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BMP9/10 in Pulmonary Vascular Complications of
Liver Disease

To the Editor:

Advanced liver disease can cause two distinct pulmonary vascular
complications. Portopulmonary hypertension (POPH) is
characterized by increased pulmonary vascular resistance and
pulmonary artery pressure in the absence of other etiologies of
pulmonary hypertension (PH). Hepatopulmonary syndrome (HPS)
is characterized by intrapulmonary vascular dilatations and
arteriovenous malformations (AVMs) and an increased
alveolar–arterial oxygen gradient (A–a gradient). These diseases
occur in approximately 6% and 20% to 30% of patients evaluated
for liver transplantation, respectively (1, 2).

The biologic determinants of these vascular complications are
poorly understood. BMP9 (bone morphogenetic protein 9) and
BMP10 are produced in the liver (and for BMP10, right atrium)
and circulate either as homodimers or heterodimers (3, 4).
BMP9 and BMP10 are ligands for BMP receptor type II, activin
A receptor like type 1, and endoglin receptor complex (5).

Receptor mutations cause hereditary hemorrhagic telangiectasia,
a disease characterized by angiogenesis and pulmonary
macrovascular and microvascular AVMs. The occurrence of
pulmonary AVMs and cyanosis after the Glenn operation, where
hepatic venous blood does not bathe the lungs normally, has been
blamed on “hepatic factor,” hypothesized to be BMP9 (6). In
addition, studies show that abnormal BMP9 signaling causes PH
(7, 8). Circulating BMP9 levels are decreased in patients with
POPH, and administration of BMP9 attenuates PH (9). We
hypothesized that circulating BMP9 and BMP10 levels would be
lower in patients with POPH and HPS when compared with
control patients with advanced liver disease.

Methods
The PVCLD2 (Pulmonary Vascular Complications of Liver Disease
2) study was amulticenter, prospective cohort study of adult patients
with portal hypertension undergoing evaluation for liver
transplantation or with POPH (10, 11). Patients with active
infection, recent gastrointestinal bleeding, or a history of prior liver
or lung transplantation were excluded. The study sample was
drawn from 454 patients at the University of Pennsylvania,
Mayo Clinic, University of Texas–Houston, University of
Texas–Southwestern, University of Colorado, Vanderbilt
University, Tufts Medical Center, and Cleveland Clinic between
2013 and 2017. The institutional review boards approved this
study, and patients gave informed consent.

Research assessments included a history and physical
examination, anthropometrics, pulse oximetry, phlebotomy and
clinical laboratory testing, 6-minute-walk testing, arterial blood
gas sampling, spirometry, and contrast-enhanced transthoracic
echocardiogram (TTE). Cases with POPH had mean pulmonary
artery pressure. 25 mm Hg, pulmonary artery wedge
pressure< 15 mm Hg, and pulmonary vascular resistance. 240
dyn $ s/cm5. Control subjects with liver disease had right
ventricular systolic pressure, 40 mm Hg (if estimable) and
absence of right ventricular dysfunction on TTE. We excluded
patients with significant obstructive or restrictive ventilatory
defects, HIV infection, or more than moderate aortic or mitral
valvular disease or significant left ventricular systolic dysfunction.

HPS was defined by A–a gradient> 15 mm Hg (or
>20 mm Hg if age. 64 yr) and late passage of contrast on TTE.
Control patients did not meet both the A–a gradient and late
contrast criteria. We excluded patients with a significant
obstructive or restrictive ventilatory defect or intracardiac shunting.

Plasma BMP9 and BMP10 concentrations were measured in
duplicate with sandwich ELISA kits with plasma diluted in
phosphate-buffered saline/1% bovine serum albumin/0.2% goat
serum and 0.5% Triton X-100 (BMP9, diluted 1:4) or 0.1% Triton X-
100 (BMP10, both neat and diluted 1:2) (DY3209 and DY2926,
respectively; R&D Systems). Assays were performed with blinding
to clinical information.

