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Abstract

Objectives: Embedded in the Collaborative Research Center “Fear, Anxiety, Anxiety

Disorders” (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral

markers of treatment (non-)response by applying machine learning methodology with

an external cross-validation protocol. We hypothesize that a priori prediction of treat-

ment (non-)response is possible in a second, independent sample based on multi-

modal markers.

Methods: One-session virtual reality exposure treatment (VRET) with patients with

spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data

were assessed at baseline, post-treatment and after 6 months. The primary and sec-

ondary outcomes defining treatment response are as follows: 30% reduction regard-

ing the individual score in the Spider Phobia Questionnaire and 50% reduction

regarding the individual distance in the behavioral avoidance test.

Results: N = 204 patients have been included (n = 100 in Würzburg, n = 104 in

Münster). Sample characteristics for both sites are comparable.

Discussion: This study will offer cross-validated theranostic markers for predicting

the individual success of exposure-based therapy. Findings will support clinical

decision-making on personalized therapy, bridge the gap between basic and clinical

research, and bring stratified therapy into reach. The study is registered at

ClinicalTrials.gov (ID: NCT03208400).
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1 | INTRODUCTION

Specific phobias are with a 12-month prevalence of 6.4% the most

prevalent anxiety disorder (Wittchen et al., 2011). Exposure-based

cognitive behavioral therapy (CBT) is a first-line treatment (Bandelow

et al., 2014) with medium to large effect sizes (Carpenter et al., 2018;

Hofmann, Asnaani, Vonk, Sawyer, & Fang, 2012). Still, response rates

indicate a clinically significant improvement only in about two-thirds

of patients (Loerinc et al., 2015). Recent studies demonstrate rela-

tively high rates of treatment dropout and relapse in anxiety disorders

(Craske & Mystkowski, 2006; Fernandez, Salem, Swift, & Ramtahal,

2015; Scholten et al., 2013; Taylor, Abramowitz, & McKay, 2012).

Thus, over one-third of patients may be left as nonresponders toward

a first-line standard treatment with severe consequences for patients

and increasing costs for societies. These figures underline the pressing

need for intensified research efforts to better understand the mecha-

nisms of exposure-based CBT and to identify markers predicting

treatment (non-)response that can be applied to single patient predic-

tions, thus allowing for a priori treatment decisions (Holmes, Craske, &

Graybiel, 2014). Recently, machine learning approaches found their

way into psychiatric research to enable the prediction of diagnosis,

course, or treatment outcome on a single-case level. So far, most stud-

ies in psychiatric research used group comparison approaches that are

perfect to identify, for example, a specific (neurobiological) mecha-

nism. Still, these group-based studies are not well suited to make any

prediction for the individual patient (Hahn, Nierenberg, & Whitfield-

Gabrieli, 2017). Therefore, the use of machine learning can give

insights into valuable predictors, which might then be investigated in

future mechanistic studies in detail (Lueken & Hahn, 2016).

1.1 | Neuroimaging-based predictors of treatment
outcome in anxiety disorders: Current state of
evidence

Beyond the proof of efficacy for the average patient, current research

on factors moderating the outcome of exposure-based CBT calls on

strengthening the perspective on personalizing treatments (Richter,

Pittig, Hollandt, & Lueken, 2017).

Several studies investigated the predictive power of clinical base-

line features (Spinhoven et al., 2016) and genetic markers (Lester &

Eley, 2013; Roberts et al., 2017). These studies are however limited by

their group-based approach that does not allow guiding clinicians to

select an adequate treatment for individual patients as a crucial

prerequisite for translating personalized treatment approaches to

clinical care.

Lueken et al. (2016) reviewed neurobiological markers related to

treatment (pharmaco- or psychotherapy) response in anxiety disorders

and identified the function of the anterior cingulate cortex (ACC) as

the most promising marker, while evidence for the serotonin trans-

porter genotype (5-HTTLPR) and cardiovascular flexibility was mixed.

A recent cross-diagnostic meta-analysis identified that greater activa-

tion in a cluster located in the right cuneus extending into the right

superior occipital gyrus and right middle occipital gyrus was predictive

of greater symptomatic improvement in anxiety disorders after psy-

chological treatment (Marwood, Wise, Perkins, & Cleare, 2018).

A review of neuroimaging studies across anxiety disorders sug-

gests that the amygdala, insula, hippocampus, and ACC constitute rel-

evant predictors of treatment response in anxiety disorders. In

addition, abnormalities in the hippocampus, amygdala, left middle

temporal gyrus, fusiform gyrus, inferior occipital gyrus, left transversal

temporal gyrus, inferior frontal gyrus, uncus, and areas associated with

emotion regulation (dorsolateral prefrontal cortex and ACC) predict

successful outcome of CBT (Santos, Carvalho, Van Ameringen,

Nardi, & Freire, 2019). Of note, a number of neuroimaging studies on

different forms of anxiety disorders was identified (Ball, Stein, Ram-

sawh, Campbell-Sills, & Paulus, 2014; Hahn et al., 2015; Månsson

et al., 2015; Sundermann et al., 2017) that used machine learning

methods to generate predictions on the single-case level and achieved

46–92% prediction accuracies. However, neuroimaging (mostly mag-

netic resonance tomography) was the data modality of choice and no

study so far externally validated predictors using a second, indepen-

dent dataset as adequate methodological standard as requested by

current initiatives for predictive modeling studies (Collins, Reitsma,

Altman, & Moons, 2015).

