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ABSTRACT The “Moore swab” is a classic environmental surveillance tool whereby
a gauze pad tied with string is suspended in flowing water or wastewater contami-
nated with human feces and harboring enteric pathogens that pose a human health
threat. In contrast to single volume “grab” samples, Moore swabs act as continuous
filters to “trap” microorganisms, which are subsequently isolated and confirmed us-
ing appropriate laboratory methods. Continuous filtration is valuable for the isola-
tion of transiently present pathogens such as human-restricted Salmonella enterica
serovars Typhi and Paratyphi A and B. The technique was first proposed (1948) to
trace Salmonella Paratyphi B systematically through sewers to pinpoint the residence
of a chronic carrier responsible for sporadic outbreaks of paratyphoid fever. From
1948 to 1986, Moore swabs proved instrumental to identify long-term human reser-
voirs (chronic carriers) and long-cycle environmental transmission pathways of S. Ty-
phi and Paratyphi, for example, to decipher endemic transmission in Santiago, Chile,
during the 1980s. Despite limitations such as intermittent shedding of typhoidal Sal-
monella by humans and the effects of dilution, S. Typhi and S. Paratyphi have been
recovered from sewers, surface waters, irrigation canals, storm drains, flush toilets,
and septic tanks by using Moore swabs. Driven by the emergence of multiple
antibiotic-resistant S. Typhi and S. Paratyphi A strains that limit treatment options,
several countries are embarking on accelerated typhoid control programs using vac-
cines and environmental interventions. Moore swabs, which are regaining apprecia-
tion as important components of the public health/environmental microbiology tool-
box, can enhance environmental surveillance for typhoidal Salmonella, thereby
contributing to the control of typhoid fever.

KEYWORDS Moore swab, environmental surveillance, typhoidal Salmonella,
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Looking at the fact in all its bearings, the only rational explanation of it
seems to be, that the sewer does not propagate intestinal fever because
it exhales foul gases, but solely because it is the actual recipient and ve-
hicle of the fever poison.
—William Budd (1)

William Budd’s incrimination of sewage effluents as a major contaminant and
cause of enteric illness (1) preceded Gaffky’s isolation of Salmonella enterica

subspecies enterica serovar Typhi as the pathogenic cause of typhoid fever in 1886 (2)
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by 25 years. Recovery of S. Typhi from sewage became routine after the introduction of
highly selective Wilson and Blair’s bismuth sulfite agar in 1927 (3), which allowed
isolation of S. Typhi from complex mixed sewage and fecal samples (4–9). Indeed, since
these discoveries, wastewater has been repeatedly subject to systematic surveillance,
and outbreak responses to enteric illnesses have relied upon practical methods to
detect pathogens in sewage and contaminated water.

In 1946, Brendan Moore (Fig. 1) of the Public Health Laboratory of Exeter was called
upon to identify the sources of infection responsible for clusters of paratyphoid fever
cases in North Devon, England, between 1943 and 1945 and for a larger outbreak of 25
cases in 1946 (10). Moore’s epidemiologic investigation linked the cases to a swimming
area likely contaminated with sewage carrying Salmonella enterica subspecies enterica
serovar Paratyphi B, the agent of paratyphoid B fever, and with consumption of ice
cream from a truck vendor (10). Previously, environmental sources that had been
shown to be contaminated with paratyphoid bacilli included untreated sewage (9) and
feces-contaminated drinking/cooking water (11). For decades, public health officers
had utilized sewage surveillance to detect shedders of these bacilli by inoculating
sewage samples into enrichment broths, subculturing the broth onto selective media,
identifying suspicious colonies, further subculturing to confirm characteristic biochem-
ical profiles, serotyping by agglutination with specific antisera to surface antigens, and,
when relevant and available, further typing with bacteriophages (12).

To identify the specific foci of infection behind these North Devon outbreaks, Moore
and colleagues applied systematic “sewage tracing” (10, 13). Moore’s predecessors
would have expended enormous human and material resources to collect directly a
volume of sewage at single time points, i.e., “catch” or “grab” sampling, across the town
and then to check each sample for evidence of paratyphoid bacilli, while hoping that
a sampling event would coincide with fecal excretion of paratyphoid bacilli into one of
the sewers. Moreover, fecal excretion of S. Typhi and S. Paratyphi by short-term or
chronic carriers may be intermittent (14–17), rendering even aggregates (composites)
of several grab samples over an interval inadequate. To preserve resources and
overcome the challenge posed by intermittent shedding, Moore sought to lay “traps”
in the municipal sewers that could filter the microbial contents of flowing sewage
continuously over extended periods of time.

FIG 1 Portrait of Brendan Moore. (Reprinted with permission from the Report and Transactions of the
Devonshire Association for the Advancement of Science [133].)

Minireview Applied and Environmental Microbiology

July 2020 Volume 86 Issue 13 e00060-20 aem.asm.org 2

https://aem.asm.org


A simple technique was therefore used of taking a piece of gauze about four
feet in length and six inches wide, folding it into a pad of eight thicknesses
and attaching it firmly by one end to a long piece of stout string. The gauze
was then immersed in the flowing sewage, the string attached suitably just
under the manhole cover, and the gauze left in position for 48 hours (10).

Moore applied the same classical bacteriology techniques of his day to enrich,
select, isolate, and confirm S. Paratyphi B from these integrated sewer samples. He
traced excretion of paratyphoid B bacilli to the single-family home of the local ice
cream truck vendor and his wife. Fecal cultures from the ice cream truck owner’s wife
confirmed that she was a chronic (putative gallbladder) carrier of paratyphoid bacilli
and the likely source of infection for the 1946 outbreak. In North Devon, and in
Sidmouth, Moore refined his technique for tracing excretion of S. Paratyphi and S. Typhi
to single blocks and housing units (13, 18, 19).

