander, “Cooperation of immune lym-
phoid cells with macrophages in tumour immunity,” Nature,
vol. 228, no. 5272, pp. 620–622, 1970.

[22] H. W. Wang and J. A. Joyce, “Alternative activation of tumor-
associated macrophages by IL-4: priming for protumoral func-
tions,” Cell Cycle, vol. 9, no. 24, pp. 4824–4835, 2010.

[23] D. F. Quail and J. A. Joyce, “Microenvironmental regulation of
tumor progression and metastasis,” Nature Medicine, vol. 19,
no. 11, pp. 1423–1437, 2013.

[24] J. Ma, L. Liu, G. Che, N. Yu, F. Dai, and Z. You, “The M1 form
of tumor-associated macrophages in non-small cell lung can-
cer is positively associated with survival time,” BMC Cancer,
vol. 10, no. 1, 2010.

[25] J. Mei, Z. Xiao, C. Guo et al., “Prognostic impact of tumor-
associated macrophage infiltration in non-small cell lung can-
cer: a systemic review and meta-analysis,” Oncotarget, vol. 7,
no. 23, pp. 34217–34228, 2016.

[26] Z. Y. Yuan, R. Z. Luo, R. J. Peng, S. S. Wang, and C. Xue, “High
infiltration of tumor-associated macrophages in triple-
negative breast cancer is associated with a higher risk of distant
metastasis,” OncoTargets and Therapy, vol. 7, pp. 1475–1480,
2014.

[27] A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini et al.,
“Macrophage plasticity, polarization, and function in health
and disease,” Journal of Cellular Physiology, vol. 233, no. 9,
pp. 6425–6440, 2018.

[28] L. Connelly, W. Barham, H. M. Onishko et al., “NF-kappaB
activation within macrophages leads to an anti-tumor pheno-
type in a mammary tumor lung metastasis model,” Breast
Cancer Research, vol. 13, no. 4, p. R83, 2011.

[29] M. C. A.Wouters and B. H. Nelson, “Prognostic significance of
tumor-infiltrating B cells and plasma cells in human cancer,”
Clinical Cancer Research, vol. 24, no. 24, pp. 6125–6135, 2018.

[30] D. M. Zhou, Y. X. Xu, L. Y. Zhang et al., “The role of follicular
T helper cells in patients with malignant lymphoid disease,”
Hematology, vol. 22, no. 7, pp. 412–418, 2017.

[31] X. Meng, Y. Liu, J. Zhang, F. Teng, L. Xing, and J. Yu, “PD-
1/PD-L1 checkpoint blockades in non-small cell lung cancer:
new development and challenges,” Cancer Letters, vol. 405,
pp. 29–37, 2017.

[32] J. Remon, N. Chaput, and D. Planchard, “Predictive bio-
markers for programmed death-1/programmed death ligand
immune checkpoint inhibitors in nonsmall cell lung cancer,”
Current Opinion in Oncology, vol. 28, no. 2, pp. 122–129, 2016.

[33] P. Dhupkar, N. Gordon, J. Stewart, and E. S. Kleinerman,
“Anti-PD-1 therapy redirects macrophages from an M2 to an
M1 phenotype inducing regression of OS lung metastases,”
Cancer Medicine, vol. 7, no. 6, pp. 2654–2664, 2018.

[34] S. R. Gordon, R. L. Maute, B. W. Dulken et al., “PD-1 expres-
sion by tumour-associated macrophages inhibits phagocytosis
and tumour immunity,” Nature, vol. 545, no. 7655, pp. 495–
499, 2017.

[35] Q. Song, J. Shang, Z. Yang et al., “Identification of an immune
signature predicting prognosis risk of patients in lung adeno-
carcinoma,” Journal of Translational Medicine, vol. 17, no. 1,
p. 70, 2019.

15BioMed Research International


	Profiles of Immune Infiltration and Prognostic Immunoscore in Lung Adenocarcinoma
	1. Introduction
	2. Materials and Methods
	2.1. Data Acquisition
	2.2. Inference of Infiltrating Immune Cells
	2.3. Systematic Meta-Analysis
	2.4. Evaluation of Tumor Immune Reaction Score
	2.5. Independence of the Prognostic Immunoscore for LUAD Survival Prediction
	2.6. Random Grouping Method
	2.7. GSEA and PPI Analysis
	2.8. Statistical Analysis

	3. Results
	3.1. The Immune Landscape of the Microenvironment in LUAD
	3.2. TIIC Subpopulation Closely Correlated with Immune Signatures in LUAD
	3.3. Establishment of Immunoscore for LUAD Patients
	3.4. Variation in Prognostic Effect of Immunoscore in Intra- and Extracohort
	3.5. Prognostic Nomograms for Prediction of LUAD Patients’ Overall Survival
	3.6. Functional Analysis of Immune-Relative Genes

	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

