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Abstract

Purpose: The purpose of this work was to develop a theoretical framework to pinpoint the 

quantitative relationship between input parameters of deconvolution-based cerebral computed 

tomography perfusion (CTP) imaging systems and statistical properties of the output perfusion 

maps.

Methods: Deconvolution-based CTP systems assume that the arterial input function, tissue 

enhancement curve, and flow-scaled residue function k(t) are related to each other through a 

convolution model, and thus by reversing the convolution operation, k(t) and the associated 

perfusion parameters can be estimated. The theoretical analysis started by deriving analytical 

formulas for the expected value and autocovariance of the residue function estimated using the 

singular value decomposition-based deconvolution method. Next, it analyzed statistical properties 

of the “max” and “arg max” operators, based on which the signal and noise properties of cerebral 

blood flow (CBF) and time-to-max (tmax) are quantitatively related to the statistical model of the 

estimated residue function [k*(t)] and system parameters. To validate the theory, CTP images of a 

digital head phantom were simulated, from which signal and noise of each perfusion parameter 

were measured and compared with values calculated using the theoretical model. In addition, an in 
vivo canine experiment was performed to validate the noise model of cerebral blood volume 

(CBV).

Results: For the numerical study, the relative root mean squared error between the measured and 

theoretically calculated value is ≤0.21% for the autocovariance matrix of k*(t), and is ≤0.13% for 

the expected form of k*(t). A Bland–Altman analysis demonstrated no significant difference 

between measured and theoretical values for the mean or noise of each perfusion parameter. For 

the animal study, the theoretical CBV noise fell within the 25th and 75th percentiles of the 

experimental values. To provide an example of the theory’s utility, an expansion of the CBV noise 

formula was performed to unveil the dominant role of the baseline image noise in deconvolution-

based CBV. Correspondingly, data of the three canine subjects used in the Part I paper were 
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retrospectively processed to confirm that preferentially partitioning dose to the baseline frames 

benefits both nondeconvolution- and deconvolution-based CBV maps.

Conclusions: Quantitative relationships between the statistical properties of deconvolution-

based CTP maps, source image acquisition and reconstruction parameters, contrast injection 

protocol, and deconvolution parameters are established.
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1. INTRODUCTION

In a separate Part I paper, the signal and noise properties of cerebral blood volume (CBV) 

generated from nondeconvolution-based computed tomography perfusion (CTP) systems 

were analyzed.1 In this Part II paper, the focus will be switched to the signal and noise 

properties of deconvolution-based systems. These systems are based on a tracer kinetic 

model that quantitatively relates tissue enhancement curve with the so-called flow-scaled 

residue function and arterial input function (AIF) through a convolution operation.2 The 

flow-scaled residue function is modeled as a function of tissue perfusion parameters such as 

CBV. In principle, by reversing the convolution process, namely deconvolving AIF from the 

tissue enhancement curve, the flow-scaled residue function and the associated perfusion 

parameters can be estimated. Although the convolution model may be overly simplified 

compared with the actual microcirculation processes within brain tissues, it often provides 

physiologically reasonable results under a broad range of conditions encountered in practice. 

For example, unlike the nondeconvolution (i.e., slope) method that requires a rapid rise of 

the contrast uptake curve in order to satisfy the “no venous outflow” assumption,3,4 the 

deconvolution method is not as sensitive to the contrast enhancement rate and thus is more 

robust against possible variations in patients’ cardiac outputs. Due to this and many other 

advantages,4,5 deconvolution-based perfusion analysis has been incorporated into the 

majority of commercial CTP postprocessing platforms and employed at many clinical 

institutions.6–8

Despite its popularity, deconvolution has not yet gained universal acceptance as a reliable 

perfusion analysis method due to substantial variability in its implementation methods that 

leads to significant differences in the measured values of CTP parameters.3,4 A common 

approach to solve the deconvolution problem is to perform singular value decomposition 

(SVD) of a convolution matrix constructed from the AIF.4,9–13 As reviewed later in Section 

3.A, SVD enables the pseudo-inverse of the convolution matrix, namely the deconvolution 

matrix, to be estimated algebraically. It was found that the SVD-based deconvolution 

method can be sensitive to noise and bias in the measured CTP source images and may 

produce overly oscillatory residue functions that are physiologically improbable.4,5 

Therefore, SVD-based deconvolution usually incorporates additional regularizer(s) such that 

the derived residue function must be positive and smooth. Owing to differences in the 

strength and model of the regularizer across different software platforms, substantial 

variations in the image quality and quantification accuracy were reported in literature.5 
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Besides the variation in regularizer, different ways to construct the convolution matrix or 

parameterize the contrast enhancement curves have led to other deconvolution methods such 

as parametric deconvolution and block-circulant SVD.16–18 As shown in a large-scale 

comparison study, there is marked variability in the estimated “penumbra” and infarction 

core among various deconvolution implementation methods.13 In another study, the 

threshold value of tissue perfusion parameter that optimally distinguishes penumbra from 

benign oligemia in acute stroke patients demonstrated a strong dependence on the 

deconvolution method.19 Unless all clinical institutions are mandated to use the same 

perfusion postprocessing software, this variability impose a major challenge to the 

standardization of CT perfusion imaging techniques recommended in the Acute Stroke 

Imaging Research Roadmap.20

To address this challenge, knowledge needs to be gained about deconvolution-based CTP 

imaging systems, particularly about the signal and noise properties of each perfusion 

parameter and their quantitative relationship with system components. With a clearer 

understanding of the relationship, input parameters in these systems can be tuned more 

synergetically and efficiently, so that biases, uncertainties, and other nonidealities that 

contribute to intersystem variability can be minimized. This rationale has been widely 

employed in streamlining other CT applications such as noncontrast head CT (NCCT), 

where a solid understanding about the quantitative relationship between NCCT image 

quality and CT system parameters has facilitated the optimization of the NCCT protocol for 

a given CT scanner, and a thorough understanding about the physical origin of image 

artifacts has facilitated the development of the corresponding correction methods. These 

approaches have greatly reduced the variation of NCCT image quality across vendors and 

scanner models.

To advance knowledge about deconvolution-based CTP systems, a series of research efforts 

have been made in the previous works. Through a canine study, Nabavi et al. observed that 

the uncertainty (noise) of cerebral blood flow (CBF) is strongly dependent on the tissue 

type, as it increased from 17 ml/min/100 g for white matter to 30 ml/min/100 g for gray 

matter.21 In a retrospective study, Murase et al. demonstrated that bias exists in 

deconvolution-derived CBF maps and the bias is strongly dependent on the x-ray tube 

current (mA): a lower mA led to a higher bias.22 In another study, van der Schaaf et al. 

found significant overestimation of CBV and CBF when a thicker source image slice 

thickness was used, as a thicker slice corresponds to severe partial volume effect (PVE).23 

These experimental studies suggested that the signal and noise properties of a 

deconvolution-based CTP system depend on the system parameters and scan subject. 

However, unlike for NCCT and other CT applications, a unified theoretical framework was 

not available for deconvolution-based CTP system to explain the physical origins and 

mathematical principles behinds these experimental findings. The absence of such a theory 

may be attributed to the deconvolution operator and a “max” (maximal value) operator used 

in CBF calculation: both of these operators seem to be uncommon in linear imaging systems 

theory compared with other operators such as multiplication and summation.