This humble innovation to traditional sewage sampling paved the way for dozens of
identifications of residual excreters of Salmonella Typhi and Paratyphi over the subse-
quent decades. Named after its dutiful inventor, this device became known as the
“Moore swab” or generically as the “sewer swab,” “gauze pad,” or “sewer pad” method
of trap sampling for enteric pathogens in sewage. Over the past 75 years, Moore’s
classical technique for the detection of typhoidal Salmonella in sewage has been
adapted to many fecal borne pathogens, including Vibrio cholerae O1 (20–26), Aero-
monas spp. (27, 28), nontyphoidal Salmonella serovars (29), Escherichia coli O157:H7
(30), Campylobacter spp. (31), and poliovirus (32–38), among others (39). The utility of
the method has expanded beyond the tracing of active pathogen excretion in sewage
and rivers to include investigations of ongoing outbreaks, systematic environmental
surveillance, bacterial enumeration in surface waters, and septic tank surveillance. In
the ensuing sections, we first provide brief instructions on the Moore swab technique
and its construction and then highlight several of these expanded uses, focusing on the
detection of typhoidal Salmonella and Vibrio cholerae O1 as archetypal examples. We
aim to stimulate new public health expertise and revitalize this versatile technique in
both academic and public health laboratories where enteric disease surveillance and
outbreak response to fecally transmitted human pathogens are integral to control
efforts.

MOORE SWAB CONSTRUCTION AND PARAMETERS

Moore swabs are crafted using strips of cotton gauze cut into 6-inch by 48-inch
lengths and folded eight times until an 8-ply square pad is formed (Fig. 2). The 6-inch
by 6-inch square-pad is tied by a string, twine, wire, or fishing line around the center
(10, 18, 40) and often sterilized in an autoclave. For a defined and controllable mesh
size, cheese cloth may be substituted in place of cotton gauze (41–44). Long slits may
also be cut into the square pad (41) or the uncut pad may simply be tied at a corner.
Variations of the Moore swab have rendered it suitable for sampling typhoidal Salmo-
nella from water closets (45), poliomyelitis virus from sewers (38), and other enteric
pathogens from surface waters (46).

After its introduction, the method was expanded upon with variations on the
setting, swab parameters, and postsampling enrichment and selection methods (Table
1). In recognition of differences in preference and available resources among enteric
laboratories globally, the parameters and bacteriological steps in Table 1 represent
examples drawn from the literature and author experience.

SALMONELLA TYPHI AND PARATYPHI

Typhoid and paratyphoid fevers, caused by ingestion of S. Typhi and S. Paratyphi A
or B, respectively, are enteric illnesses that emerged as ideal candidates for environ-
mental surveillance based on their epidemiology. These human host-restricted infec-
tions (47) by definition have no animal reservoir and are spread from person to person
via the fecal-oral route by the consumption of food or water vehicles contaminated
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with the pathogen, either directly through short-cycle or indirectly through long-cycle
transmission. The former usually takes place through a food vehicle contaminated by
a temporary or chronically (�12 months) infected individual who is shedding bacteria
in their feces. Asymptomatic chronic carriers can harbor S. Typhi or S. Paratyphi in their
gallbladders and intermittently excrete bacteria for decades. In long-cycle transmission,
humans become infected from the consumption of vehicles derived from environmen-
tal contamination such as untreated sewage/septic system effluents reaching untreated
water supplies or being used to irrigate crops that are consumed uncooked (48, 49).
Viable S. Typhi bacilli have been recovered from septic tanks after 24 to 27 days (50, 51),
vegetables after 1 to 2 months, and soil after 2 to 3 months (52, 53). S. Typhi can also
travel considerable distances through soil, groundwater, and surface water (54). Thus,
surveillance for these pathways is key to interrupt amplified transmission in high-
incidence populations and to detect and eliminate residual reservoirs (i.e., temporary
and chronic carriers).

Historically, it had been difficult to grow typhoidal Salmonella serovars from envi-
ronmental sources; however, 20th century milestones in the formulation of enrichment
broths, selective media, and both serotyping and bacteriophage typing markedly
expanded the toolbox of the public health and environmental officer (12). After Moore’s
classical publications, the technique was rapidly adopted across the United Kingdom
and the United States to solve similar challenges—sporadic but persistent outbreaks of
typhoid fever in small towns— epidemiologically akin to Moore’s experiences in North
Devon and Sidmouth. Each group expanded upon Moore’s initial methodology to suit
the needs of their surveillance program and to compare bacteriological methods.

Tracing a chronic carrier through sewers and rivers. The classical use of the
Moore swab, as described, was to trace an unknown but suspected chronic carrier

FIG 2 Constructing a Moore swab. (A and B) A length of gauze, 6 inches by 48 inches, is folded onto itself
in a pleated pattern to form a pad. (C and D) The gauze pad is tied at the center with high-test fishing
line. (E) The Moore swab may be suspended in flowing sewers or surface waters.
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through sewer or river sampling. The dilemma was typical: a small outbreak of a few
cases of enteric fever would occur every few years or so, oftentimes of a single phage
type, and a public health official or medical officer would eventually suspect an
asymptomatic chronic gallbladder carrier of typhoidal Salmonella in the town. Moore
swabs were systematically deployed in the jurisdiction at select sewage access sites and
rivers or streams epidemiologically linked to the cases. Moore’s initial approach as
described in 1950:

The infected swab, collected after 48 hours from the manhole under examina-
tion, is delivered to the laboratory in a sterile container. It is washed with 20
ml of nutrient broth and the washings pipetted off into a sterile tube. Three
5-fold dilutions of the infected material are plated in 0.1 ml volumes on Wil-
son and Blair’s medium, the latter plates being carefully dried before incuba-
tion. Five milliliters of washings are inoculated into 200 ml of selenite medium
in a liter flask. After overnight incubation, the selenite medium is subcultured
(a) to Wilson and Blair’s medium for typhoid colonies, and (b) to ‘mannitol-
lead-acetate’ medium for other organisms of the Salmonella group (13).

