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Partition coefficients describe the equilibrium partitioning of a single, defined charge state of a 

solute between two liquid phases in contact, typically a neutral solute. Octanol-water partition 

coefficients (Kow), or their logarithms (log P), are frequently used as a measure of lipophilicity in 

drug discovery. The partition coefficient is a physicochemical property that captures the 

thermodynamics of relative solvation between aqueous and nonpolar phases, and therefore 

provides an excellent test for physics-based computational models that predict properties of 

pharmaceutical relevance such as protein-ligand binding affinities or hydration/solvation free 

energies. The SAMPL6 Part II Octanol-Water Partition Coefficient Prediction Challenge used a 

subset of kinase inhibitor fragment-like compounds from the SAMPL6 pKa Prediction Challenge 

in a blind experimental benchmark. Following experimental data collection, the partition 

coefficient dataset was kept blinded until all predictions were collected from participating 

computational chemistry groups. A total of 91 submissions were received from 27 participating 

research groups. This paper presents the octanol-water log P dataset for this SAMPL6 Part II 

Partition Coefficient Challenge, which consisted of 11 compounds (six 4-aminoquinazolines, two 

benzimidazole, one pyrazolo[3,4-d]pyrimidine, one pyridine, one 2-oxoquinoline substructure 

containing compounds) with log P values in the range of 1.95–4.09. We describe the 

potentiometric log P measurement protocol used to collect this dataset using a Sirius T3, discuss 

the limitations of this experimental approach, and share suggestions for future log P data 

collection efforts for the evaluation of computational methods.

Keywords

octanol-water partition coefficient; log P; blind prediction challenge; SAMPL; kinase inhibitor 
fragments; 4-aminoquinazoline; potentiometric log P measurement

1 Introduction

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) Challenges 

[http://samplchallenges.github.io] are a series of blind prediction challenges for the 

computational chemistry community that aim to evaluate and advance computational tools 

for rational drug design [1]. These challenges focus the community on specific phenomena 

relevant to drug discovery—such as the contribution of force field inaccuracy to binding 

affinity prediction failures—and, using carefully-selected test systems, isolate these 

phenomena from other confounding factors. Through recurring community exercises 

involving blind prediction followed by data sharing and discussion, these challenges evaluate 

tools and methodologies prospectively, enforce data sharing to learn from failures, and 

generate high-quality datasets into the community as benchmark sets. As a result, SAMPL 

has driven progress in a number of areas over six previous rounds of challenge cycles [2–

15].

To assess the accuracy of different computational methods, SAMPL has relied on the 

measurement of simple host-guest association affinities [6, 8, 11, 15–19] and other physical 

properties that isolate issues such as failing to capture relevant chemical effects, 

computationally-intensive conformational sampling, and force field accuracy. In SAMPL5, 

for example, a log D challenge was devised with the goal of isolating the accuracy of 
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protein-ligand force fields from the difficulties of configurational sampling [20, 21]. In 

addition to being a useful surrogate for the accuracy of force fields in predicting binding free 

energies, partition or distribution coefficients are frequently used as a measure of 

lipophilicity in pharmacology [22], or as surrogates for solubility, permeability [23], and 

contributors to affinity [22, 24]. Lipophilicity is a critical physicochemical property that 

affects ADMET (absorption, distribution, metabolism, excretion, and toxicity) [22, 25, 26]. 

Since log P is utilized as a predictor for good drug-like properties in terms of 

pharmacokinetics and toxicity [25], accurate log P predictions of virtual molecules have 

high potential to benefit drug discovery and design.

Surprisingly, the cyclohexane-water log D challenge proved to be particularly problematic 

due to the necessity to account for protonation state effects to correctly compute the 

distribution coefficients, which assess the partitioning of all ionization states between phases 

[20]; failing to account for these protonation state effects led to modeling errors up to several 

log units [27]. As a result, the SAMPL6 Part II log P Prediction Challenge [28] aimed to 

further isolate the assessment of force field accuracy from the issues of conformational 

sampling and the modeling of ionization state equilibria by inviting participants to predict 

the partitioning of neutral drug-like molecules between aqueous and nonaqueous phases1. 

For maximum synergy with previous competitions, the challenge compound set was 

constructed to be a subset of kinase inhibitor fragment-like small molecules drawn from the 

SAMPL6 pKa Challenge set [29], where the accuracy of participants to predict pKa values 

was assessed. A blind challenge (the SAMPL6 Part II log P Blind Prediction Challenge) was 

run from November 1, 2018 to March 22, 2019 in which participants were given molecular 

structures and experimental details and asked to predict octanol-water partition coefficients 

before the data was unblinded on March 25, 2019. All primary and processed data was made 

available at https://github.com/MobleyLab/SAMPL6 immediately following the close of the 

competition.