On a mechanistic level, corticolimbic circuitry activation in emo-

tion regulation paradigms and hippocampus volume appeared to be

predictive for CBT outcome in generalized anxiety disorder and panic

disorder (Reinecke, Thilo, Filippini, Croft, & Harmer, 2014). Regarding

social anxiety disorder, occipitotemporal brain activation during the

presentation of angry faces versus neutral faces was positively associ-

ated with response to CBT (Doehrmann et al., 2013). Larger amygdala

connectivity to a cluster encompassing the subgenual ACC, caudate

and putamen, and lower amygdala connectivity with a cluster includ-

ing the bilateral central sulcus and right temporal-occipital regions

predicted enhanced response to CBT in patients with a social anxiety

disorder (Whitfield-Gabrieli et al., 2016).

1.2 | The application of machine learning in
psychiatry and psychotherapy

Despite initial group-based results in neuroimaging, the application of

results to clinical practice is insufficient, as they do not translate into

meaningful information for the individual patient (Walter et al., 2018;

Woo, Chang, Lindquist, & Wager, 2017). Recently, the inference sta-

tistical approach, which is applied to find differences in efficacy

between groups or mechanisms of several interventions, has been

complemented by machine learning approaches. Machine learning

methods enable the use of a set of multimodal predictors such as

genetics, imaging, and clinical data, for (several) outcome variables

(behavior and clinical characteristics) avoiding the need of multiple

comparisons and making the detection of subtle variations, for exam-

ple, in the brain, possible (Bzdok & Meyer-Lindenberg, 2018; Orrù,

Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012; Woo et al.,

2017). Multivariate pattern recognition, embedded within a machine

learning framework, is a technology that has strongly influenced medi-

cal research (Darcy, Louie, & Roberts, 2016) and that bears potential
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also for the field of mental health research and patient care (Orrù

et al., 2012; Woo et al., 2017). By means of machine learning, an indi-

vidual patient prediction of treatment (non-)response is made possible

(Lueken & Hahn, 2016) and can inform about personalized treatment

selection, the need of augmentation with other techniques or the

treatment dose, to help in sparing ineffective treatments, associated

side effects on patient compliance, disease chronification or aggrava-

tion, and direct and indirect costs. Hence, individual patient prediction

is needed for a stratified treatment selection, which then needs to be

tested in comparative randomized controlled trials.

However, despite their high prevalence, anxiety disorders are

strongly underrepresented in predictive modeling (2.5% from all neu-

ropsychiatric conditions), and predictive modeling accounts are still

dominated by mere cross-sectional classification analyses

(case/control distinction). Longitudinal data on theranostic markers

(i.e., markers that predict treatment outcome; Woo et al., 2017) and

cross-site validations are largely missing.

1.3 | Study aims and hypotheses

In the last 25 years, the field of neuroimaging research on anxiety dis-

orders has significantly shifted from the mere characterization of

pathophysiology to the description of how psychotherapy can change

the brain (Messina, Sambin, Palmieri, & Viviani, 2013). Most recently,

personalized medicine approaches are accumulating to detect individ-

ual pre-treatment markers of clinical response. However, the current

state of evidence is limited by several gaps that are targeted by the

present clinical study. Spider phobia can be used as a model disorder

for pathological fear circuitry dysfunction showing high internal valid-

ity (rarely comorbidities; usually no psychopharmacological treatment)

that allows for the examination of basic (neural) mechanisms. The pre-

sent clinical study protocol aims to (i) identify biobehavioral markers

of treatment nonresponse for a first-line treatment (e.g., behavioral

exposure); (ii) overcome traditional univariate, correlational, or group-

based approaches by applying state-of-the-art machine learning meth-

odology that uses multivariate pattern recognition suitable for predic-

tions on the individual patient; (iii) combine multiple units of analysis

including (epi-)genetics, neural systems, and clinical readouts to

directly compare the predictive value of these data domains, combina-

tions thereof, and cost-efficient proxy-measures; and (iv) explicitly

include an external (e.g., out-of-sample) cross-validation protocol

based on our bicentric study design to evaluate the robustness and

generalizability of predictors identified. Our primary hypothesis is that

a priori prediction of treatment (non-)response in a second, indepen-

dent sample based on multimodal markers is possible with sufficient

prediction accuracy.

2 | METHODS

This clinical study is part of the Transregional Collaborative Research

Center (CRC-TRR58) “Fear, Anxiety, Anxiety Disorders” funded by the

German Research Foundation.

2.1 | Sample characteristics and recruitment
pathway

We included patients with specific phobia of the animal subtype

(spider phobia) assessed with the structured clinical interview for

DSM-IV (SCID-IV) (Wittchen, Wunderlich, Gruschwitz, & Zaudig,

1997), who were aged between 18 and 65 years, right-handed, fluent

in German language, had a Caucasian descent (back to maternal and

paternal grandparents; limited to Caucasian descent due to genetic

analyses/genotyping), and were willing to participate in a highly con-

trolled behavioral exposure delivered via virtual reality (VR). Exclusion

criteria comprised a lifetime diagnosis of other comorbid anxiety disor-

ders (panic disorder, agoraphobia, social phobia, and generalized anxi-

ety disorder), obsessive–compulsive disorder, posttraumatic stress

disorder, severe major depression, borderline personality disorder,

bipolar I disorder, psychotic disorders, substance dependence (except

nicotine), or acute suicidality. Comorbid mild to moderate depression

(unless currently treated) and other specific phobias of the animal sub-

type were allowed if spider phobia was the primary diagnosis. Patients

with current (psycho-)pharmacological treatment, current or past psy-

chotherapy, neurological diseases, pregnant women, and those fulfill-

ing MRI-related exclusion criteria were excluded. Demographic and

clinical characteristics of the sample at pre-treatment can be found in

Table 1.