Moore confirmed suspicious colonies by biochemical and agglutination methods.
When typhoidal Salmonella-positive points were discovered and mapped, additional

swabs were deployed upstream of sewage flow of the positive point. This was repeated
systematically until results showed that the swabs were positive downstream and
negative upstream of an identifiable point of possible contamination, such as a block
of houses sharing a common sewer (55). This general approach was also used in
sampling rivers and streams until a pipe carrying wastewater with human fecal material
was identified (56, 57) or septic tanks were observed to be located nearby (58). In all
cases, a team of public health workers was then required to interview the people living
at or near the suspected source and to obtain stool samples to confirm bacteriologically
the silent excretion. Confirmation of the typhoidal Salmonella serovar and bacterio-
phage type further supported links between clinical isolates and isolates recovered

TABLE 1 Method considerations and parameters for the isolation and identification of S. Typhi using the Moore swab technique

Step Options Details or examples (references)

Site/source selection Untreated effluent Public sewer network (10, 18, 40, 56, 60, 61, 63); sewage leaving a
building, residence, or hospital (55, 62, 64, 92); repurposed wastewater,
e.g., for irrigation (69, 76)

Treatment plant influent/effluent Wastewater entering/exiting a treatment plant (134, 135)
Environmental Surface water, e.g., canals, rivers, streams, and storm drains (55, 57, 58, 76)
Flush toilets Toilet prior to sewer (45) or septic tank (126)

Parameters Swab construction Gauze type (fiber composition, mesh size, absorbency), gauze
measurements (by size or by mass), string or wire attachment

Sampling schedule Frequency, duration, replicates
Sample handling and processing Transport conditions and time
Dilution schema Direct inoculation, 5- or 10-fold dilution schema

Enrichment Preenrichment Universal preenrichment broth, nutrient broth, sterile saline
Selective enrichment Varies by species, e.g., selenite-F broth for Salmonella

Differentiation/selection Differential solid media For enteric bacteria, e.g., Salmonella-Shigella agar, deoxycholate-citrate
agar, xylose-lysine-deoxycholate agar

Highly selective solid media Varies by species, e.g., Wilson and Blair (bismuth sulfite) agar for S. Typhi

Identification (classical) Biochemical reactions Triple sugar iron agar, lysine iron agar, enzyme activity, urea broth,
fermentation, commercial kits/panels

Serotyping For Salmonella, agglutination with anti-O, anti-H, and anti-Vi antisera

Identification (modern) Pulse-field gel electrophoresis
PCR PCR or quantitative real-time PCR
Genomics Whole-genome, 16S ribosomal, or shotgun sequencing
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from the environment. Frequently, chronic carriers discovered by this method gave no
past medical history of enteric illness, emphasizing the importance of unbiased sur-
veillance approaches. Finally, the utmost care for confidentiality was maintained during
these investigations to avoid the social stigmatization of someone being labeled as a
chronic typhoid carrier (59).

In the town of Purbrook, United Kingdom (population, �6,000), five pediatric cases
of typhoid that occurred over 4 years led public health authorities to collect grab
samples of water from the local river downstream of the town. One grab sample in 1949
finally yielded S. Typhi. Lendon and Mackenzie (56) observed that an overflow sewage
pipe discharged into the river where the grab sample had been positive for S. Typhi.
Accessing manholes, they systematically placed Moore swabs at sewer junctions upflow
along the sewage pipe, documenting positives until they reached a point where the
swabs became negative. They found the sewage pipe from a single household to be
positive and this proved to be the home of a 70-year-old chronic carrier of S. Typhi.

In Farnham, United Kingdom, Hobbs (60) reported on a case of typhoid in a
7-year-old child who had exposure to a sewage-contaminated river and the use of
Moore swabs to trace and pinpoint the house of a carrier. Greenberg et al. (40) and
Shearer et al. (61) described detection of a single carrier in the isolated town of Portola,
CA (population, �2,200), via use of Moore swabs in sewers; that carrier had been
responsible for cases of typhoid occurring intermittently over �5 years. Robinson (62)
used the sewer of a mental health facility housing known carriers of S. Typhi and S.
Paratyphi as a site to compare methods: gauze versus alginate wool swabs, five
different liquid enrichment media, four solid selective media, and dilution techniques.
His conclusions were that selenite-F broth was most effective for enrichment of S. Typhi
from sewage, that Wilson and Blair agar was the most selective medium, outperforming
MacConkey agar, and that dilutions offered variable results likely dependent on sewage
composition but should be included. In British Columbia, Bowmer et al. (58) were first
to trace a chronic typhoid carrier household via storm drains and septic tank outflows.
Interestingly, two phage types were present in the carrier, but only one was recovered
from the infected children who had played downstream in the contaminated water.
Pilsworth (63) traced a typhoid carrier through sewage in West Mersea, United King-
dom, and affirmed that 37°C was ideal for incubations. In 1964, Bokkenheuser (14)
authored a comprehensive review of methodology to detect typhoid carriers. These
classic investigations are listed in Table 2, with notable variations and unique perspec-
tives discussed in ensuing sections.