Partition coefficients and principles of their measurement

The partition coefficient describes the equilibrium partitioning of a molecule in a single, 

defined, charge state between two liquid phases in contact. Unless stated otherwise, in 

common usage partition coefficient (P or P0) refers to the partitioning of the neutral state of 

a molecule. In particular, the octanol-water partition coefficient of neutral species 

(frequently written as Kow or P ) is defined as

P ≡ Kow ≡ [neutral solute]oct
[neutral solute]wat

. (1)

This quantity is often written in its log10 form, which we denote here as log P,

1SAMPL6 was originally announced as featuring a log D prediction challenge, but there were difficulties in the collection of 
experimental data. The original plan was to measure log P0, log P−1, and log P+1 and calculate log D values at the experimental pH 
using these values. However, we were able to measure the partition coefficients of neutral species (log P0 ) much more reliably than 
ionic species with potentiometric log P method of Sirius T3, as elaborated further below.
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logP = log10Kow = log10
[neutral solute]oct
[neutral solute]wat

(2)

However, ionic species can also partition between phases [30–32]. The partition coefficients 

of ionic species is calculated using the same equation, e.g. P+1 refers to the partition 

equilibrium of +1 charge state of a molecule. Based on the experimental measurement 

method this value may be defined for a single tautomer or may involve multiple tautomers.

logP ion = log10
[ionic solute]oct
[ionic solute]wat

(3)

A closely related concept is that of the distribution coefficient (Dow, often written in log10 

form as log D) which should not be confused with log P. log D is the logarithm of the sum 

of all species (both neutral and ionized) concentrations in the organic phase divided by the 

sum of neutral and ionic species concentrations in aqueous phase. Both octanol-water log P 
and log D values are frequently used as lipophilicity estimates [22]. However, while log D is 

pH-dependent, log P is independent of the pH of the aqueous phase. As log P is defined as 

the partition coefficient of neutral species, it would include all neutral tautomer populations 

if a compound can tautomerize.

The gold standard of partition coefficient measurement experimentation is the shake-flask 

method, according to the Organization for Economic Cooperation and Development 

(OECD) [33]. Methods developed as experimental refinements on the shake-flask method 

are high-throughput microscale shake flask [34, 35] and slow stirring methods [36]. Other 

direct methods for log P or log D determination include dialysis chamber-based methods 

[37], micellar electrokinetic capillary chromatography [38, 39], and counter-current 

chromatography [39]. An indirect experimental method that is widely used—despite being 

less reliable—is log P estimation based on reversed-phase high-performance liquid 

chromatography (HPLC) retention times [40–44]. The measurement principle for all of these 

methods is the measurement of log D—the equilibrium distribution coefficient for both 

neutral and ionized species—in a pH-dependent manner. As a result, in order to measure log 

P with these methods it is necessary to conduct the log D measurements at a pH where the 

analyte is completely un-ionized. At a pH where the analyte is at a neutral state, log P is 

equal to log D; however, accurately predicting or measuring the equilibrium ionization 

constant (pKa) of a substance is a prerequisite. Here in this study, however, we pursued an 

alternate approach for experimental determination of log P, which is potentiometric 

measurements.

Potentiometric measurement of log P with the Sirius T3

The potentiometric log P measurement method determines log P values directly using 

potentiometric titrations in an immiscible biphasic system [45, 46]. The shift of apparent 

pKa values when the aqueous phase is in contact with the octanol phase is used to estimate 

log P values. Experimental log P values presented in this study were collected using this 

potentiometric method, and they refer to the partition coefficient of the neutral species.
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The potentiometric log P measurement method used by the Sirius T3 instrument (Pion) [46–

51] is based on determination of the partition profie directly from acid-base titrations in a 

dual-phase water-partition solvent system consisting of two liquid phases in contact (Fig. 1). 

In this method, multiple potentiometric acid-base titrations are performed in the aqueous 

phase at various equilibrium volumetric ratios of octanol and water to observe the ionization 

and partitioning equilibrium behavior of the analyte. As the relative volume ratio of octanol 

to water changes, a shift in apparent pKa (poKa) is observed due to partitioning of neutral 

and ionic species—which have distinct octanol-water partitioning equilibria—into the 

octanol-rich phase. Equations describing this coupled partitioning and ionization equilibria 

are then solved to determine the log P of the neutral and ionic species. To use this method, 

aqueous pKa value(s) must be known, and analytes must be fully water soluble at the highest 

concentration they reach during the titrations throughout the entire range of pH titration 

selected for the potentiometric log P measurement protocol. The largest pH range selected 

for titration can be pH 2–12 and the minimum range should include ±2 pH units around the 

pKa and poKa.