Rank sum tests, t tests, chi-square tests, and Fisher’s exact tests
were used. Multivariate linear regression models regressed natural
log–transformed BMP levels on case and control status after
adjustment for age, sex, and Model for End-Stage Liver Disease-Na
(MELD-Na). A P value, 0.05 was considered significant
(STATA/MP 16.0).
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Results
There were 35 patients with POPH and 186 POPH control subjects
and 80 patients with HPS and 121 HPS control subjects (Table 1).
One patient had both POPH and HPS.

Patients with POPH had significantly lower BMP9 levels
compared with control patients with advanced liver disease
(Figure 1). This difference persisted despite adjustment for age,
sex, and MELD-Na score (43% lower BMP9 levels in POPH)
(P= 0.006; n= 205). BMP9 levels were not associated with baseline
hemodynamics, functional class, or 6-minute-walk in POPH (data
not shown). There was no difference in BMP10 levels between
POPH cases and control subjects.

Patients with HPS also had significantly lower BMP9 levels
compared with control patients with advanced liver disease
(Figure 1). After adjustment for age, sex, and MELD-Na, BMP9
was 37% lower in HPS compared with control subjects (P= 0.001;
n= 197). BMP10 was also significantly lower in patients with HPS

(Figure 1) and was 33% lower even after adjustment for age, sex,
and MELD-Na (P= 0.02; n= 196).

In patients with HPS, 10% lower BMP9 levels were associated
with higher A–a gradient (0.4 mm Hg) even after adjustment for
age, sex, body mass index, and MELD-Na (P= 0.03; n= 78). Lower
BMP9 levels were also associated with higher World Health
Organization functional class in HPS after adjustment for covariates
(P=0.002; n=78).

Discussion
Portal hypertension and cirrhosis are systemic conditions of
disordered angiogenesis, which also characterizes both HPS and
POPH. We have shown that patients with HPS or POPH have
decreased circulating BMP9 and (for HPS) decreased circulating
BMP10 levels compared with cirrhotic control subjects. Modifying
factors likely determine which phenotype is expressed when BMP
signaling is reduced.

Table 1. Patient Demographics, Comorbidities, and Liver Disease Characteristics

Characteristic HPS (n= 80)
HPS Control

Subjects (n= 121)
P

Value POPH (n= 35)
POPH Control

Subjects (n=186)
P

Value

Age, yr 55.369.6 57.36 9.0 0.13 56.76 8.5 56.66 9.4 0.93
Sex, M 48 (60) 87 (72) 0.08 21 (60) 129 (69) 0.28
Body mass index, kg/m2 31.767.3 30.26 7.1 0.17 29.96 6.3 30.76 7.2 0.52
Race/ethnicity 0.008 0.55
Non-Hispanic white 66 (83) 74 (62) 27 (77) 128 (69)
Black 2 (3) 14 (12) 3 (9) 16 (9)
Asian 0 2 (2) 0 2 (1)
Hispanic white 11 (14) 29 (24) 4 (11) 37 (20)
Hispanic other 1 (1) 1 (1) 0 2 (1)
Other 0 1 (1) 1 (3) 1 (1)

Liver disease*
Hepatitis C 33 (41) 54 (45) 0.64 10 (29) 80 (43) 0.11
Alcohol 30 (38) 39 (32) 0.44 16 (46) 62 (33) 0.16
Nonalcoholic fatty liver
disease

20 (25) 26 (21) 0.52 5 (14) 43 (23) 0.25

Autoimmune hepatitis 4 (5) 5 (4) 0.74 3 (9) 8 (4) 0.39
Primary biliary cholangitis 9 (11) 5 (4) 0.09 6 (17) 11 (5.9) 0.03
Primary sclerosing
cholangitis

4 (5) 7 (6) 1.0 0 11 (6) 0.22

Hepatitis B 1 (1) 4 (3) 0.65 0 5 (3) 1.0
Cryptogenic cirrhosis 3 (4) 11 (9) 0.17 4 (11) 14 (8) 0.50