A residual carrier after a major hospital outbreak. In 1951, an outbreak of 135
known cases of typhoid fever occurred in a hospital in Oswestry, United Kingdom (64).
After meticulous collection of serial stool cultures and Vi-agglutination serology tests of
435 staff, 19 asymptomatic excreters of S. Typhi were detected along with 15 incuba-
tory carriers who subsequently became clinical cases. Fourteen months after the
outbreak was addressed, yet another case occurred in a hospital employee working at
the hospital sewage treatment site. By placing Moore swabs in the main sewer and in
sewers draining each of six wards, S. Typhi was pinpointed to a single ward. The
responsible chronic carrier of S. Typhi was detected and linked epidemiologically using
Vi-phage typing. A. C. Jones, the public health official behind this work, noted, “this
type of sewage examination might well be employed as a supplementary postepidemic
method of ensuring that an institution has been cleared of chronic carriers” (64).

The water-closet (toilet) swab. Kwantes and Speedy reconfigured Moore swabs
into string-wound cylinders to allow their placement directly into water closets (i.e.,
toilets) to detect a paratyphoid carrier (45). In Goodwick, Wales, this modification was
necessary because wastewater exiting numerous houses entered a common drain
accessed by a single manhole. This sewer configuration precluded the systematic
tracing upstream from the manhole to individual houses. By extending toilet swabbing
schedules to accommodate the occupants’ weekend bathroom habits, the individual
toilet method proved successful in identifying an unknown carrier of S. Paratyphi B (45).
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Sewage-contaminated water. Three young boys in Belfast, Northern Ireland, who
had been playing near a polluted stream became acutely ill with typhoid fever in 1951
(57). Six weeks later, a workman near the stream also fell ill with typhoid having the
same Vi-phage type as the boys’ isolates. Murdock and Lawson were unable to link
these initial cases epidemiologically nor isolate S. Typhi from the stream using Moore
swabs (57). Three years passed until two more cases occurred that were associated with
exposure to the same stream and another nearby stream. S. Typhi of the same Vi-phage
type was detected using Moore swabs in water of the second stream and from a septic
pipe draining sewage from several houses. Upon inquiry and testing fecal specimens
from the residents, Murdock and Lawson discovered a single chronic S. Typhi carrier
(57). A fluorescein color dye test confirmed the connection between the carrier’s septic
effluents and the second stream (57).

Bowmer et al. (58) fittingly entitled their 1959 investigation of four sporadic cases of
bacteriophage-matched typhoid fever in schoolchildren from 1953 to 1957 as “Typhoid
fever: where there’s a case, there’s a carrier.” Indeed, a single carrier was discovered by
employing the Moore swab technique in stormwater drains of a municipality that
lacked a piped sewerage system and relied exclusively upon household septic tanks.
Bowmer’s team traced the contamination with typhoid bacilli to a roadside stormwater
drain that serviced three houses containing seven persons. A 59-year-old woman’s
coproculture yielded S. Typhi of the same bacteriophage type as the four cases. The
carrier subsequently underwent cholecystectomy that revealed S. Typhi in her bile,
gallstones, and gallbladder wall tissue (58), consistent with typhoidal persistence
(65–67).

THE SANTIAGO, CHILE, EXPERIENCE

During the late 19th and early 20th century, treatment of municipal water supplies
by chlorination, sand filtration, or both resulted in a precipitous decline in typhoid fever
incidence in the major cities of Europe and North America (68). Installation and
maintenance of piped sewerage networks also contributed importantly to control
typhoid fever. A major exception to this trend was the metropolitan region of Santiago,
Chile, where high annual incidence rates of endemic typhoid fever persisted through
the 1980s, despite 96% of households having access to treated, bacteriologically
monitored, potable water and 70% to 80% having flush toilets to remove human fecal
waste (69). In Santiago during that era, typhoid incidence showed a marked summer
seasonality and affected all socioeconomic strata (69). Two hypotheses were posed to
explain this enigmatic high-incidence endemicity: (i) an unusually high prevalence of
chronic biliary carriers of S. Typhi who not only served as a large long-term reservoir of
infection but also maintained high-incidence short-cycle transmission through contam-
ination of food vehicles in homes, food kiosks, and restaurants, or (ii) an unconventional
irrigation practice in which untreated sewage, after it had coursed through the city, was
used to irrigate crops grown in fields in the periphery.

In support of the first hypothesis, which was by far the most widely accepted in the
1970s, Santiago was shown to have an exceptionally high prevalence of cholelithiasis
among adults (70). Of 1,000 consecutive Santiago residents (796 females and 204
males) undergoing cholecystectomy in seven hospitals in Santiago from July to October
1980 and who had their bile cultured, 38 (3.8%) bile cultures yielded S. Typhi and 35
(3.5%) grew S. Paratyphi (30 of 35 were Paratyphi B) (71). Levine et al. used those data,
along with the prevalence of cholelithiasis in Santiago by age and sex, to estimate the
prevalence of chronic typhoid carriers by age and sex (70). The overall carrier preva-
lence was 694/105 persons �10 years of age. However, among women aged �40 years,
the prevalence of S. Typhi biliary carriers exceeded 2,000/105 (i.e., �2% of the women).
This very high estimated prevalence of typhoid carriers, corroborated subsequently by
prospective data from case/control studies (72) and prevalence surveys of food han-
dlers that included stool cultures (73, 74), gave credibility to those who argued that
chronic carriers were playing the key role in maintaining the high typhoid incidence in
Santiago.
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Evidence incriminating the role of environmental contamination being responsible
for maintaining the high incidence of typhoid in Santiago required active investigation.
Careful inspection of the manner in which raw sewage was handled in Santiago and a
series of painstaking environmental bacteriology studies utilizing Moore swabs incrim-
inated the use of untreated sewage in the dry summer months to irrigate extensive
fields of vegetable crops that were eaten uncooked as the practice that was responsible
for maintaining amplified long-cycle transmission. This could not have been achieved
without Moore swabs.