This article describes how to model these operators so that linear systems theory can be 

extended to embrace deconvolution-based CTP systems. Some of the theoretical 
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developments such as the signal and noise models of the residue function and the CBV map 

were previously reported in a conference proceeding paper.24 This Part II paper presents 

statistical models of additional perfusion parameters such as CBF and time-to-max, and 

reports in vivo animal results to validate these models. In addition, this work demonstrates 

how the theoretical framework can be used to answer the following question: what are the 

quantitative relationships between the signal and noise properties of the parametric perfusion 

maps, CT acquisition and reconstruction parameters, contrast injection protocol, and the 

deconvolution method?

2. BRIEF REVIEW OF DECONVOLUTION-BASED CTP SYSTEMS

To facilitate the presentation of the proposed theoretical model, a brief review of 

deconvolution-based CTP systems is provided in this section. In addition, some 

mathematical symbols and variables used in this work are summarized in Table I.

2.A. Physiological model

Unlike the Doppler ultrasound or other imaging modalities, conventional CT imaging does 

not directly provide blood flow information. Instead, it requires the injection of an iodinated 

contrast bolus into the blood circulation system to help “probe” the flow property. In the 

ideal case, the injected contrast creates a Dirac delta function-like pulse in the dynamic 

attenuation curve; by measuring the dynamic curve, blood flow information can be estimated 

based on certain models. The indicator-dilution theory2 is such a model: it states that, when 

an impulse of contrast bolus enters a volume of interest (VOI) in the brain tissue via an 

arterial inlet, it may follow any of the capillaries inside the VOI to reach the venous outlet. 

The probability of spending a time of t for the contrast bolus to travel through the VOI can 

be described by a statistical distribution function h(t). The mean transit time (MTT) for the 

contrast bolus to travel though the VOI is given by

MTT ≜ ∫
0

∞
τℎ τ dτ, (1)

where t = 0 is usually defined at the time point at which the contrast bolus first arrives at the 

arterial inlet, and thus h(t) = 0 when t < 0.

In reality, the temporal profile of the contrast bolus is wider than an ideal Dirac delta 

function. In this case, the contrast concentration at the venous outlet (Cv) of a VOI is given 

by convolving the temporal profile of the contrast bolus with h(t), namely

Cv(t) = Ca t ⊛ ℎ t . (2)

In Eq. (2), Ca(t) denotes the contrast concentration curve measured at the arterial inlet and is 

used as a surrogate for the true temporal profile of the contrast bolus.

Although the contrast concentrations of the arterial inlet and the venous outlet may be 

different at certain time points, the blood flow rate F, defined as the volume of blood moving 

through a given VOI per unit time, can be assumed to be constant during the time period of 
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measurement in the absence of blood–brain barrier breakage and bolus dispersion. Based on 

the principle of mass conservation, the accumulated mass of contrast agent in the VOI at t is 

given by

mvoi
c t = min

c t − moutc t

= F∫
0

t
Ca τ dτ − F∫

0

t
Cv τ dτ

= F∫
0

t
Ca τ ⊛ δ τ − ℎ τ dτ .

(3)

Note that the physiological model in Eq. (3) assumes the blood–brain barrier is intact and 

there is no bolus dispersion. Through integration by parts and based on the general 

properties of convolution, it can be proven that5

mvoi
c t = F ⋅ Ca t ⊛ r t , (4)

where r(t) is commonly referred to as the residue function. It is related to h(t) by

r(t) =
1 − ∫t0

t
ℎ τ dτ t ≥ t0;

0 t < t0,
(5)

where t0 denotes a possible delay time between contrast arrival at the feeding artery and at 

the tissue VOI. The so-called CBF is defined as the volume of blood moving through a unit 

mass of brain per unit time, usually with the units of ml of blood per minute per 100 g of 

brain tissue (ml/min/100 g). It is given by normalizing F with the mass of brain tissue in the 

VOI:

CBF ≜ F
mvoi

tis = F
ρV voi

tis . (6)

By combining Eqs. (4) and (6), the following relationship can be derived:

Ctis t ≜
mvoi

c t
V voi

tis

= ρ ⋅ CBF ⋅ Ca t ⊛ r t ,
(7)

where Ctis denotes contrast concentration in the tissue VOI. In practice, the right-hand side 

of Eq. (7) is often divided by a correction factor H that is the ratio between the arterial and 

capillary hematocrits8,25,26:

Ctis t = ρ
H ⋅ CBF ⋅ Ca t ⊛ r t . (8)

Equation (8) describes the quantitative relationship between CBF, contrast concentration 

curves of tissue and artery, and the residue function.
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2.B. Deconvolution-based perfusion measurement method

Based on the physiological model in Eq. (8), perfusion parameters can be estimated from the 

contrast concentration curves Ca(t) and Ctis(t). In CT imaging, the concentration of iodine be 

obtained from the CT number based on the following linear relationships:

Ctis x, t = α ℐ x, t − ℐb x = αℐ′ x, t , (9)

and

Ca t = α ℐ xa, t − ℐb xa = αℐa′ t , (10)

where ℐ x, t  denotes the true CT number at a spatial location x and time point t, xa denotes 

the spatial location of the feeding artery, ℐb x  denotes the true baseline (unenhanced) 

image, ℐ′ denotes the true enhancement in CT number (relative to the baseline), and α is a 

scaling factor that converts the HU enhancement into the iodine concentration.

By putting the Ca(t) and Ctis(t) formulas in Eqs. (9) and (10) to the convolution model in Eq. 

(8), α on the two sides of the equation are canceled, leading to the following form:

ℐ′ x, t = ρ
H CBF x ℐa′ t ⊛ r x, t . (11)

In practice, CBF, r, and ρ are often combined to form the so-called flow-scaled residue 

function:

k x, t ≜ ρ
H CBF x r x, t . (12)

Correspondingly, Eq. (11) can be written as

ℐ′ x, t = ℐa′ t ⊛ k x, t . (13)

In principle, a deconvolution of ℐ′ x, t  and ℐa′ t  along the temporal dimension can generate 

k((x,t), from which CBF is given by

CBF x = H
ρ max k x, t . (14)

In reality, the right-hand side of Eq. (14) is often multiplied by 60 × 100 to convert the 

CBF’s units from [ml/s/g] to [ml/min/100 g].

From the flow-scaled residue function, other perfusion parameters can also be measured. For 

example, MTT is related to k(x,t) by5

MTT x = 1
max k x, t ∫

0

∞
k x, t dt . (15)

Based on the central volume theorem of CBF = CBV/MTT, it can be proven that CBV is 

related to k by
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CBV x = CBF x ⋅ MTT x
= H

ρ ∫
0

∞
k x, t dt . (16)

In practice, the right-hand side of Eq. (16) is often multiplied by 100 to convert the units of 

CBV from [ml/g] to [ml/100 g].

The other commonly used perfusion parameter is the time-to-maximum (tmax) of the flow-

scaled residue function, namely

tmax x ≜ argmax
t

k x, t . (17)

In summary, as long the true tissue enhancement curve and the true arterial enhancement 

curve are available, perfusion parameters such as CBF, MTT, CBV, and tmax can be 

calculated. In clinical practice, however, a CTP examination only provides a single 

observation (sample) of ℐ′ x, t ; this observation, denoted as I′(x, t), may deviate from 

ℐ′ x, t  as

I′ x, t = I′ x, t + ΔI′ x, t
= ℐ′ x, t + I′ x, t − ℐ′ x, t + ΔI′ x, t
= ℐ′ x, t + bias I′ x, t + ΔI′ x, t ,

(18)

where I′ the expected value of the measured I′; bias(I′) and ΔI′ denote deterministic 

deviation and stochastic deviation, respectively, of I′ from ℐ′. To name a few mechanisms 

that can contribute to bias(I′): spatial blurring, temporal sampling, PVE, bolus dispersion 

and delay, etc.