Patients were recruited via local advertisements, flyers, posters,

social media, university recruitment systems, specialized outpatient

centers, and medical practices. We approximated the required sample

size via the binomial distribution. The primary hypothesis is to achieve

an accuracy rate of our prediction of responders/nonresponders using

the trained classifiers, which is significantly higher than the probability

of guessing. Based on the literature (e.g., Gloster et al., 2011; Loerinc

et al., 2015), a response rate of approx. 50% can be expected from

patients. Regarding the response prediction, an improvement of the

accuracy rate of 10%, that is, from 50% guessing probability to 60%

prediction accuracy would already represent a clinically relevant num-

ber. A sample size of N = 75 with B(75; 0.5) reaches significance at

45 versus 30 correctly predicted patients (p = 0.032), which corre-

sponds to an accuracy rate of 60%. Taking a dropout rate of 25% into

consideration, we included 100 patients per site. In total, 204 patients

have been recruited at both sites, 104 patients (=104% of recruitment

goal) in Münster (MS) and 100 patients (=100%) in Würzburg (WÜ).

The study protocol has been reviewed by the Ethics Committees of

the Medical Faculties at Würzburg University (proposal number

330/15) and Münster University (proposal number 216–212-b-S).

After explaining the study protocol to all participants, written

informed consent was obtained. The study has been registered at

ClinicalTrials.gov (ID: NCT03208400).

2.2 | Study design

The clinical study is a prospective longitudinal investigation employing

virtual reality exposure as a first-line treatment for specific phobia.

The intervention consisted of a massed one-session virtual reality
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exposure treatment (VRET). Because VRET is an effective treatment

option compared with a waiting list (Garcia-Palacios, Hoffman, Carlin,

Furness, & Botella, 2002) and comparable with evidence-based CBT

(Opriş et al., 2012), no control condition was included. Instead, treat-

ment responders and nonresponders as indicated by our primary end-

point measures (see below) will be compared regarding pre-treatment

baseline characteristics. Furthermore, machine learning will be used to

generate predictions for the individual patient. In order to carry out a

sophisticated external cross-validation approach, the identical study

protocol is implemented in Würzburg and Münster. Patients from site

A will thus serve to establish a classifier using machine learning

algorithms. First, this classifier will be trained and internally validated

via a leave-one-out procedure. Afterwards, the classifier will be cross-

validated in the second, independent sample at site B for external vali-

dation, that is, generalizability. While at site A, the predictive pattern

will be generated after completing the treatment, at site B treatment

response will be predicted a priori in a double-blind manner

(e.g., statisticians will not be informed which patients are responders

or nonresponders). Contrasting the observed versus the predicted

response rates will serve as a test of the hypothesis.

The study protocol (see Figure 1 for details) started with the base-

line assessment collecting clinical/psychometric, behavioral, and (epi-)

genetic data; neuroimaging data were gathered in a separate MRI

visit. Next, the intervention (VRET) took place. After the VRET,

clinical/psychometric, behavioral, and (epi-)genetic data were assessed

again in a post-treatment (mean time between VRET and post-

assessment over both sites was 5.32 days with a standard deviation

of 6.07 days) and in a 6-month follow-up (FU) assessment. Total dura-

tion including follow-up is approx. 30 weeks, the time between the

first four visits was scheduled to be 1 week each. A subsample of

patients completed additional MRI visits (MS and WÜ) and/or magne-

toencephalographic (MEG) assessments (MS) that are part of two

other projects of the Transregional Collaborative Research Center

CRC-TRR58 that share an overarching recruitment pipeline with the

present study.

The MEG assessments were conducted before and after the

VRET. Each assessment consisted of a fear conditioning and generali-

zation paradigm (e.g., Onat & Büchel, 2015) with spider-related and

spider-unrelated unconditioned aversive audiovisual stimuli (US).

Gabor gratings with different tilt angles were either paired (CS+) or

remained unpaired (CS-) with the US. In two separate blocks (spider-

related vs spider-unrelated US), we obtained visually evoked magnetic

fields, pupil responses, and behavioral measures in response to CS+,

CS-, and so-called generalization stimuli, that is, stimuli ranging on a

perceptual continuum between CS+ and CS-.

2.3 | VRET

In preparation for the VRET, patients were given a detailed psycho-

educational manual (adapted from Herrmann et al., 2017) to read at

home outlining the function of fear, its components and their interplay

in general (vicious circle of fear), and more specific transferred to spi-

der phobia and how it should be treated. Its content was discussed

and explained before the VRET session started to clarify the rationale

of behavioral exposure and its mechanism of action, which is

suggested to induce new, inhibitory fear learning (Craske, Liao,

Brown, & Vervliet, 2012). Patients also had the opportunity to ask

questions. Before and after the VRET, patients completed a protocol

assessing their expectations and apprehensions and which of them

eventuated. The Igroup Presence Questionnaire (IPQ, Schubert, 2003)

was used for measuring the sense of presence experienced in a virtual

environment. The software used (VT+ research systems, VTplus

TABLE 1 Demographic and clinical characteristics of the sample
at pretreatment, means (SD), except where noted

Variables
Sample Münster
(n = 87)

Sample Würzburg
(n = 87)

Demographic characteristics

Female gender [n (%)] 72 (82.8%) 75 (86.2%)

Age (years) 27.16 (8.33) 29.39 (9.63)

Years of education 14.76 (2.78) 14.33 (3.34)

Clinical characteristics

SPQ 22.74 (2.03) 23.19 (2.35)

BAT final distance 176.22 (73.52) 171.96 (62.26)

Age of onset –SP (years) 6.13 (4.86) 8.22 (4.05)

Comorbid major depression
[n (%)]

3 (3.3%) 2 (2.3%)

Comorbid subordinate
animal phobia [n (%)]

2 (2.3%) 1 (1.1%)

CGI [n(%)]

Mildly ill 9 (10.3%) 15 (17.2%)

Moderately ill 41 (47.1%) 32 (36.8%)

Markedly ill 35 (40.2%) 37 (42.5%)

Severely ill 2 (2.3%) 3 (3.4%)