When an ionizable substance is titrated in a two-phase system, the apparent pKa—here, 

denoted poKa—observed in the titration shifts due to differential partitioning of neutral and 

ionized species into the nonaqueous phase. The poKa value is the apparent pKa in the 

presence of partition solvent octanol. Its shift is dependent on the volumetric ratio of the 

water and octanol phases. The poKa value increases with increasing partition solvent volume 

for monoprotic acids and decreases with monoprotic bases. The shift in poKa is directly 

proportional to the log P of the compound and the ratio of octanol to water. For a monoprotic 

acid or base, the partition coefficient of neutral (P0) and ionic species (P−1, P+1) relates to 

pKa and poKa as [50],

monoprotic acid : PO = 10 pOKa − pKa − 1

R ; P−1 = 10− pOKa − pKa − 1
R

(4)

monoprotic base : PO = 10− pOKa − pKa − 1
R ; P+1 = 10 pOKa − pKa − 1

R
(5)

Here, R is the volume ratio of nonaqueous phase (Vnonaq) to aqueous phase (Vaq),

R ≡ V nonaq
V aq

(6)

2. Methods

2.1 Compound selection and procurement

For the SAMPL6 Part II log P Challenge, we attempted to collect log P measurements for 

the entire set of 24 kinase inhibitor fragment-like compounds selected for the SAMPL6 pKa 

Challenge [29, 52]. Details of compound selection criteria for the SAMPL6 pKa set—driven 

in large part by cheminformatics filtering for experimental tractability and rapid, inexpensive 
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compound procurement—can be found in the SAMPL6 pKa experimental data collection 

paper [29]. Compounds with publicly available experimental log P measurements were 

excluded by checking the following sources: DrugBank [53], ChemSpider [54], NCI Open 

Database August 2006 release [55], Enhanced NCI Database Browser [56], and PubChem 

[57]. However, not all molecules selected for SAMPL6 were suitable for log P 
measurements using the Sirius T3, due to various reasons such as low solubility, apparent 

pKa value shifting out of experimental range, or log P values out of experimental range 

limited by the sample vial. These limitations are explained in more detail in the Discussion 

section. Only 11 small molecules proved to be suitable for potentiometric log P 
measurements.

Molecule IDs assigned to these compounds for the SAMPL6 pKa Challenge were preserved 

in the SAMPL6 Part II log P Challenge. A list of SAMPL6 log P Challenge small 

molecules, SMILES, and molecule IDs can be found in Table 1. Counterions, where present 

in solid formulations (see “Potentiometric log P measurements” section below), were 

included in SMILES for the sake of completeness, although no significant effect is expected 

from the presence of chloride counterions as experiments were conducted using KCl to 

maintain constant ionic strength. Procurement details for all compounds in the SAMPL6 log 

P Challenge compounds are presented in Table S1.

2.2 Potentiometric log P measurements

Experimental octanol-water log P values of neutral species were collected using 

potentiometric log P (pH-metric log P) measurements [50] at 25.0±0.5 °C and constant ionic 

strength (0.15 M KCl). Aqueous pKa values are required for log P determination with the 

Sirius T3, and were previously determined for all compounds in this set [29] using UV-

metric pKa measurements [58, 59] with the same instrument.

Three independent replicates were performed for each log P measurement using 1-octanol 

and water biphasic systems at 25.0 °C, starting with solid material. General guidance of 

according to the instrument manual suggests optimal analyte mass should be in the range of 

1–10 mg. “Sample weight” is the terminology used to describe analyte mass in Sirius T3 

manuals, software, and reports. Due to solubility limitations of the SAMPL6 compounds, we 

tried to use analyte masses less than 3 mg. There was not much flexibility to adjust aqueous 

phase volume, since this is limited by the minimum volume required for the pH probe (1.4–

1.5 mL) and the volume that must be spared for the octanol phase in the sample vial. 

Therefore, we adjusted analyte mass instead of aqueous phase volume when reducing 

sample concentration was necessary to achieve solubility.