During a clinical workflow, the deconvolution process and the calculation of individual 

perfusion parameters have to use I′ since the true ℐ′ is generally unavailable. The following 

section concerns the consequence of using I′ to replace ℐ′, particularly the corresponding 

impact on the statistical properties of perfusion maps.

3. STATISTICAL MODEL OF DECONVOLUTION-BASED CTP SYSTEMS

3.A. Flow-scaled residue function

Since CT images are digitized along both the spatial and temporal directions, the analog 

convolution in Eq. (13) can be discretized as follows:

ℐ′(i) = Δt ∑
j = 1

N
ℐa′ j k i − j + 1 , (19)

where Δt is the temporal sampling interval of CTP source images. In the remainder of this 

section, the spatial position x was omitted. However, the theoretical derivations are 

applicable to an arbitrary x location in the brain parenchyma.
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Note that the summation operation in Eq. (19) should exclude the baseline frames since they 

contribute nothing but zero-mean noise. Therefore, j = 1 refers to the first postbaseline time 

frame, and N in Eq. (19) denotes the total number of nonbaseline time frames.

The digitized convolution operation in Eq. (19) can be expressed using the following 

matrix–vector notation as

c0 = A0k0, (20)

where

c0 ≜ ℐ′ 1 , ℐ′ 2 , …, ℐ′ N ⊤ (21)

is a N × 1 vector representing the true tissue enhancement curve, k0 is a N × 1 vector 

representing the true flow-scaled residue function, and A0 is given by the following N × N 
matrix:

A0 ≜ Δt

ℐa′ 1 0 ⋯ 0
ℐa′ 2 ℐa′ 1 ⋯ 0

⋮ ⋮ ⋱ ⋮
ℐa′ N ℐa′ N − 1 ⋯ ℐa′ 1

. (22)

In principle, the true flow-scaled residue function is given by

k0 = A0
−1c0 . (23)

Since A0 is unavailable in the clinical practice, it is replaced by a A matrix constructed by 

replacing ℐa′  in A0 by the measured Ia′. Similar to Eq. (18), A may contain both 

deterministic and stochastic deviations from A0:

A = A0 + biasA + ΔA (24)

= A + ΔA, (25)

where biasA is a lower-triangular matrix built from the bias of measured Ia′ t  relative to 

ℐa′ t . The bias may be induced by PVE, spatial blurring, spatial/temporal sampling, etc. ΔA 

in Eq. (25) is also lower-triangular matrix constructed from the stochastic noise of Ia′ t . 

A = A0 +  biasA is the expected value of A.

Similarly, c0 is unavailable in reality and has to be replaced by c≜[I′(1), I′(2), …, I′(N)]⊤. c 
is related to c0 by

c = c0 + biasc + Δc (26)
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= c + Δc . (27)

The actual deconvolution operates on c and A, and we refer the flow-scaled residue function 

estimated from c and A as k* to distinguish it from k0 in Eq. (23). To get k*, matrix A can 

be inverted by performing its SVD:

A = UΣV⊤, (28)

where Σ is a diagonal matrix containing the singular values of A, U and V are two 

orthogonal matrices containing the left- and right-singular vectors of A. With the 

factorization of A in Eq. (28), k* can be estimated using

k* = A†c
= VΣ†U⊤c

= ∑
i = 1

R ui⊤c
σi

vi,
(29)

where A† denotes the pseudoinverse of A, σi denotes the ith singular value of A (ranked 

from the largest to the smallested), and R denotes the rank of A.

In practice, a residue function estimated based on the SVD method in Eq. (29) is usually 

overly oscillatory due to noise and bias in A and c. Therefore, further regularization is 

needed to obtain a physiological reasonable k*. One of most popular regularization methods 

is to use the following the Tikhonov weighting factor to suppress the contribution of smaller 

singular values to A†:

fλ, i = σi2

λ2 + σi2
, (30)

where λ is related to the largest singular value (σ1) of matrix A and a dimensionless 

regularization parameter λrel by

λ = λrelσ1 . (31)

Using the weighting factor in Eq. (30), a regularized solution of k* is given by

k* = ∑
i = 1

R
fλ, i

ui⊤c
σi

vi . (32)

For this Tikhonov regularization method, its solution of k* is identical to that of the 

following regularized least squares problem (Appendix I):

k* = argmin
k ∈ ℝN

‖Ak − c‖2
2 + λ2‖k‖2

2, (33)
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The Tikhonov method falls into a more general category of regularization strategy:

k* = argmin
k ∈ ℝN

‖Ak − c‖2
2 + λ2‖Ψk‖2

2 . (34)

Here matrix Ψ could be an identity matrix (for Tikhonov method), a gradient matrix, or 

another operation to incorporate a priori knowledge of the residue function. By negating the 

partial derivative of the objective function in Eq. (34) with respect to k, the following 

closed-form solution for k* can be derived:

k* = A⊤A + λ2Ψ⊤Ψ −1A⊤c . (35)

As shown in Appendix II, the expected value of this estimator can be approximated by

k* ≈ A⊤A + λ2Ψ⊤Ψ
−1

A⊤c
= B⊤c,

(36)

where

B ≜ A A⊤A + λ2Ψ⊤Ψ
−1

(37)

= A0 + biasA A0 + biasA
⊤ A0 + biasA + λ2Ψ⊤Ψ −1

(38)

A comparison between Eqs. (36) and (23) shows that the difference between k* and the true 

flow-scaled residue function k0 is

k* − k0 ≈ B⊤c − A0
−1c0 (39)

= B⊤ c0 + biasc − A0
−1c0 (40)

Similarly, Appendix III shows that the autocovariance matrix of k* is given by

Ck* ≈ B⊤CcB, (41)

where Cc is the autocovariance matrix of the measured tissue enhancement curve c. Note 

that both Ck* and Cc are defined along the temporal dimension instead of the spatial 

dimension.

As shown in Appendix IV, Cc is related to the noise variance of the baseline images σb
2  and 

the noise variance of nonbaseline source images σ0
2  by
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Cc = σ0
2E + σb

2J, (42)

where E denotes the N × N identity matrix, J denotes the N × N all-ones matrix. If a 

temporal filter g(t) is applied to the baseline-corrected source images, Eq. (42) becomes

Cc = g σ0
2E + σb

2J g⊤ . (43)

As a brief summary of Section 3.A, both the signal and noise properties of the estimated 

flow-scaled residue function can be quantitatively connected to the signal and noise 

properties of the CTP source images and other processing parameters such as λ.

3.B. Cerebral blood volume

Based on Eq. (16), the estimated CBV (CBV*) is related to k* by

CBV* = ΔtH
ρ ∑

i = 1

N
k* ti

= ΔtH
ρ J1 × Nk* .

(44)

Correspondingly, the expected value of CBV* is directly related to that of k* by

CBV* = ΔtH
ρ J1 × Nk* . (45)

The noise variance of CBV* is given by

σcbv*
2 = ΔCBV* 2

= HΔt
ρ

2
J1 × NΔk*Δk*

⊤ JN × 1

= HΔt
ρ

2
J1 × NCk*JN × 1,

(46)

where 〈·〉 is the expected value operator. As shown in Eq. (46), σcbv*
2  is related to all 

elements (both diagonal and nondiagonal) of Ck*. σcbv*
2  is independent of k* and thus 

independent of c and the tissue type.