FEAS anxiety 101.16 (11.98) 101.59 (14.14)

FEAS disgust 109.49 (14.86) 110.26 (11.94)

Promis Cross D 4.28 (4.12) 4.45 (4.26)

Promis Specific Phobia 11.59 (8.53) 11.10 (9.37)

STAI-Trait 35.80 (8.53) 36.29 (9.00)

BDI-II total 3.59 (4.03) 3.52 (4.24)

Additional psychological characteristics

ASI-3 14.87 (9.81) 15.56 (9.95)

UI-18 reduced ability to act 11.99 (4.57) 11.57 (5.14)

UI-18 burden 13.65 (4.97) 12.94 (4.84)

UI-18 vigilance 14.31 (5.19) 15.32 (5.92)

GSE 3.01 (0.36) 2.94 (0.42)

Note. Since data collection is still in progress, only complete datasets were
used for analyses here (n=87).SPQ, Spider Phobia Questionnaire; BAT,
behavioral avoidance test; CGI, Clinical Global Impression; FEAS,
Fragebogen zu Ekel und Angst vor Spinnen (questionnaire regarding
disgust and fear of spiders); PROMIS, patient-reported outcomes

measurement information system (PROMIS Cross D, across anxiety
disorder diagnosis); STAI-Trait, trait-version of the State-Trait Anxiety
Inventory; BDI-II, Beck Depression Inventory-II; ASI-3, Anxiety Sensitivity
Index-3; UI-18, Uncertainty Intolerance 18; GSE, General Self-Efficacy
Scale.
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GmbH, Würzburg) provides several scenarios from which five stan-

dard scenarios every patient should ideally complete were selected.

The spiders used in the chosen VRET-scenarios differed. However,

they were not exactly the same as the Grammostola rosea bird spider

used in the in vivo behavioral avoidance test (BAT, please find

detailed information below). While in the first scenario, the spider is

quite small and black; the spiders in the other scenarios rather resem-

ble a cross spider, although with an unrealistic body size. Due to the

restriction that no other spider species are available in the used VR

software, we therefore manipulated the size of the spider, the number

of spiders, and the situational conditions. Before (anticipatory anxiety)

and throughout the scenarios patients are constantly asked to give

fear ratings on a scale from “0 = no fear at all” to “100 = extremely

strong fear.” Within each scenario, we defined specific anchor points

(e.g., standing right below the spider hanging from the doorframe etc.)

that should be achieved by each patient. If the fear rating is <20 or if

the rating is stagnating three times in succession, patients proceed

with the next scenario. The number of fear ratings and the time inter-

val between them were adapted on an individual level. The VR envi-

ronment is generated using Steam Source engine (Valve Corp.,

Bellevue, Washington,USA) and displayed via a Z800 3D Visor (WÜ)

or Oculus Rift DK2 (MS) head-mounted display (HMD; WÜ: eMagin,

NY, USA; MS: Oculus VR, LLC). Maximum duration of the intervention

is 2.5 hours.

2.4 | Measures of treatment adherence among study
therapists

VRET was manualized, and study therapists were trained in coopera-

tion and counterchecked the VRET conduction at the other site. Reg-

ular telephone conferences led by the principal investigators with

longstanding clinical experience were conducted throughout the

recruitment phase to discuss open questions and difficulties that

appear during the conduction of the VRET.

2.5 | Description of VR scenarios

After an accommodation phase to the VR environment, the first sce-

nario started with a rather small but moving spider sitting in a plastic

box without a lid. Patients had to approach the box as close as possi-

ble and bend over it to watch the spider carefully. The second sce-

nario consisted of a bigger spider hanging from the doorframe, and

patients have to walk toward that door and finally stop in the door-

frame beneath the spider and look up to it. In the third scenario, a big

spider is crawling on the floor, and patients had to approach, to

obstruct the way and to crouch down. The fourth scenario contained

two spiders, one on the floor and one on the wall. Patients had to

approach, to focus only on the spider on the floor and to crouch

F IGURE 1 Schematic representation of the study protocol. Pre-treatment assessment encompasses a baseline assessment to gather clinical
and psychometric data, and a blood sample for genetic and epigenetic analyses is drawn. The behavioral avoidance test (BAT) serves as a
quantification of avoidance behavior. A separate MRI session (structural and functional) completes the pre-treatment assessments, which will be
used for prediction of treatment outcome. At the Münster site, baseline measurements are accompanied by an additional MEG measurement
(prior to fMRI measurement); at both sites, there takes an additional fMRI measurement place, which is not part of the prediction track.
Treatment itself consists of a one-session massed exposure therapy in virtual reality. Approx. 1 week after treatment, clinical, psychometric,
behavioral, and epigenetic data are collected again, followed by an MEG- and fMRI measurement at the Münster site and optional fMRI
measurement at Würzburg. Baseline measurements will be repeated at the follow-up assessment 6 months after the post-treatment assessment
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TABLE 2 Overview of assessments in chronological order arranged according to the type of measurement

Assessment Baseline MRI VRET Post-treatment Follow-up

Clinical

SCID X X

CGI X X X

SPQ X X X

Fragebogen Ekel und Angst vor Spinnen (FEAS)a X X X

State-Trait Anxiety Inventory (STAI-Trait) X X X

Beck Depression Inventory-II (BDI-II) X X X

Behavioral

BAT X X X

Neurobiological

Blood sampling X X X

EDA X X X

(f)MRI X

Additional psychological characteristics

Igroup Presence Questionnaire (IPQ) X

Anxiety Sensitivity Index (ASI) X X X

General Self-Efficacy Scale (GSE) X X X

PROMIS Scales for DSM-5 (anxiety) X X X

Intolerance of Uncertainty Scale(UI-18) X X X

Beck Anxiety Inventory (BAI) X

List of threatening Experiences (LTE) X

Liebowitz Social Anxiety Scale (LSAS) X

Allgemeine Depressionsskala (ADS-K)b X

Agoraphobic Cognitions Questionnaire (ACQ) X

Penn State Worry Questionnaire (PSWQ) X

Social Phobia and Anxiety Inventory (SPAI) X

Positive and Negative Affect Schedule (PANAS-Trait) X

Childhood Trauma Questionnaire (CTQ) X

Life Calendar X

Kurzer Fragebogen zu Belastungen (KFB)c X

Brief COPE X

Fragebogen zur Angst vor Spinnen (FAS)d X

Behavioral inhibition system–behavioral activation system
(BIS-BAS)