In the 1970s and 1980s, neighborhood sewers in Santiago deposited raw untreated
sewage into two waterways, including a giant open sewage canal (Zanjon de la
Aguada) that traversed the metropolitan region from east to west and to a lesser extent
into the Mapocho River that coursed the city from northeast to southwest in a gentle
S-like trajectory. In the southwestern part of the city, the Zanjon emptied its sewage
into the Mapocho River, which then coursed for several kilometers without additional
sewage entering the river in an attempt to allow self-cleansing of the contaminated
water. In the western and southwestern parts of the metropolitan region, these waters,
which remained untreated, were subsequently used to irrigate lettuce, cabbage, and
celery crops in the rainless summers, i.e., vegetables that were consumed uncooked.
These vegetables, which were trucked back to the markets and supermarkets of the city
for sale, ultimately contaminated food preparation areas of kitchens in households and
restaurants (72, 75).

Moore swabs proved to be a critical tool in elucidating the previously enigmatic
mode of transmission responsible for maintaining amplified high-incidence endemic S.
Typhi disease in Santiago. From January to March, 1983, i.e., during the Chilean
summer, Sears and colleagues deployed 133 Moore swabs into irrigation canals (Fig. 3)
(76). Of the 93 swabs recovered and cultured, 4 of 45 (8.9%) from the Mapocho River
and 4 of 31 (12.9%) from the Zanjon de la Aguada yielded S. Typhi. Prior to this, Chilean
microbiologists at the Instituto de Salud Pública (Institute of Public Health [ISP]) had
used traditional “grab” sampling in their environmental bacteriologic attempts to
determine if S. Typhi was present in these wastewaters. Notably, only once among 100
grab samples collected over several years was S. Typhi isolated (77).

In collaboration with the ISP, Sears et al. used virtually identical bacteriological
methods as the ISP had previously employed but substituted the Moore swab method
for “grab” sampling (76). This change in collection technique led to repeated recovery

FIG 3 Placement of Moore swabs in the irrigation canals outside Santiago, Chile, in January of 1983.
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of S. Typhi from these irrigation waters in 1983, thereby supporting the hypothesis that
vegetables irrigated with untreated sewage water were underlying Santiago’s unusual
pervasiveness of typhoid endemicity (76). This was also the first demonstration of the
efficacy and utility of the Moore swab in recovering typhoid bacilli from large-diameter
irrigation canals in a highly endemic urban setting. This observation is highly relevant
in sub-Saharan African cities today where urban watercourses function as open sewers.

Four large-scale field trials of live oral typhoid vaccine in �500,000 Chilean school
children carried out in the 1980s markedly decreased the incidence of typhoid in that
high-risk age group (78–81). Based on the evidence generated by Sears and team (76)
in collaboration with the ISP, the Ministry of Health recommended to the government
of Chile that the use of untreated sewage water to irrigate crops should be prohibited,
but this recommendation was not heeded. In 1991, after an absence of a century,
cholera returned to South America, resulting in massive outbreaks in Peru (82), Ecuador
(83), Argentina (84), and Colombia (85), before spreading more widely through the
continent (86). A small outbreak of 41 cases of El Tor cholera hit the metropolitan
region of Santiago in April 1991 (87). Facing the threat of cholera, the Ministry of Health
and other arms of the government of Chile mobilized rapidly and effectively and finally
outlawed the use of untreated sewage water to irrigate crops (75, 88). This ban was
strictly policed. Despite the unpopularity of this ban among farmers and agricultural
workers whose livelihoods were affected, this intervention abruptly interrupted the
cholera outbreak and also led to a precipitous fall in the transmission of typhoid,
resulting in the end of amplified endemic transmission (75). Within a few years, only
sporadic low-level transmission due to chronic carriers contaminating food vehicles
continued, and that residual incidence progressively declined over the following de-
cade. These data confirm the key role that use of contaminated irrigation waters had
previously been playing in maintaining amplified transmission and perpetuating en-
demic typhoid in Santiago (75, 89).

CHOLERA

Cholera, the diarrheal illness caused by cholera toxin-producing Vibrio cholerae of
serogroup O1, in its severe clinical form, cholera gravis, can rapidly dehydrate and kill
even healthy adults if water and electrolyte losses are not expeditiously replaced. The
current 7th pandemic of cholera due to the El Tor biotype began in 1961 in Southeast
Asia, disseminated to south and east Asia during the 1960s, reached Africa by 1970 and
South America in 1991. In newly affected areas, cholera tends to occur in explosive
epidemics, and in endemic foci, it exhibits marked seasonality. Since the early 1970s,
Moore swabs have played an important role in cholera surveillance in threatened as
well as cholera-stricken communities and in tracing infected persons with clinical and
asymptomatic infections. Examples are described below from low- and middle-income
and from high-income countries.

Anticipatory sentinel sewage surveillance for healthy carriers. In 1973, wide-
spread occurrence of cholera in neighboring Malawi, Mozambique, and Angola
prompted South Africa to initiate surveillance to detect cholera in presumed high-risk
populations (20, 21). It was assumed that the many migrant laborers who came from
the above-mentioned countries to work long term in South Africa’s coal and gold mines
would be likely introducers of V. cholerae O1. Isaäcson et al. undertook a three-pronged
surveillance system among 20,000 miners that included (i) systematic Moore swab
surveillance of sewers serving the mines and an acclimatization center (21), (ii) expe-
ditious collection of rectal swabs from miners served by sewers that yielded V. cholerae
O1 from surveillance Moore swabs and (iii) physical isolation and rectal swab cultures
from cases of diarrheal illness to confirm cholera cases.