3.C. Cerebral blood flow

According to Eq. (14), CBF can be estimated from the maximal value of k*. The probability 

density function of obtaining an arbitrary value of x as the maximal value of k* is27

Pmax k* x = ∑
j = 1

N ∫
−∞

x ∫
−∞

x
mPk* kj ∏

i ≠ j
dxi, (47)

where the integration is (N − 1)-dimensional, i is an integer ∈ [1, N], and kj is an N × 1 

vector whose i element is related to the integration variables xi by
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kj[i] ≜
x  if i = j;
xi  if i ≠ j . (48)

In Eq. (47), mPk* denotes the multivariate probability density function of k*. Except at 

ultra-low dose levels, mPk* usually can be approximated by the multivariate normal 

distribution as

mPk* kj =
exp − 1

2 kj − k* ⊤Ck*
−1 kj − k*

(2π)N Ck
. (49)

Based on the probability density function of max(k*) given in Eq. (47), the first and second 

moments of max(k*) can be obtained as

max k* = ∫
−∞

∞
xPmax k* x dx, (50)

and

max k* 2 = ∫
−∞

∞
x2Pmax k* x dx . (51)

Since the estimated CBF is linearly related to max(k*) as

CBF* = H
ρ max k* , (52)

its expected value and noise variance are given by

CBF* = H
ρ max k* , (53)

and

σcbf*
2 = H2

ρ2 max k* 2 − max k* 2 . (54)

As Pmax(k*) depends on mPk* in Eq. (49), and mPk* depends on mPk* that is related to k* as 

shown in Eq. (36), the noise variance of CBF in Eq. (54) depends on tissue type. This is 

different from the noise model of CBV shown in Eq. (46), which is independent of the tissue 

type.

3.D. Time-to-maximum (tmax)

Assuming k* reaches its peak at the jth time frame, the corresponding probability mass 

function (PMF) is given by

Li and Chen Page 12

Med Phys. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PMF j = ∫
−∞

+∞
dx∫

−∞

x
⋯∫

−∞

x
mPk* kj ∏

i ≠ j
dxi, (55)

where kj is defined in Eq. (48).

The estimated time-to-maximum tmax*  (units: seconds) and the index of the postbaseline time 

frame (j) is related by

tmax* = j − 1 Δt . (56)

The expected value and noise variance of tmax*  are given by

tmax* = (j − 1)Δt, (57)

and

σtmax*
2 = Δt 2 j2 − j 2 , (58)

where j and j2 are the first and second moments of j that can be calculated using the PMF in 

Eq. (55). Similar to CBF, the signal and noise of tmax*  are dependent on both the signal and 

the noise of the tissue enhancement curve.

3.E. Summary of the theoretical model

As a brief summary of the theoretical model:

1. The signal of the estimated flow-scaled residue function depends on A, c, 

regularization method (Ψ) and its strength λ. It is independent of source image 

noise level;

2. Three mechanisms can introduce bias to the estimated flow-scaled residue 

function (and eventually biases of individual perfusion parameters): bias in the 

measured arterial enhancement curve (via term biasA), bias in the measured 

tissue enhancement curve (via term biasc, and regularizer used in deconvolution 

(via term λ2Ψ⊤Ψ);

3. The fundamental origin of noise in the estimated flow-scaled residue function 

and perfusion maps is the noise in the source image. As shown in Eqs. (41)–(43), 

if the noise in the baseline and nonbaseline source images goes to zero, Ck* 

becomes an all-zero matrix, which eliminates uncertainties in the measured k* 

and thus removes noise of individual perfusion parameters;

4. The noise of k* also depends on the arterial enhancement curve (via term A), 

regularizer (Ψ) and its strength (λ). It is independent of c and thus independent 

of the tissue type;
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5. The signal of the estimated CBV map is dependent on tissue type and is 

independent of source image noise. In contrast, the noise of CBV is independent 

of tissue type;

6. For the estimated CBF and tmax, both of their signal and noise depend on the 

tissue type and source image noise level;

7. A comparison between the all-one matrix J and the identity matrix I in Eq. (43) 

suggests that the contributions of the baseline noise σb
2 and the nonbaseline 

source image noise σ0
2 to the perfusion maps are not the same. This point will be 

revisited later in Section 6.

The following section describes numerical simulation methods to validate the theoretical 

model. The major advantage of numerical simulations is the availability of absolute ground 

truth for A0, c0, k0, and individual perfusion parameters. In vivo animal experiments were 

also performed to supplement the numerical simulations and demonstrate an example 

application of the theoretical model.

4. NUMERICAL AND EXPERIMENTAL METHODS

4.A. Numerical validation study

The numerical validation study used the same digital CTP phantom as the one in the Part I 

paper.1 Descriptions of this digital phantom can be found in the Part I paper. The simulated 

CTP image acquisition used the following parameters: Nb = 4, N = 21, and Δt = 2 s. For 

each time point, the true dynamic attenuation profile of this digital phantom was forward-

projected along 1000 view angles uniformly distributed over an angular span of 360 degrees. 

Poisson noise was added to the simulated prelog projection data, and the filtered 

backprojection (FBP) reconstruction was used to generate noisy CTP source images. The 

filtering kernel used in FBP was adjusted until the noise power spectrum of the 

reconstructed source images match that of experimental CTP sources acquired using a 

physical head phantom, a clinical MDCT scanner (GE Discovery CT750 HD), and a clinical 

CTP protocol. The simulation process was repeated 510 times, generating an ensemble of 

noisy CTP source images. Fig. 1 shows an example artery and tissue attenuation curves 

measured from the simulated CT images of the digital phantom. The measured Ia(t) is biased 

toward lower magnitudes compared with the ground truth curve ℐa t  due to spatial blurring 

and PVE. However, the stochastic deviation of Ia(t) from Ia t  is negligible due to the high 

vessel signal-to-noise ratio (SNR). In comparison, I(t) of each tissue is dominated by noise. 

However, its ensemble average, I t , is almost identical to the truth since the tissue territory 

has a much larger volume and thus less sensitive to spatial blurring and PVE compared with 

the blood vessels.

For each source image dataset in the ensemble, a baseline image was calculated by taking 

the average of the first 4 time frames. The other 21 frames was subtracted by this baseline 

image, and Ia(t) was extracted from the anterior cerebral artery of the phantom and used to 

construct matrix A. An SVD-based deconvolution with the Tikhonov regularizer described 

in Eqs. (30)–(32) was used to estimate k*(x, t). The regularizer strength λrel was adjusted 

Li and Chen Page 14

Med Phys. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from 0 to 1.5 to study the impact of λ on the signal and noise of perfusion parameters. From 

k*(x, t), CBV*(x), CBF*(x), and tmax* x  were calculated. This process was repeated for all 

datasets in the source image ensemble, allowing the mean and noise standard deviation of 

each perfusion parameter to be measured. Since the theoretical models shows that the signal 

and noise of perfusion parameters are closely related to k* and Ck*, the following 

measurements were also performed using the simulated data ensemble:

k* = 1
M ∑

i = 1

M
ki* (59)

and

Ck* = 1
M − 1 ∑

i = 1

M
ki* − k* ki* − k* ⊤, (60)

where M denotes the total number of k* samples.

The measured values were compared with those calculated using the theory in Section 3. 

The agreement between the measured and calculated values was quantified using the relative 

root mean squared error (rRMSE) and the Bland–Altman method.