X

Trier Inventory for Chronic Stress (TICS) X

Stressverarbeitungsfragebogen (SVF-78)e X

Cognitive Emotion Regulation Questionnaire (CERQ) X

Social Desirability Scale (SDS-CM) X

Temperamentskala (TEMPS-A)f X

Social Support Appraisals Scale (SS-A) X

Berliner Social Support Skalen (BSSS)g X

IPQ (Schubert, Friedmann, & Regenbrecht, 2001), ASI (Alpers & Pauli, 2001), BDI-II (Hautzinger, Keller, & Kühner, 2006), GSE (Schwarzer & Jerusalem,
1999), PROMIS (Wahl, Löwe, & Rose, 2011), STAI (Laux, 1981), UI-18 (Gerlach, Andor, & Patzelt, 2008), BAI (Margraf & Ehlers, 2007), LTE (Brugha &
Cragg, 1990), LSAS (Stangier & Heidenreich, 2004), ADS (Hautzinger, Bailer, Hofmeister, & Keller, 2012), ACQ (Ehlers, Margraf, & Chambless, 2001),

PSWQ (Stöber, 1998), SPAI (Fydrich, 2002), PANAS (Krohne, Egloff, Kohlmann, & Tausch, 1996), CTQ (Wingenfeld et al., 2010), Life calendar (Canli et al.,
2006), KFB (Flor, 1991), COPE (Knoll, Rieckmann, & Schwarzer, 2005), FAS (Rinck et al., 2002), FEAS (Schaller, Gerdes, & Alpers, 2006), BIS-BAS (Strobel,
Beauducel, & Debener, 2001), TICS (Schulz, Schlotz, & Becker, 2004), SVF-78 (Janke, 2002), CERQ (Loch, Hiller, & Witthöft, 2011), SDS-CM (Luck &
Timaeus, 1969), TEMPS-A (Akiskal, Brieger, Mundt, Angst, & Marneros, 2002), SS-A (Laireiter, 1996), BSSS (Schwarzer & Schulz, 2003).
a“Questionnaire on Disgust and Fear of Spiders”.
bGerman version of the Center for Epidemiological Studies Depression Scale (CES-D-scale, NIMH).
c“Brief questionnaire about stresses and strains”.
dGerman version of Fear of Spiders Questionnaire (FSQ, Szymanski & O'Donohue, 1995).
e“Coping with Stress Inventory”.
fGerman version of the “Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire”.
g“Berlin Social Support Scales”.
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down. In the fifth and last scenario, four big spiders were crawling on

the floor. Patients had to approach two of them and to crouch down.

2.6 | Assessments: Before, after, and follow-up

An overview of all assessments can be found in Table 2.

2.7 | Primary outcome: Spider Phobia Questionnaire

A German translation of the Spider Phobia Questionnaire (Klorman,

Weerts, Hastings, Melamed, & Lang, 1974) was used as a dimensional

measure of psychopathology as this questionnaire is recommended to

assess spider phobia (Hamm, 2006). The questionnaire consists of

31 items that have to be rated as “true” or “false,” maximum score per

item is 1. The English version shows a satisfactory internal consis-

tency of 0.91 (Cronbach's Alpha) and a test–retest correlation of 0.94

(Muris & Merckelbach, 1996). A sum score of at least 20 is chosen as

inclusion criterion, as this is the cutoff score for clinically significant

symptom severity (Öst, 1996). A reduction of at least 30% of the SPQ

sum score from pre- to post-assessment will characterize clinically

meaningful treatment response. SPQ scores are assessed pre-treat-

ment, post-treatment, and after 6-month follow-up.

2.8 | Secondary outcome measures

An in vivo BAT (Figure 2) was used to assess generalization of treat-

ment effects to a real spider. A bird spider (Grammostola rosea) was

placed in a plastic box with a closed lid. The box was placed on a slide

3 m away from the patient who was then asked to slowly drag the

box with the spider toward him−/herself as close as possible by using

a crank. The final distance between patient and spider (in centimeter,

quantification of avoidance behavior) served as the dependent vari-

able. During the BAT, electrodermal activity (EDA) was recorded

alongside with Ag/AgCl electrodes on the hypothenar of the left hand

using isotonic electrode paste as contact medium and Brain Vision

hard- and software for data acquisition (Brain Vision ExG Amplifier

and Brain Vision Recorder; Brain Products, Munich, Germany).

Patients were also asked to rate their fear on a scale from “0 = no fear

at all” to “100 = extremely strong fear” for given anchor points (antici-

pation, at the doorstep, beginning of the BAT, after final distance, end

of the BAT, and after spider left the room). In addition, observation of

concomitant behavior was noted using a standardized scheme (i.e., if

the patient is able to tolerate the stepwise approaching spider). All

BAT outcomes are assessed pre-treatment, post-treatment, and after

6-month follow-up. A reduction of at least 50% of the final distance

from pre- to post-assessment will characterize a secondary outcome

of treatment response. Moreover, the Clinical Global Impressions

Scale (CGI-S; Guy, 1976) used to rate symptom severity pre-treat-

ment, post-treatment, and at follow-up as well as the SPQ score at

follow-up will serve as additional secondary outcome measures.