Although sewer surveillance using Moore swabs began in November 1973, there
were no isolations of V. cholerae O1 until late March 1974. Rectal swabs from miners
whose toilets were served by the culture-positive sewer line revealed two miners with
subclinical infection. One week later, as sewer swabs remained positive, there were six
subclinical carriers and four clinical cholera cases. A full-blown outbreak ensued that
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lasted through early May. During that period, Moore swabs in sewers were positive
while increasing numbers of confirmed clinical cases and asymptomatic infections were
detected. The acclimatization center was identified as the key source of infection of
new workers (21). Positive Moore sewer swabs continued for 2 weeks after there were
no further clinical or subclinical infections.

Outbreaks of cholera in unexpected venues. In the 1970s, sporadic cases of
cholera gravis were confirmed in U.S. citizens who had not traveled. These U.S. cholera
cases, which yielded an unusual highly hemolytic V. cholerae O1 El Tor Inaba strain, led
to extensive use of Moore swabs to detect V. cholerae O1 in sewage, septic tanks, and
environmental waters. Early in the 7th pandemic, El Tor biotype isolates typically were
highly hemolytic, but by the 1970s, El Tor strains were uniformly nonhemolytic.
Weissman et al. (22) isolated the same hemolytic V. cholerae O1 El Tor Inaba from a
Moore swab placed in the septic tank draining the house of a 1973 Port La Vaca, Texas,
patient as from the patient himself.

In 1978, 11 cases of cholera occurred along southwest Louisiana’s Gulf Coast, all due
to hemolytic V. cholerae O1 El Tor Inaba. An epidemiologic investigation incriminated
consumption of cooked crabs as the vehicle of transmission (90). Isolation of V. cholerae
O1 from the municipal sewer system serving the town of the index case in Louisiana in
1978 indicated that there might be other cases (24). During September and October
1978, V. cholerae O1 El Tor Inaba was recovered from sewerage systems of six munic-
ipalities, while epidemiological investigations (including stool cultures) of persons with
diarrheal illness in three of these towns confirmed cholera cases. Additionally, 11 of 21
Moore swabs from sewer systems serving communities where no cases of cholera were
identified also grew V. cholerae O1.

V. cholerae O1 was detected in cultures of 7 of 10 (70%) Moore swabs placed in
sewer lines serving homes of known infected persons prior to their receiving antibiot-
ics, while the pathogen was isolated from only 1 of 16 (6%) swabs removed from sewers
serving infected persons 1 to 7 days after they had commenced therapy with tetracy-
cline (24). V. cholerae O1 was also recovered using Moore swabs from 2 of 4 septic tanks
serving households of infected individuals. In one culture-negative septic tank, the
Moore swabs had been placed 25 days after the patient was hospitalized; the other
negative septic tank had “special treatment equipment.”

In one Louisiana town, Barrett et al. (24) used sewer swabs to track V. cholerae O1
in a manner reminiscent of Moore’s tracing the source of S. Paratyphi B. They recovered
V. cholerae O1 from a Moore swab cultured on 9 September 1978 from the intake line
of a sewage treatment plant. Four days thereafter, a second Moore swab was placed
into the sewage treatment intake line, and swabs were also inserted into lines of 17
pumping stations draining different sections of town. Swabs from two sites yielded V.
cholerae O1: one from the treatment plant intake and the second from a pumping
station serving �50 blocks of dwellings. They then placed swabs in the tributary lines
and, in 4 days, traced the source of infection to a 2-block area amenable to a Moore-like
house-to-house search for the infected person(s). Meanwhile, a resident from this small
area was admitted to the hospital with cholera gravis, and the stool culture grew V.
cholerae O1. The patient’s daughter, who had subclinical V. cholerae O1 infection and
remained at home, was the presumed source of V. cholerae O1 in the sewage line
following her parent’s hospitalization (24).

With cholera, as with typhoidal Salmonella, Moore swabs can detect subclinical or
mild infections of infected persons who do not seek medical care. Barrett et al. noted
that in Louisiana (and most other jurisdictions), sewer swab surveillance was under the
control of the local health department and did not require obtaining individual consent
from the household members served by the sewers (24). Whereas sewer swab surveil-
lance cannot detect infected persons not served by a sewerage system, septic tank
surveillance is also effective, albeit more labor intensive (24). The CDC continues to
recommend Moore swabs as a routine environmental surveillance method for the
detection of V. cholerae O1 because of its practicality and effectiveness (91).
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Two more isolated cases of cholera were reported in Texas in 1981. Moore swabs
were placed in sewers of the three Texas cities harboring cases, and sewers draining
houses of the cases yielded V. cholerae O1. These 1981 isolates were the same
hemolytic El Tor Inaba strain exhibiting an identical restriction endonuclease pattern as
the 1973 and 1978 Gulf of Mexico isolates, leading to the conclusion that this strain is
indigenous to the environment of the Gulf of Mexico (25). It is now well established that
V. cholerae O1 constitutes the autochthonous flora of brackish water environments
where they adhere to chitinous zooplankton, whether in the Gangetic delta or the Gulf
of Mexico.