4.B. In vivo animal study

The theoretical model was also validated using an in vivo canine experiment conducted 

under the approval of the Institutional Animal Care and Use Committee (IACUC) of 

University of Wisconsin-Madison. Unlike the numerical validation study, the expected form 

of the tissue enhancement curve, namely c, is not available for the in vivo study. Therefore, 

the animal study cannot be used to validate the signal models of CBF, CBV, and tmax. In 

addition, the animal study cannot be used to validate the noise models of CBF and tmax that 

require knowledge of c. However, it can be used to validate the CBV noise model in Eq. (46) 

that is independent of c. For the animal study, ensemble statistics-based noise measurement 

is not feasible, therefore experimental measurement of noise variance has to use the region-

of-interest (ROI)-based approach. Since all pixels in an ROI share the same arterial 

enhancement curve, A is not a source of uncertainty for the ROI-based noise variance 

results, and thus it can be considered equivalent to A for the purpose of theoretical noise 

calculation. Using A and Eq. (41), Ck* was theoretically calculated for a given λ, and then 

σcbv*
2 , was theoretically calculated using Eq. (46).

The animal experiment used an adult beagle with an acute ischemic infarction built in the 

left hemisphere. After an intravenous injection of 15 ml Isovue 370 and 10 ml saline at a rate 

of 3 ml/s, CTP source images were acquired using a 64-slice CT scanner (Discovery CT750 

HD, GE Healthcare) with the following protocol: kV = 80, tube current = 200 mA, 

sequential axial scan mode, beam collimation = 64 × 0.625 mm, time/gantry rotation = 0.5 s, 

scan field of view = “head,” total acquisition time T = 48 s, Δt = 2 s, display field of view = 

6 cm, “Standard” reconstruction kernel, reconstruction slice thickness = 5 mm, and 

reconstruction matrix size = 256 × 156 × 8. After extracting the AIF, a two-dimensional 
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pillbox filter with a radius of 0.7 mm was applied to the source images to reduce image 

noise. To facilitate the noise measurement, each time frame was double scanned, generating 

two sets of source images that can be subtracted to remove anatomical structure (Fig. 2). A 

scaling factor of 1/ 2 was multiplied to the subtraction result to account for the doubling of 

noise variance associated with image subtraction. σ0
2 was measured at each nonbaseline time, 

and the measured values were averaged.

For each set of CTP source images, SVD-based deconvolution with the Tikhonov regularizer 

was performed to estimate k*(x, t) for each pixel location x in the brain parenchyma, and 

then CBV*(x) were calculated, using Eq. (44). The two source image datasets generated two 

sets of CBV images, which were subtracted to remove anatomical structure and facilitate 

noise measurement. A scaling factor of 1/ 2 was multiplied to the subtraction result before 

CBV noise variance was measured. For a given λ, the measured σcbv*
2  was compared with 

the value theoretically calculated using Eq. (41) and matrix A.

In addition to this canine study, image data of another three canine subjects used in the Part I 

paper1 were retrospectively processed by the deconvolution-based processing method to 

demonstrate an example application of the theoretical model, which is on the prediction of 

the benefit of baseline noise reduction to deconvolution results. Data acquisition methods for 

these three canine studies can be found in the Part I paper. The example applications are 

reported in Section 6.

5. RESULTS

5.A. Numerical validation study: flow-scaled residue function

Figures 3–6 compare autocovariance matrices of k* generated from numerical simulations 

and theoretical calculations. All Ck* results have the same units of [s−1]. To demonstrate the 

robustness of the theoretical model, comparisons were performed at different source image 

noise levels, λ values, and tissue types. In Fig. 3, the simplified Ck* model shown in Eq. 

(41) and a more complete model shown in Appendix II [Eq. (A20)] were compared. The 

comparison was conducted under two different input conditions: results in the top row of 

Fig. 3 used σ0 = 1 HU and λrel = 0:5, Using Ck* from repeated simulations as a reference, 

the rRMSE of the complete and the simplified theoretical model are 0.001% and 0.002%, 

respectively. Results in the bottom row of Fig. 3 used σ0 = 5 HU and λrel = 0.1, and the 

rRMSE of the complete and the simplified theoretical model are both 0.210%. With this 

level of accuracy, theoretical results reported in the remainder of the paper were calculated 

using the simplified model.

The theoretical model can be used to obtain a better understanding of noise properties of the 

residue function. For example, Fig. 4 shows the dependence of Ck* on source image noise 

standard deviation σ0: As indicated by the color bars in this figure, the magnitude of Ck* is 

proportional to σ0
2, but the shape of Ck* is independent of σ0

2 for a given λ. This behavior is 

predicted in Eqs. (41) and (42). rRMSEs of the theoretical Ck* in the three columns in Fig. 4 

are 0.001%, 0.003%, and 0.051%, respectively.
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Figure 5 shows the dependence of Ck* on λ = λrelσ1
A. As indicated by the color bars, the 

magnitude of Ck* decreased with increasing λrel, but the noise magnitude reduction was 

accompanied by stronger noise covariance along the temporal direction. rRMSEs of the 

theoretical Ck* in the three columns in Fig. 4 are 0.009%, 0.003%, and 0.003%, respectively.

As indicated by the theoretical model in Eq. (41), Ck* is independent of tissue enhancement 

curve and perfusion properties. This point is validated in Fig. 6, which shows the measured 

and theoretically calculated Ck* for three types of brain tissue that have different perfusion 

properties.

The theoretically calculated and measured k* curves were compared in Fig. 7. rRMSEs of 

the theoretical curves were smaller than 0.130%. For a given σ0 value, flattening of k*
became more severe with increasing λ, indicating stronger signal correlation along the 

temporal dimension. Compared with the truth (k0) shown in Fig. 7(a), a flatter k* curve 

corresponds to a lower peak value, which may corresponds to a lower CBF value. 

Meanwhile, the position of the peak along the temporal direction did not demonstrate any 

shift with changing λ, suggesting that the expected value of estimated tmax is less sensitive 

to regularization strength compared to CBF.

In addition to the k dependence, Figs. 7(c)–7(d) showed that as long as λ is fixed, k* is 

independent of the source image noise level σ0. This is consistent with the theoretical model 

in Eq. (36).

5.B. Numerical validation study: perfusion parameters

Figure 8 compares the measured and theoretically calculated CBV* (a), CBF* (b), and tmax*
(c) of gray matter at different regularization strength levels. The theoretical values are 

consistent with the simulation results: as shown by the Bland–Altman plots, the difference 

between the measured and theoretically calculated CBV* are within ±0.03 ml/100 g. For 

CBF and tmax, the differences are within ±1.5 ml/min/100 g and [0.03,0.21] s, respectively, 

which are significantly smaller than the corresponding mean values. The theoretical model 

accurately predicted the dependence of the signal value of each perfusion parameter on 

CBV* decreased almost linearly with increasing λrel (R2 of a linear fit is 0.998); CBF* also 

decreased with increasing λrel, and their relationship can be empirically modeled as a power 

law of CBF ∝ λrel
−0.9. tmax*  reached its minimum at λrel = 0.4 then increased slightly with 

larger λrel. However, the relative change of tmax*  over different λrel values was less than 0.5 

s.