2.9 | Other clinical and psychometric assessments

The SCID-IV-TR Axis I Disorders (American Psychiatric Association,

2000) was conducted to confirm the diagnosis of primary spider pho-

bia and to check for comorbid diagnoses pre-treatment and at follow-

F IGURE 2 In vivo behavioral avoidance test (BAT). A bird spider placed in a plastic box with a closed lid is used to assess generalization of
treatment effects to a real spider. The box is placed on a slide 3 m away from the patient who then slowly drags the box with the spider toward
himself as close as possible using a crank. The final distance between patient and spider (i.e., quantification of avoidance behavior) serves as the
dependent variable. Patients are asked to rate their fear, observation of behavior is noted using a standardized scheme, and electrodermal activity
(EDA) is recorded alongside. All outcomes are assessed pre-treatment, post-treatment, and after 6-month follow-up
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up. Several questionnaires were assessed via the online survey appli-

cation LimeSurvey (LimeSurvey GmbH, Hamburg, Germany) at all

three assessment dates. A follow-up paper-and-pencil interview to

assess avoidance behavior, encounters with spiders (actively precipi-

tated or accidentally), experienced fear compared with pre-treatment,

and an evaluation of the VRET intervention was also handed out (see

supplement).

2.10 | (Epi-)Genetic assessment

2.7 ml EDTA-Monovette was drawn for differential blood count. Two

9 ml EDTA-Monovettes were drawn and immediately stored at

−80�C for DNA extraction. DNA will be isolated from human whole

blood using the FlexiGene DNA Kit (QIAGEN, Hilden, Germany). All

samples will be genotyped for several genetic polymorphisms in

respective candidate genes like NPSR1 (Dannlowski et al., 2011),

CRHR1 (Weber et al., 2016), and MAOA (Reif et al., 2014) and rele-

vant epigenetic signatures (e.g., Dannlowski et al., 2014; Schartner

et al., 2017; Ziegler et al., 2015). Results will be controlled for possible

confounding factors in epigenetic analyses like smoking status

(Philibert et al., 2010). Blood was taken pre-treatment for genetic and

pre-treatment, post-treatment, and follow-up for epigenetic analyses.

2.11 | Neuroimaging battery

2.11.1 | (f)MRI assessments

For each patient, a structural T1 dataset to assess brain morphometry

and a resting state measurement (8 min) to assess the functional orga-

nization of the brain at rest (eyes closed but awake) without any spe-

cific task-related activation was conducted with lights switched off.

The first task was the Sustained and Phasic Fear Paradigm (SPF;

Münsterkötter et al., 2015) to investigate the neural networks

involved in the processing of a phasic fear response toward an actual

threat and in the processing of anticipatory sustained anxiety toward

an imminent and unpredictable hazard. It consists of 15 active and

14 inactive runs (block design). During inactive blocks, participants fix-

ate on a dot presented in the middle of the screen for 15 s. Active

blocks consist of 10 pictures each presented for 1.7 s and followed by

a fixation dot (300 ms). Three fear conditions are presented in

pseudorandomized order: in the sustained fear condition, where par-

ticipants are told that pictures of spiders could appear, pictures of

empty rooms are presented, and in one-third of the runs, a picture of

a spider appears in the last quarter of the run. In the phasic fear condi-

tion, participants are instructed that they will see pictures of spiders,

whereas in the no fear/safety condition, only pictures of empty rooms

are presented. Each fear condition is presented five times followed by

a no stimulus block, respectively. After each active run, participants

evaluate their subjective appraisal regarding the pictures on a 4-point

scale from very unpleasant to very pleasant. Total task duration

is 9:45 min.

The second task was the Hariri face-matching paradigm that is

widely used to investigate amygdala responsiveness to fearful and

angry faces (e.g., Dannlowski et al., 2011; Hariri, Tessitore, Mattay,

Fera, & Weinberger, 2002). The paradigm consists of four blocks of a

face-matching task alternating with five blocks of a sensorimotor con-

trol task. During the face-matching task, patients view three triangu-

larly arranged faces (all three expressing either anger or fear) from the

Ekman and Friesen (Ekman & Friesen, 1976) stimulus set. They are

instructed to select one out of two faces (bottom) that is identical to a

target face (top). Each face-matching block consists of six images, bal-

anced for gender and emotion (angry or fearful). During the sensori-

motor control blocks, patients view three triangularly arranged

geometric shapes (circles and ellipses) and select one of two shapes

(bottom) that is identical to a target shape (top). Each sensorimotor

control block consists of six different shape trios. All blocks are pre-

ceded by an instruction (“match faces” or “match shapes” in German)

that lasts 2 s. In the face-processing blocks, each of the six face trios

is presented for 4 s with a variable interstimulus interval of 1.5–5.5 s

(mean 3.5 s), for a total block length of 47 s. In the sensorimotor con-

trol blocks, each of the six shape trios is presented for 4 s with a fixed

interstimulus interval of 1.5 s, for a total block length of 35 s. Total

task duration is 6:30 min. Performance (accuracy and reaction time) is

recorded.

2.11.2 | (f)MRI data acquisition and quality control
pathway

At both sites, 3-Tesla MRI scanners were used (WÜ: Siemens Skyra,

MS: Siemens Prisma). Structural T1 dataset was collected using

magnetization-prepared rapid gradient echo (MPRAGE):

matrix = 256 × 256, slices = 176, FOV = 256, voxel size = 1 × 1 × 1 mm,

TE = 2.26 ms (WÜ), TE = 2.28 ms (MS), TR = 1.9 s (WÜ), TR = 2.13 s

(MS), flip angle = 9� (WÜ), flip angle = 8� (MS). Functional images were

collected with a T2* weighted echo planar imaging (EPI) sequence

sensitive to blood oxygenation level-dependent (BOLD) contrast in

ascending order (matrix = 64 × 64, slices = 33, FOV = 210, voxel

size = 3.3 × 3.3 × 3.8 mm, slice thickness = 3.8 mm, 10% slice gap,

TE = 30 ms (WÜ), TE = 29 ms (MS), TR = 2.0 s, flip angle = 90�). Slices

covered the whole brain and were positioned transaxially parallel to

the anterior–posterior commissural line with a tilted angle of 20�.