MELD-Na score 15.764.7 (n=78) 13.865.5 (n=119) 0.01 15.86 6.7 (n=25) 14.465.2 (n=182) 0.24
Alveolar–arterial oxygen

gradient, mm Hg
29.5613.3 146 9 ,0.001 — —

Partial pressure of arterial
oxygen, mm Hg

78.9612.2 92613 ,0.001 — —

Hemodynamics
Right atrial
pressure, mm Hg

— — — 9.26 5.0 — —

Mean pulmonary artery
pressure, mm Hg

— — — 46.26 11.3 — —

Pulmonary artery wedge
pressure, mm Hg

— — — 10.46 3.5 — —

Cardiac index, L/min/m2
— — — 2.96 0.8 — —

Pulmonary vascular
resistance, Wood units

— — — 7.06 3.8 — —

6-minute-walk distance, m 387.9697.6 (n=69) 4296 93.0 (n=102) 0.006 367.56114.1 (n=34) 417694.1 (n=158) 0.007

Definition of abbreviations: HPS=hepatopulmonary syndrome; MELD=Model for End-Stage Liver Disease; POPH=portopulmonary hypertension.
Data expressed as mean6 SD or n (%).
*Patients may have had more than one liver disease etiology.
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BMP9 and BMP10 maintain vascular quiescence (5).
Mutations in this pathway result in hereditary hemorrhagic
telangiectasia, characterized by telangiectasias in the
skin, nose, and gastrointestinal tract and pulmonary
and hepatic microvascular dilations, AVMs, and/or PH.
Researchers have hypothesized that BMP9 could be the
“hepatic factor” (6), causing pulmonary AVMs after
the Glenn procedure, which alters the perfusion of the
lungs by liver effluent (12). Redirection of hepatic vein
effluent into the pulmonary arterial bed resolves pulmonary
AVMs.

Circulating BMP9 levels were decreased in patients with
POPH or HPS when compared with other liver transplant
candidates, and lower BMP9 levels were associated with more
severe HPS. BMP10 was also lower in HPS. Further studies
should examine the mechanistic roles of these BMPs in
complications of cirrhosis and other diseases characterized by
pulmonary AVMs. n
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High-Dose First-Line Treatment Regimen for
Recurrent Rifampicin-Susceptible Tuberculosis

To the Editor:

We read with interest the article by Dooley and colleagues, which
showed that high-dose isoniazid (10–15 mg/kg) had early
bactericidal activity for Mycobacterium tuberculosis (MTB) strains
with inhA mutations similar to that observed with normal-dose
isoniazid (5 mg/kg) for susceptible strains (1). The authors
concluded that high-dose isoniazid represents a useful addition
to second-line tuberculosis (TB) treatment regimens for patients
with rifampicin-resistant TB and isolated inhA mutations.

We believe that high-dose isoniazid may also play an important
role in first-line TB treatment. At present, the World Health
Organization recommends adding a second-line TB drug
(levofloxacin) to three first-line drugs (rifampicin, ethambutol,
and pyrazinamide) in patients with TB resistant to isoniazid
without concurrent rifampicin resistance. Isoniazid would not be
included in this levofloxacin-strengthened first-line regimen (2).
This recommendation has several major implications.

To implement this recommendation, rifampicin and
isoniazid susceptibility testing should be performed, particularly in
previously treated patients, who are at risk of initial resistance.
Before prescribing levofloxacin for patients with rifampicin-
susceptible/isoniazid-resistant TB, additional fluoroquinolone
susceptibility testing is recommended (2). Access to rifampicin
susceptibility testing has increased substantially, but access to isoniazid
and fluoroquinolone susceptibility testing is still poor in most high-
TB-burden countries, where samples still have to be transported to
referral laboratories. Although novel diagnostic tools, such as Xpert
MTB/XDR, are on the horizon, their widespread implementation will
still take years. This will cause treatment delays of several months and
result in losses to follow-up between the time of TB diagnosis and
treatment initiation. In addition, not all rifampicin resistance is
detected by frequently used rapid tests, such as Xpert MTB/RIF and
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