Figure 9 shows the measured and theoretically calculated noise standard deviations of 

perfusion parameters of gray matter. The theoretical values matched those measured from 

repeated simulations: as shown by the Bland–Altman plots, the difference between the 

measured and predicted σcbv* values are within ±0.015 ml/100 g. For CBF and tmax, the 

differences are within ±0.2 ml/min/100 g and ±0.18 s, respectively, which are insignificant 

differences. The theoretical model shows that σcbv* decreased almost linearly with 

increasing λrel (R2 of linear fit is 0.991); σcbf* decreased with increasing λrel, and the trend 
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can be empirically modeled as a power law of σcbf* ∝ (λrel)−1.0; σtmax*  reached a minimum 

at λrel = 0.4 then increased slightly with larger λrel. Overall speaking, the dependence of 

σtmax*  on λrel is not as strong as in the case of CBVor CBF.

5.C. Animal validation study

As shown in Fig. 10, the theoretical values of σcbv*
2  calculated using the workflow shown in 

Fig. 2 are consistent with the experimental values: at all of the λrel levels evaluated, the 

theoretical σcbv*
2  fell within the 25th and 75th percentiles of the experimental σcbv*

2 . The 

trend of the σcbv*
2 − λrel curve is consistent with results of the numerical study shown in Fig. 

9(a).

6. EXAMPLE APPLICATION OF THE THEORETICAL MODEL: IMPACT OF 

BASELINE NOISE IN DECONVOLUTION-BASED SYSTEMS

As shown by the theoretical model in Eqs. (41), (42) and (46), the noise variance of the 

measured CBV map is related to baseline noise variance σb
2  and nonbaseline source image 

noise variance σ0
2 by

σcbv*
2 ≈ HΔt

ρ
2
J1 × NB⊤CcBJN × 1

= HΔt
ρ

2
σ0

2J1 × NB⊤BJN × 1 + σb
2J1 × NB⊤JBJN × 1

= HΔt
ρ

2
σ0

2 ∑
i = 1

N
∑
j = 1

N
∑

k = 1

N
BkiBkj + σb

2 ∑
i = 1

N
∑
j = 1

N
Bij

2
(61)

Since the N3 summation terms in (Σi Σj Σk BkiBkj)is only is only a small subset of the N4 

summation terms in (Σi Σj Bij)2, the weight on σb
2 should be much larger than the weight on 

σ0
2. Reducing the baseline noise, therefore, should be very effective in reducing the noise of 

deconvolution-derived CBV map.

Motivated by this theoretical analysis, we retrospectively analyzed CTP data of the three 

canine subjects used in the Part I paper.1 For each subject, a CTP acquisition was performed 

using an x-ray tube current (mA) modulation scheme optimized for nondeconvolution-based 

CBV imaging, so that σb
2 is only 5% of σ0

2. Each subject also underwent another CTP scan 

with a constant mA; the radiation dose of the two scans was matched. As shown in Fig. 11 

and Table II, despite the fact that the mA modulation scheme was optimized for the 

nondeconvolution-based systems, it still led to effective noise reductions in the 

deconvolution-based CBV maps because of the reason stated in the previous paragraph. The 

specific percentage of noise reduction depends on matrix A and thus varies across the three 

subjects.
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Using the AIF of each subject previous measured for the Part I paper, matrix A was 

constructed and used to calculate σcbv* for each dose delivery method and subject. As shown 

in Table II, the theoretically calculated σcbv* and noise reduction percentage (by using 

modulated mA) are consistent with the experimental values, which again proved the validity 

of the CBV noise model.

7. DISCUSSION

The major findings of the theoretical model have been summarized in Section 3.E and thus 

are not repeated in this section. Here we would like to emphasize the major assumptions 

used in the theoretical derivations, so that a user of the theory is aware of the conditions 

under which the model remains valid. First and foremost, the theory assumes the indicator-

dilution theory and other components of the the physiological model in Section 2.A to be 

valid. If there is a blood–brain barrier breakage or strong bolus dispersion, the convolution 

model may no longer be strictly valid, and the associated CTP signal and noise model may 

need to be modified. Second, the signal and noise models of k* presented in Eqs. (36) and 

(41) assume that the deconvolution operation was implemented using SVD with Tikhonov or 

other regularizers that allow the deconvolution to be formulated as a quadratic optimization 

problem. Third, the derivation of Cc in Appendix IV assumes that for a given spatial 

location, CT noise is uncorrelated and stationary along the temporal direction before a 

temporal filter is applied. As shown in the Part I paper,1 the “temporally white noise” 

assumption is often valid for the native source images acquired from modern CT scanners 

with negligible detector lag; the temporally stationary noise assumption could be slightly 

violated by the temporal variation of the iodine concentration in the brain.

In addition to the presented example, the theoretical models can be potentially used to 

facilitate the understanding of the quantitative relationship between CTP imaging 

performance and system parameters and conditions such as the temporal sampling interval 

(Δt), CT reconstruction kernel, deconvolution regularizer, contrast injection protocol, and 

PVE. Taking PVE as an example, it often creates bias in the measured AIF and matrix A, 

which impacts the signal and noise of the flow-scaled residue function and individual 

perfusion parameters. Using the theoretical model, the transfer of the PVE-induced bias 

through the CTP imaging chain and its specific impact to each perfusion parameter can be 

quantitatively analyzed.

Although the theoretical models were derived based on the conventional delay-sensitive 

deconvolution method, it can be directly extended to the delay-insensitive block-circulant 

deconvolution method. The major difference between these two deconvolution methods 

points to how matrices A0 is defined: in the block-circulant method, matrix A0 in Eq. (20) is 

augmented as follows:5

A0′ =
A0 A0

circ

A0
circ A0

, (62)

where A0
circ is an N × N matrix defined as
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A0
circ ≜ Δt

0 ℐa′ N ⋯ ℐa′ 2
0 0 ⋯ ℐa′ 3
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

. (63)

Since the matrix size of A0′  is 2N × 2N instead of N × N, the vector c0 in the convolution 

model in Eq. (20) needs to be padded with N zeros to meet the dimensionality requirement 

for matrix multiplication. Similarly, the size of k0 needs to be expanded from N × 1 to 2N × 

1. Despite these modifications in the matrix definition and dimensionality, the theoretical 

models are still applicable to the block-circulant deconvolution method since the derivation 

in Section 3 did not rely on the specific value of N and the contents of A0 and c0. One 

potential future work is to theoretically compare the statistical signal estimation efficiency of 

the delay-sensitive and delay-insensitive deconvolution methods for a given set of CTP 

system inputs under the following two conditions: (a) tracer delay is present; (b) tracer delay 

is absent.

8. CONCLUSIONS

A theoretical analysis was performed to disentangle the relationship between statistical 

properties of parametric perfusion maps, CTP source images, and deconvolution method. A 

set of theoretical models were established to pinpoint how each component of the CTP 

imaging system quantitatively impacts the precision and accuracy of parametric perfusion 

maps. These models can be potentially used to provide the needed scientific guidance for the 

development, optimization, and standardization of deconvolution-based CTP systems.
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APPENDIX I: REGULARIZED LEAST SQUARES SOLUTION OF k*

The solution of k* in Eq. (33) is given by taking the derivative of the objective function with 

respect to k, then setting the result to 0 at k = k*. The solution is given by

k* = A⊤A + λ2E −1A⊤c . (A1)

Using the SVD of A in Eq. (28), A⊤A can be decomposed into

A⊤A = UΣV⊤ ⊤UΣV⊤

= VΣU⊤UΣV⊤

= VΣ2V⊤,
(A2)
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where Σ2 is a diagonal matrix with its ith diagonal element being σi2 (square of the ith 

singular value of A). Correspondingly, term (A⊤A + λ2E) in Eq. (A1) can be written as

A⊤A + λ2E = VΣ2V⊤ + V λ2E V⊤ = VΣ′V⊤, (A3)

where Σ′ = Σ2 + λ2E is a diagonal matrix with its ith diagonal element being σi2 + λ2. Based 

on Eq. (A3), the least squares solution of k* in Eq. (A1) can be expressed as

k* = VΣ′V⊤ −1A⊤c
= VΣ′−1V−1 VΣU⊤ c
= V Σ′−1Σ U⊤c

= ∑
i = 1

R σi
σi2 + λ2ui⊤cvi

= ∑
i = 1

R
fλ, i

ui⊤c
σi

vi,

(A4)

where fλ, i = σi2/ σi2 + λ2 . As shown in Eq. (A4), solving the least squares problem in Eq. 