Stimuli were presented via MR-compatible LCD goggles (WÜ) or via a

back-projection monitor (MS) and headphones using Presentation 14 -

(Neurobehavioral Systems; www.neurobs.de).

Functional images are spatially and temporally aligned, normalized

into standard stereotactic space and smoothed with a 8-mm full width

at half maximum (FWHM) Gaussian kernel. At the first level, realign-

ment parameters are included in the model as regressors of no inter-

est to account for motion artifacts. The BOLD response for each

condition of the SPF paradigm (phasic fear, sustained fear, no fear,

and baseline) and of the Hariri face-matching paradigm (faces and

shapes) is modeled by the canonical hemodynamic response function

using the general linear model (GLM) to analyze brain activation dif-

ferences related to the onset of the different stimuli. Parameter esti-

mates (β), t-, and F-statistic images are calculated. Significance

thresholds for predefined region-of-interest (ROI) analyses and
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exploratory whole-brain analyses are set to p < 0.05 FWE corrected.

MRI data quality control encompasses visual inspection of the struc-

tural T1 image concerning morphometry and artifacts, visual inspec-

tion of functional activation patterns for the first level contrasts, and

close scrutiny of movement and rotation parameters. A global value

(min–max range) for movement (x-/y-/z-axis) or rotation

(pitch/roll/yaw) greater than 3.3 mm or resp. 3.3� leads to preclusion.

Peak values (max. value from one scan to another) greater than

3.3 mm or resp. 3.3� are also discarded. Global and peak values are

checked for each patient and paradigm, respectively.

2.12 | Machine learning analysis approach

Machine learning includes hypothesis-free methods to detect classifi-

cation patterns of brain activity distinguishing two or more groups of

subjects, particularly in high-dimensional data spaces. Support vector

machine (SVM; Vapnik, 1995) and Gaussian process classifier (GPC)

have been shown to be well suited for hemodynamic imaging data to

predict treatment outcome following CBT or electroconvulsive ther-

apy (Hahn et al., 2015; Redlich et al., 2016). This set of tools has been

used to discriminate subforms of affective disorders, including unipo-

lar and bipolar depression in the state of depression with up to 90%

accuracy (Grotegerd et al., 2013; Grotegerd, Stuhrmann, et al., 2014;

Redlich et al., 2014). Analysis for the present study will be based on

software tools for machine learning that have been developed by our

workgroup (Grotegerd, Redlich, et al., 2014; PHOTON, 2018). Multi-

ple information sources of different, heterogeneous data—such as

hemodynamic imaging, genetic, and behavioral data—will be inte-

grated by appropriate pattern classification methods supplemented by

deep learning technology and neural networks (Figure 3). Namely, we

will integrate clinical data (compare for Table 2), anatomical

(T1-weighted images) and functional imaging data (fear-processing rel-

evant contrasts) and fear-relevant genotypes [e.g., NPSR1, monoamin-

ergic systems (MAOA, SCL6A4/5-HTT), corticotropin releasing

hormone (CRHR1), brain-derived neurotrophic factor (BDNF,

Val66Met), and oxytocin (OXTR)]. With regard to overfitting and

shortcomings of small samples in contrast to the number of available

features, such data modality combination techniques provide a more

reliable generalization. With kernel-based pattern algorithms

(e.g., SVM and GPC), multiple kernel learning enables the combination

of different data modalities, each represented by a single kernel

(Sonnenburg, Rätsch, Schäfer, & Schölkopf, 2006). The actual classifi-

cation algorithm learns based on a combination of the kernels using a

specific function (e.g., linear combination or multiplication of kernels).

Hyperparameters of these machine learning algorithms will be opti-

mized in a nested cross-validation approach. This approach is conser-

vative and reality-oriented and allows us to investigate the robustness

regarding potential site effects. Permutation tests will be used to test

accuracy significance.

3 | DISCUSSION

3.1 | Incremental value and outlook

The overall aim of the CRC-TRR58 is to concentrate expertise in the

fields of molecular biology, (epi)genetics, neurophysiology, behavioral

biology, neuroimaging, psychology, and psychiatry, in order to provide

a better understanding of the mechanistic basis of fear, anxiety, and

anxiety disorders and ultimately promote their improved treatment

and prevention. Embedded in the CRC-TRR58, the presented study

protocol addresses challenges in current clinical research and repre-

sents the first step into a new direction paving the way to more per-

sonalized treatments.

Focusing on the clinical translation and intervention for improved

anxiety control, the benefits through the identification of biobehav-

ioral markers of treatment nonresponders are twofold: the advance-

ment of personalized treatments and the potential for optimization of

treatment. Previous research characterizing the mechanisms of action

underlying exposure and patient features associated with treatment

outcome is dominated by approaches focusing on the group level.