Epidemiologic investigation of an outbreak in a middle-income setting. In July
1974, a small cluster of six cases of cholera due to V. cholerae O1 El Tor Ogawa occurred
on the island of Guam, the U.S. Territory in the Mariana Islands (23). The cases occurred
among construction workers who consumed an epidemiologically incriminated vehicle
of transmission, a raw salted fish dish prepared from fish caught in Agana Bay. Moore
swabs placed in the septic tank of one case and in the sewer downstream of the house
of two other cases grew V. cholerae O1 El Tor Ogawa (23). V. cholerae O1 El Tor Ogawa
was also isolated from two sewer lines that were not draining houses of known cholera
patients and from water of the mouth of the Fonte River.

Detection of live oral cholera vaccine in sewage. In 1991, Simanjuntak et al. (26)
investigated the safety, immunogenicity, and transmissibility of live oral cholera vaccine
CVD 103-HgR compared to that of placebo in 200 children aged 2 to 5 years old in
North Jakarta, Indonesia. After the administration of vaccine or placebo to the children,
Moore swabs were placed in the open sewers or privies draining the latrines of 97
households of study participants to assess the environmental persistence of the vaccine
strain. While non-O1 V. cholerae was recovered from human wastewater in 46 of the 97
sites, the CVD 103-HgR vaccine strain was not recovered from any specimens. These
results support the sensitivity of the Moore swab method for detecting Vibrio species
while establishing low transmissibility of the vaccine strain itself (26).

DISCUSSION AND FUTURE DIRECTIONS

There are several fundamental challenges to sampling an urban environment for a
pathogen that is transiently present (14, 18). Variables include unequivocal presence of
a source of contamination, intermittent excretion, variability in pathogen load within
the environmental source, diameter and flow rate of the sampling site, size of the
population contributing fecal matter (household, block, neighborhood, district, and
city), presence of disinfectants or antibiotics deleterious to the organism, variations in
the materials used to prepare the swab and its dimensions, and variations in bacteri-
ologic methods (Table 1).

In Santiago, Chile, in 1983, Sears et al. (92) determined the sensitivity of the Moore
swab under conditions designed to minimize these limitations: pipes draining the
homes of bacteriologically confirmed asymptomatic chronic typhoid carriers (n � 10)
were tested; each sewer was sampled for 48 to 72 h on 2 to 3 separate occasions during
periods when the carriers were known to be home, usually Friday to Monday; small-
diameter open sewer drains located on the household property that were shared with
one or two other homes were tested (Fig. 4); and no carrier was taking antibiotics.
Finally, standardized bacteriological methods were used to isolate S. Typhi from sewage
(selenite-F broth enrichment; Salmonella-Shigella agar, Wilson and Blair [bismuth sulfite]
agar, and deoxycholate citrate lactose sucrose agar to detect suspicious colonies;
inoculation of suspect colonies into triple sugar iron agar slants; serotyping with
specific antisera to confirm Typhi serovar; and phage typing of confirmed S. Typhi
isolates). In total, 24 swabs were placed in sewers draining the homes of 10 known
chronic carriers (minimum 2 swabs at different times per home). Six positive swabs
correctly identified homes of 5 of the 10 carriers, indicating the method, as used, was
50% sensitive in identifying carrier households (92). Sears et al. (92) may have under-
estimated the sensitivity, since the period of sampling may not have in fact coincided
with deposition of S. Typhi into the sewer by the carrier, particularly if shedding was
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intermittent or if the carrier did not use the connected toilet during the sampling
period. In cases of institutional sewage surveillance (e.g., hospitals and prisons), disin-
fectants may diminish sensitivity of the culture-based bacteriology (93).

Efficacy of the Moore swab method to yield a viable pathogen also depends on the
bacteriologic methods employed and the survival of the target organism. As patho-
genic typhoidal Salmonella evolved into host-restricted serovars, traits that support
enhanced survival in the environment were lost (94). Thus, organisms that have
adapted to occupy environmental niches may out compete the human host-restricted
pathogen in environmental samples.

S. Typhi may possibly exist in a “viable but nonculturable” (VBNC) state in water
during adverse environmental conditions (95–97), as does V. cholerae O1 in brackish
waters of the Gangetic delta. Under conditions of salinity, temperature, and pH of water
during noncholera seasons, V. cholerae O1 remains alive but cannot be cultured
directly; yet, it revives at the onset of cholera season when it becomes readily cultivable
from environmental samples (98). Reversion to the cultivable state also occurs in vivo
when VBNC V. cholerae O1 passes through the human intestine. This was documented
in a clinical study where attenuated Vibrio cholerae O1 live oral vaccine strain CVD 101,
when subjected to appropriate conditions, became noncultivable. However, an inocu-
lum fed to healthy adult U.S. volunteers resulted in recovery of viable vaccine organ-
isms from coprocultures from the volunteers (99). That VBNC nontyphoidal Salmonella
does not regain infectivity in susceptible animals (100, 101) argues against the notion
that VBNC typhoidal Salmonella regains infectivity when ingested by humans.

Nontyphoidal Salmonella enterica serovars survive and replicate inside intracellular
vacuoles of waterborne free-living amoeba (Acanthamoeba) (102, 103). S. Typhi shows
enhanced survival when incubated in the presence of Acanthamoeba castellanii (104),
which may suggest that a similar symbiosis occurs in the environment. Such alternative
environmental states of typhoidal Salmonella, if real, could be missed by the culture-
based Moore swab.

Arguably, a true positive can also be defined as the presence of S. Typhi DNA in an
environmental sample. Molecular methods, such as quantitative real-time PCR (qPCR),
offer the potential to monitor drinking water for contamination with typhoidal Salmo-
nella (105, 106) or to detect S. Typhi DNA in sewage samples from households of
typhoid cases compared with those of controls (107). Ideally, a multitargeted PCR (108)
and culture-based techniques should be combined to permit the isolation of viable
organisms. Salmonella DNA persists (109), and molecular detection of bacteria from
complex environmental matrices has notable challenges with both sensitivity and
specificity at all stages of the process (108).