(33) leads to the same solution of k* as performing an SVD-based deconvolution with the 

Tikhonov regularization described in Eqs. (30)–(32).

APPENDIX II: SIGNAL MODEL OF k*

Based on Eq. (35), k* is related to A and c as

A⊤A + λ2Ψ⊤Ψ k* = A⊤c . (A5)

By substituting A with A + ΔA  and c with c + Δc  and applying the expected value operator 

〈·〉 on both sides of the equation, Eq. (A5) becomes

A + ΔA
⊤ A + ΔA + λ2Ψ⊤Ψ k* (A6)

= A + ΔA
⊤ c + Δc

= A⊤c + ΔA
⊤c + A⊤Δc + ΔA

⊤Δc

= A⊤c + ΔA
⊤Δc

(A7)

≈ A⊤c . (A8)

From (A7) to (A8), we ignored ΔA
⊤Δc  since the covariance between arterial and tissue 

enhancement curves is usually negligible except for tissue in close proximity of xa.
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The formula in (A6) can be expanded as

A + ΔA
⊤ A + ΔA + λ2Ψ⊤Ψ k*

= A⊤A k* + A⊤ΔAk* + ΔA
⊤Ak*

+ ΔA
⊤ΔAk* + λ2Ψ⊤Ψ k*

(A9)

Since the SNR of each point on the arterial enhancement curve is usually very high, an 

element in term A⊤A k*  can be considered much higher than the corresponding element in 

A⊤ΔAk* . Similarly, ΔA⊤Ak*  and 〈ΔA
⊤ΔAk*〉 in (A9) can also be considered 

insignificant compared with A⊤A k* . Therefore, the left-hand side of Eq. (A6) can be 

approximated by

A + ΔA
⊤ A + ΔA + λ2Ψ⊤Ψ k*

≈ A⊤A k* + λ2Ψ⊤Ψ k* .
(A10)

A combination of Eqs. (A8) and (A10) gives

A⊤A + λ2Ψ⊤Ψ k* ≈ A⊤c, (A11)

or equivalently,

k* ≈ A⊤A + λ2Ψ⊤Ψ
−1

A⊤c, (A12)

APPENDIX III: NOISE MODEL OF k*

The solution of k* in Eq. (34) is given by taking the derivative of the objective function with 

respect to k, then setting the result to 0 at k = k*, namely

0 = A⊤Ak* − A⊤c + λ2Ψ⊤Ψk* (A13)

By substituting c with c + Δc and substituting A with A + ΔA Eq. (A13) becomes:

0 = A⊤ + ΔA
⊤ A + ΔA k* − A⊤ + ΔA

⊤ c + Δc + λ2Ψ⊤Ψk*
≈ A⊤A + A⊤ΔA + ΔA

⊤A k* − A⊤c − A⊤Δc − ΔA
⊤c + λ2Ψ⊤Ψk*,

(A14)

where second-order error terms such as ΔA
⊤ΔAk* and ΔA

⊤Δc are ignored. By decomposing k* 

into k* + Δk*, Eq. (A14) becomes
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0 ≈ A⊤A + A⊤ΔA + ΔA
⊤A + λ2Ψ⊤Ψ k* + Δk* − A⊤c − A⊤Δc − ΔA

⊤c
≈ A⊤A + λ2Ψ⊤Ψ k* − A⊤c + A⊤ΔA + ΔA

⊤A k* + A⊤A + λ2Ψ⊤Ψ Δk*

− A⊤Δc − ΔA
⊤c .

(A15)

Again, second-order error terms A⊤ΔAΔk* and ΔA
⊤AΔk* are ignored. Based on Eq. (A11), 

A⊤A + λ2Ψ⊤Ψ k* − A⊤c ≈ 0. Therefore, Eq. (A15) can be further simplified to

0 ≈ A⊤ΔA + ΔA
⊤A k* + A⊤A + λ2Ψ⊤Ψ Δk* − A⊤Δc − ΔA

⊤c, (A16)

From Eq. (A16), term Δk* can be isolated as

Δk* ≈ A⊤A + λ2Ψ⊤Ψ
−1

A⊤Δc + ΔA
⊤c − A⊤ΔAk* − ΔA

⊤Ak* . (A17)

Based on the expression of Δk* in Eq. (A17), the autocovariance matrix of k* is given as

Ck* = Δk*Δk*⊤

≈ A⊤A + λ2Ψ⊤Ψ
−1 (A18)

× A⊤Δc + ΔA
⊤c − A⊤ΔAk − ΔA

⊤Ak A⊤Δc + ΔA
⊤c − A⊤ΔAk − ΔA

⊤Ak
⊤

× A⊤A + λ2Ψ⊤Ψ
−1 ⊤ (A19)

= A⊤A + λ2Ψ⊤Ψ
−1

Δ1 + Δ2 − Δ3 − Δ4 Δ1 + Δ2 − Δ3 − Δ4
⊤

A⊤A + λ2Ψ⊤Ψ
−1

,
(A20)

where

Δ1 ≜ A⊤Δc, Δ2 ≜ ΔA
⊤c, Δ3 ≜ A⊤ΔAk, Δ4 ≜ ΔA

⊤Ak . (A21)

Essentially, Δ1 is the noise of c filtered by the signal of the arterial enhancement curve; Δ2 is 

noise of the arterial enhancement curve filtered by the signal of c. As shown in the Part I 

paper,1 the noise variances of the arterial and tissue enhancement curves are usually on the 

same order of magnitude, but the nonzero elements in A is usually an order of magnitude 

higher than element in c. Therefore, 〈Δ2Δ2
⊤〉can be considered insignificant when compared 

to 〈Δ1Δ1
⊤〉. Using similar arguments, 〈Δ3Δ3

⊤〉 and 〈Δ4Δ4
⊤〉 can also be considered 

insignificant compared with 〈Δ1Δ1
⊤〉.

In addition, if the covariance between tissue and arterial enhancement curves can be ignored, 

the covariance terms in Eq. (A20) such as such as 〈Δ1Δ2
⊤〉 and 〈Δ1Δ3

⊤〉can be neglected. 

As a result, the formula of Ck* can be simplified to
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Ck* ≈ A⊤A + λ2Ψ⊤Ψ
−1

Δ1Δ1⊤ A⊤A + λ2Ψ⊤Ψ
−1

= A⊤A + λ2Ψ⊤Ψ
−1

A⊤ ΔcΔc
⊤ A A⊤A + λ2Ψ⊤Ψ

−1

= A⊤A + λ2Ψ⊤Ψ
−1

A⊤CcA A⊤A + λ2Ψ⊤Ψ
−1

.

(A22)

The covariance model in Eq. (A22) is referred to as the simplified model, while the one in 

Eq. (A20) is referred to as the complex (or more complete) model.