This mechanistic approach aimed at optimizing models of disease and

treatments targeting at disorder-specific brain circuits (Lueken &

Hahn, 2016). One major shortcoming of this group-level approach is

the lack of individual or patient-specific prediction. The already

F IGURE 3 Schematic representation of the machine
learning procedure. The pattern classifier is trained at site
A to generate a discriminating pattern maximally
distinguishing responders from nonresponders based on
data from the two groups. The classifier is then tested at
site B by classifying a new subject as responder or
nonresponder
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mentioned rather unsatisfying response rates and effect sizes (Gloster

et al., 2011; Huhn et al., 2014; Loerinc et al., 2015; Taylor et al., 2012)

warrant researchers to more strongly focus on novel methods that are

able to generate single patient predictions and thus may guide more

personalized treatment approaches. There is evidence suggesting that

data-derived subgroups within specific patient groups are better

suited to predict treatment outcome than DSM or ICD diagnoses that

include heterogeneous endophenotypes (Hahn et al., 2017). By fur-

ther establishing these predictive approaches into practice, objectively

measurable endophenotypes could be used for early disease detec-

tion, individualized treatment selection, and dosage adjustment to

reduce the burden of disease. Further, the identification of biobehav-

ioral markers can give hints at what might be the missing part in treat-

ment nonresponse. For instance, knowing what differentiates

treatment nonresponders from responders might give a starting point

for treatment modification or even new development. Knowing that

reactivity of the ACC or connectivity frontolimbic connectivity in

response to emotional stimuli might be predictive for treatment

response in anxiety disorders (Lueken et al., 2016), one might think

about pre-exposition interventions addressing the ACC function, for

example, interventions focusing on emotion regulation or attentional

bias modification training. On the other hand, noninvasive brain stim-

ulation methods could be used to modify these predictive areas, to

augment the efficacy of exposure sessions (Herrmann et al., 2017).

Beside an individualized combination of first-line treatments and the

development of new interventions, addressing specific biobehavioral

markers of treatment nonresponse can be launched.

The personalized treatment selection/modulation can be realized

as machine learning offers the possibility of building objective algo-

rithmic frameworks for single patient treatment response prediction

across a diversity of psychiatric conditions (Bzdok & Meyer-Lin-

denberg, 2018; Woo et al., 2017). Because traditional disease catego-

ries are increasingly questioned to represent underlying

neurobiological classes (Hyman, 2007), machine learning seems to be

an appropriate tool enabling the detection of complex patterns in the

brain, behavior, and genes. There are as well several important meth-

odological benefits of multivariate predictive models (Woo et al.,

2017). First of all, the direction of inference is reversed, that is, brain

features, (epi-)genetic, and clinical characteristics serve as a set of pre-

dictors and treatment response as an outcome. Second, the problem

of multiple testing can be overcome by the integration of existing data

into one model. And lastly, the prognostic value is assessed by evalu-

ating the performance of the model in an independent sample,

thereby yielding valid estimates of effect size and ergo clinical signifi-

cance (Woo et al., 2017). In addition, the usage of a bicentric cross-

validation is close to reality; still, robustness to potential site-effects

needs to be tested. The applied combination of multiple units of anal-

ysis, for example, (epi-)genetic, neural systems, and clinical readouts,

can be adequately processed via machine learning methods. By means

of several units of analysis, the optimal (cost-efficient) predictors

become identifiable. The applied units of analysis in the present study

could be extended in further studies using, for example, electronic

momentary assessment.

In the present study, a one-session exposure-based CBT was used,

and exposure is realized in virtual reality. Several studies showed effi-

cacy of one-session exposure therapy in specific phobia (Andersson

et al., 2009, 2013; Öst, 1996; Vika, Skaret, Raadal, Öst, & Kvale,

2009), superiority of five versus one session could not be proven (Ost,

Brandberg, & Alm, 1997; Öst, Hellström, & Kåver, 1992; Vika et al.,

2009), and on a meta-analytical base, multi-sessions were only mar-

ginally superior compared with one-session therapies (Wolitzky-Tay-

lor, Horowitz, Powers, & Telch, 2008). Still, interpreting the results of

these studies, one has to bear in mind the small number of studies.

Evidence for the efficacy of VRET is comparable with exposure-based

CBT in vivo (Emmelkamp, Bruynzeel, Drost, & van der Mast, 2001;

Gilroy, Kirkby, Daniels, Menzies, & Montgomery, 2000, 2003), and the

acceptance and commitment of patients is even higher as for

exposure-based CBT in vivo (Garcia-Palacios, Botella, Hoffman, &

Fabregat, 2007). As technical aspects are improving, VRET seems to

be a good alternative to exposure-based CBT in vivo (Botella,

Fernández-�Alvarez, Guillén, García-Palacios, & Baños, 2017), when

therapist, as well as patient, keep in mind the following traps: (1) cogni-

tive avoidance in the form of “focus on unrealness” during exposure,

(2) possibly limited action radius for the patient, (3) the need to

actively change procedure and circumstances, and (4) the translation

into daily life of the patient. Additionally, the transdiagnostic aspects

of treatment response should be targeted in future clinical research.

Research focus should be on commonalities and differences in treat-

ment response signatures across anxiety disorders or disorders from

the internalizing spectrum and the question of an overarching signa-

ture of treatment non-response.

In conclusion, the present study offers the possibility to investi-

gate theranostic markers for a model disorder of fear circuitry dys-

functions. The design was laid out to maximize the internal validity of

such a novel proof of concept; if our approach turns out to be suc-

cessful, future studies are needed to test these markers in more het-

erogeneous samples and settings in order to evaluate whether

predicting treatment nonresponse in more ecologically valid settings

(or, ultimately, the next patient out there) is possible with sufficient

accuracy. Current challenges in psychiatric research are addressed as

data from several modalities (psychometric, behavioral, neural sys-

tems, and molecular-genetic data) are integrated into a prediction

model using machine learning. Cross-validation will be executed in an

independent second-site sample. The detection of pre-treatment

theranostic markers of clinical response could help in supporting clini-

cal decision-making on individually tailored treatment approaches or,

respectively, to spare ineffective treatment and its related financial

costs. With this study, we hope to further bridge the gap between

basic and clinical research and—as a long-term goal—to bring stratified

therapy approaches into reach.
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