Bisha et al. (46) have adapted the filtration concept behind Moore’s sewer swab for
a pump-based filtration device coined the “modified Moore swab (MMS),” in which
cheese cloth or gauze is packed into a polyvinyl chloride pipe and a volume of water

FIG 4 Sewer swab placed in the small diameter sewer draining three households in Santiago, Chile, in
January 1983.
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is pumped through the cloth. MMS is typically used to enumerate various fecal
indicators and pathogens from surface water sources, including Salmonella spp., Esch-
erichia coli, and Listeria monocytogenes, among others (42, 44, 46, 110–114). While
quantitative, this modification of the Moore swab method has not yet been adapted to
accommodate the intermittent excretion of S. Typhi and S. Paratyphi (115). MMS
devices could prove useful for the filtration of typhoidal Salmonella if reconfigured to
remain in situ for several days.

Recovery of a viable culturable organism is increasingly critical as disease surveil-
lance and control efforts for typhoidal Salmonella shift toward using data from whole-
genome sequencing (WGS), which requires a live organism (116). In these analyses,
geospatial, geographical, and temporal data are integrated with WGS data derived from
S. Typhi isolated from positive blood or stool cultures to monitor genotype circulation
and antimicrobial resistance (117–120) and to assess S. Typhi population structures
before and after a typhoid vaccination intervention (121). Few genomic epidemiology
analyses apply WGS to environmentally derived typhoidal Salmonella isolates alongside
clinical isolates. However, in one example, a genetic comparison completed in the
mid-1990s using pulse-field gel electrophoresis (PFGE) to characterize clinical and
environmental (sewage and river water) isolates from Santiago, Chile, from 1983
demonstrated overlap between the human and environmental samples (122). While the
genomic resolution of PFGE is insufficient to decipher microcirculation patterns com-
pared with that of WGS (123, 124), these data further supported the conclusion that
irrigation of vegetable crops with untreated sewage was responsible for amplified
long-cycle transmission that maintained typhoid endemicity in Santiago in the 1980s
(69, 75, 76). Within this gap in typhoidal genomic epidemiology, the Moore swab may
provide live culturable environmental isolates that, compared against human-derived
isolates, will directly contribute to new models of transmission mechanics supporting
either short-cycle or long-cycle transmission.

CONCLUSION

This review details the practical utility of the Moore swab in outbreak and endemic
settings for the isolation of viable S. Typhi, S. Paratyphi, and Vibrio cholerae O1 from
various environmental sources, including sewage and surface waters. This tool may
initially appear unappealing to the academic research community; however, when
paired with quality-ensured diagnostic bacteriology, Moore’s technique has repeatedly
exposed human reservoirs and environmental amplification mechanisms of these
pathogens under varied circumstances. In several examples presented, the method’s
flexibility proved critical to its public health utility. However, the challenges faced in
sampling sewage and wastewater cannot be understated, and overcoming these
should be a priority for funding agencies.

Modern advances in filtration technologies, molecular techniques, and next-
generation sequencing have expanded and improved the precision of the toolkit
available to public health laboratories, especially those located in high-income coun-
tries. Nevertheless, for low- and middle-income countries and for global academic
researchers with limited funding, sustainable routine surveillance and bacteriology for
enteric pathogens are essentially limited to affordable culture-based techniques. In-
deed, Moore swabs in their classical applications have resurfaced in recent conference
proceedings describing environmental surveillance programs for S. Typhi in Kolkata,
India (125), and Samoa (126) and have been part of standardization efforts in the field
(127, 128).

Given its simplicity and affordability, the Moore swab is well suited in resource-
limited settings where typhoidal Salmonella is broadly endemic and sewage monitoring
is feasible either through a municipal sewage network or household toilets connected
to septic tanks. The identification of hot spots in a community or at certain public
facilities (e.g., bus stations, rural hospitals, or ports and terminals) may inform epide-
miological investigations, target vaccination campaigns, and help differentiate short-
cycle versus long-cycle transmission patterns. PCR or advanced separation methods can

Minireview Applied and Environmental Microbiology

July 2020 Volume 86 Issue 13 e00060-20 aem.asm.org 15

https://aem.asm.org


improve the sensitivity of pathogen detection but should be combined with culture-
based methods to recover viable organisms for further characterization. Subsequent in
vitro studies may be performed, and next-generation genome sequencing can pave the
way for genomic epidemiology and phylogeographical analyses connecting isolates
from cases, contacts, and the environment.

Driven by the emergence and spread of S. Typhi harboring multiple antibiotic
resistances (129) and availability of an efficacious new typhoid vaccine that is prequali-
fied by the World Health Organization (130), the public health community is acceler-
ating control of typhoid in many areas of endemicity (131, 132). Improved typhoidal
disease surveillance and environmental microbiology can play important roles in
guiding typhoid control, identifying human reservoirs, and incriminating specific
modes of transmission that involve environmental contamination amenable to inter-
vention. Where typhoid cases are rare, or in countries such as Fiji and Samoa, where
mass vaccination efforts with typhoid vaccines are planned, sporadic and residual cases
likely associated with human reservoirs of chronic biliary infection will become pro-
portionately more important in the coming decade. These reservoirs and any associ-
ated environmental transmission pathways can be traced and identified through
sewage networks, septic systems, and surface waters using Moore’s original application
of the sewer swab.
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