APPENDIX IV: AUTOCOVARIANCE OF THE BASELINE-CORRECTED 

TISSUE ENHANCEMENT CURVE

With the baseline correction, the tissue enhancement curve for a given spatial location can 

be written as the following vectorized form

c =

I(1)
I(2)

⋮
I(N)

−

Ib
Ib
⋮
Ib

= I − IbJN × 1, (A23)

where I(1) denotes the first postbaseline time frame, and JN×1 denotes an N × 1 all-one 

vector. Eq. (A23) can be decomposed into

c = I + ΔI − Ib + ΔIb JN × 1
= I − IbJN × 1 + ΔI − ΔIbJN × 1
= c + Δc,

(A24)

where Δc = ΔI − ΔIbJN × 1 denotes the stochastic deviation of c from expected form c. The 

autocovariance matrix of c is given by

Cc = ΔcΔc
⊤

(A25)

= ΔIΔI
⊤ + ΔIb

2 JN × N − ΔIbΔIJ1 × N − ΔIbJN × 1ΔI⊤ ,
= CI + σb

2JN × N −  matrix3 −  matrix4,
(A26)

where CI = 〈ΔIΔI
⊤〉 denotes the autocovariance matrix of the nonbaseline source images, 

σb
2 = ΔIb

2  denotes the noise variance of the baseline image. Since the covariance between 

baseline and nonbaseline frames is usually negligible, matrix3 and matrix4 in Eq. (A26) can 

be ignored, and CI can be approximated by

Cc ≈ CI + σb
2JN × N . (A27)
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As shown in the Part I paper,1 prior to applying any temporal filter, the original source image 

noise can be considered white along the temporal direction with a relatively uniform 

variance of σ0, and thus CI can be approximated by

CI ≈ σ0
2EN × N . (A28)

Accordingly, Eq. (A27) becomes

Cc = σ0
2EN × N + σb

2JN × N . (A29)

Further, if the baseline and nonbaseline frames were acquired with the same exposure level, 

σb
2 = σ0

2/Nb, where Nb is the total number of baseline frames. In this special case,

Cc = σ0
2 EN × N + 1

Nb
JN × N . (A30)
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FIG. 1. 
Artery (a) and tissue (b) enhancement curves of the digital phantom. The ground truth 

curves [ℐa t  and ℐ t ] were shown as dashed lines. The expected CT signal (〈Ia(t)〉 and 

〈I(t)〉) are shown as dash-dotted lines, and a single set of their noisy realizations is also 

included. WM: white matter; WMSR: white matter with severely reduced blood flow.
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FIG. 2. 
Workflow for the canine subject-based validation study. The top figure illustrates the time 

sequence of canine computed tomography perfusion source image acquisition: each frame in 

Dataset 1 was accompanied by an extra scan, providing a Dataset 2 to facilitate noise 

measurements. Based on the arterial attenuation curve shown in the top figure, matrix A⊤A 

was constructed and fed to the theoretical model to calculate σcbv*
2 . Meanwhile, the two 

source image datasets produced two sets of CBV maps, from which σcbv*
2  was 

experimentally measured.
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FIG. 3. 
Comparisons of Ck* of gray matter generated from repeated simulations and theoretical 

calculation using Eq. (41) (simplified model) or Eq. (A20) (relatively complete model). For 

the top row: σ0 = 1 HU, λrel = 0.5; for the bottom row: σ0 = 5 HU, λrel = 0.1.
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FIG. 4. 
Comparisons of measured (top row) and theoretically calculated (bottom row) Ck* of white 

matter in the digital phantom. The Tikhonov regularization strength (λrel) was fixed at 0.2. 

Three source image noise levels (σ0) were used. Note that the color bars of the three 

columns are not matched: Ck* in the last column have significantly higher magnitudes.
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FIG. 5. 
Comparisons of measured (top row) and theoretically calculated (bottom row) Ck* of white 

matter in the digital phantom. The source image noise level (σ0) was fixed at 3 HU. Three 

levels of Tikhonov regularization strength were used.
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FIG. 6. 
Comparisons of measured (top row) and theoretically calculated (bottom row) Ck* for three 

types of brain tissue with different perfusion properties. σ0 and λrel were fixed at 4 HU and 

0.4, respectively.
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FIG. 7. 
Comparison of measured and theoretically calculated k* for gray matter with reduced blood 

flow in the digital phantom. The following input parameters were used: (a) σ0 = 1 HU, λrel 

= 0.1; (b) σ0 = 1 HU, λrel = 0.5; (c) σ0 = 1 HU, λrel = 1.0; (d) σ0 = 10 HU, λrel = 1.0.
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FIG. 8. 
Comparison of measured and theoretically calculated CBV* (a), CBF* (b), and tmax*  (c) for 

gray matter in the digital phantom. The corresponding Bland–Altman plots are shown in (d), 

(e), and (f), respectively. The ground truth values of cerebral blood volume, cerebral blood 

flow, and tmax are 3.3 ml/100 g, 53 ml/min/100 g, and 0 s, respectively. SD: standard 

deviation.
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FIG. 9. 
Comparison of measured and theoretically calculated σcbv* (a), σcbf* (b), and σtmax*  (c) for 

gray matter in the digital phantom. The corresponding Bland–Altman plots are shown in (d), 

(e), and (f), respectively in the second row.
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FIG. 10. 
Experimental and theoretical σcbv* values of the canine subject described in Section 2.
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FIG. 11. 
Cerebral blood volume (CBV) maps of the three in vivo canine subjects used in the Part I 

paper.1 CTDIvol of the computed tomography perfusion (CTP) exam with modulated mA 

was matched to that of the constant mA CTP exam. The singular value decomposition-based 

deconvolution method with a Tikhonov regularization strength of λrel =0.5 was used to 

generate these CBV maps.
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TABLE I.

Glossary of symbols

VOI Volume of interest in the brain tissue

Ca Contrast concentration at the arterial inlet of a VOI

Cv Contrast concentration at the venous outlet of the VOI

Ctis Contrast concentration in the brain tissue

mvoi
c t Mass of contrast in the VOI at time t

min
c t Mass of contrast passing though arterial inlet by t

moutc t Mass of contrast drained though venous outlet by t

F Volume of blood passing through the VOI per unit time

V voi 
tis  Volume of brain tissue in the VOI

ρ Mass density of brain tissue

H Ratio between arterial and capillary hematocrits

h(t) Probability density function of blood transit time

r(t) Residue function

k(t) Flow-scaled residue function

x Spatial location in the brain

xa Spatial location of a major feeding artery

ℐ x, t True pixel value of CTP source image

I(x,t) Pixel value of the measured source image

Ib(x) Pixel value of the measured baseline image

I′ (x, t) Baseline-corrected image: I′ (x, t) = I(x, t) − Ib(x)

c Measured tissue enhancement curve, vectorized

c Expected form of c

c0 Truth of the tissue enhancement curve

biasc c − c0
A Arterial enhancement convolution matrix

σ1 The largest singular value of A

λ Weight of regularizer used in deconvolution

λrel Relative weighting factor: λ = λrelσ1

k* Estimated flow-scaled residue function

C Autocovariance matrix of a temporal curve

N Total number of postbaseline time frames

Nb Total number of baseline time frames

σ0
2 Noise variance of CTP source images

σb
2 Noise variance of the baseline image

max Peak value of a dynamic curve

tmax Time to peak of the residue function
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⊤ Transpose of a matrix or vector

Δt Time interval between two consecutive source frames

E The identity matrix

J The all-one matrix
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