11 Disclosures
JDC was a member of the Scientific Advisory Board for Schrödinger, LLC during part of this study. JDC and DLM are current 
members of the Scientific Advisory Board of OpenEye Scientific Software. The Chodera laboratory receives or has received funding 
from multiple sources, including the National Institutes of Health, the National Science Foundation, the Parker Institute for Cancer 
Immunotherapy, Relay Therapeutics, Entasis Therapeutics, Silicon Therapeutics, EMD Serono (Merck KGaA), AstraZeneca, Vir 
Biosciences, XtalPi, the Molecular Sciences Software Institute, the Starr Cancer Consortium, the Open Force Field Consortium, Cycle 
for Survival, a Louis V. Gerstner Young Investigator Award, The Einstein Foundation, and the Sloan Kettering Institute. A complete 
list of funding can be found at http://choderalab.org/funding.
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For molecules with low solubility, target analyte mass was reduced, but not below a 

minimum of 1 mg. Samples were prepared by weighing 1–3 mg of analyte in solid powder 

form into Sirius T3 analysis vials using a Sartorius Analytical Balance (Model: ME235P) 

equipped with an antistatic ionizer. It was difficult to transfer powder compounds to achieve 

target masses in 1–3 mg range exactly. Instead, we opted to weigh out approximate target 

mass (±40% of the target mass was considered acceptable) and record the resulting sample 

mass. For instance, when aiming for 1 mg of compound, if 1.29 mg of compound was 

transferred to the balance, that was recorded as analyte mass and 1.29 mg was provided in to 

the Sirius T3 software for analysis. Reporting accurate analyte mass was important since 

analyte mass and purity are part of the Sirius T3 refinement model, although the analysis 

software doesn’t accept analyte purity as an input. Analyte purity (“sample concentration 

factor” according to Sirius T3) is estimated from the refinement model fit to experimental 

data given the reported analyte mass by the user. The remaining steps in sample preparation 

were performed by the automated titrator: addition of ionic-strength adjusted (ISA) water 

(typically 1.5 mL) and partition solvent (ISA water-saturated octanol), mixing, sonication, 

and titration with acid (0.5 M KCl) and base (0.5 M KOH) solutions targeting steps of 0.2 

pH units. ISA water is 0.15 M KCl solution which was used to keep ionic strength constant 

during the experiment. ISA water was prepared by dissolving KCl salt in distilled water.

ISA water-saturated octanol was prepared by mixing 500 mL 1-octanol (Fisher Chemical, 

cat no A402–500, lot no 168525) with 26.3 mL ISA water (targeting 5% ISA water-octanol 

mixture by volume) and letting the mixture phases separate before attaching it to the 

automated titrator. Titrations were performed under argon flow on the liquid surface to 

minimize carbon dioxide absorption from the air.

In some cases, to help with kinetic solubility issues of the analytes, solid samples were 

predosed manually with 80–100 μL ISA water-saturated octanol prior to the addition of ISA 

water and partition solvent—these are noted in Table 1. Predosed volumes were provided to 

the analysis software as an input and were accounted for in the total octanol volume 

calculation. Whenever mean molecular charge vs pH plots showed experimental data points 

that deviated from the expected sigmoidal curve shape (oscillatory shape or steeper descent), 

we suspected solubility problems and attempted to prevent them by predosing octanol, 

which can only help the cases in which the solubility issue is a kinetic and not an 

equilibrium solubility issue. The only way to alleviate an equilibrium solubility issue 

entirely is to lower the analyte concentration by starting the experiment with a smaller 

analyte mass.

For each replicate log P measurement, three sequential automated acid-base titrations were 

performed in the same vial at three different volume ratios of octanol and water, using 0.5 M 

KOH and HCl solutions as titrants while monitoring pH with a pH electrode (Ag/AgCl 

double-junction reference electrode). Additional volumes of octanol were dispensed before 

each titration to achieve target octanol-water ratios. The sequence of three octanol-water 

ratios were determined using predicted log R profiles (apparent pKa shift vs log10 of the 

volumetric ratios of partition solvents, as shown in Fig. 2C,D) or experimental log R profile 

if a previous iteration of the experiment is available during protocol optimization, with the 

goal of selecting three volumes that will maximize the |pKa- poKa| values between each 
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titration. Experiments were designed so that maximum separation of poKa values can be 

achieved while the total liquid volume in the analysis vial did not exceed 3 mL by the end of 

the third titration.

Two Sirius T3 software programs were used to execute measurement protocols (Sirius T3 

Control v1.1.3.0) and analyze experiments (Sirius T3 Refine v1.1.3.0). The Sirius T3 Refine 

software has the capability of fitting partitioning and ionization equilibrium models to 

potentiometric data collected from a biphasic system to estimate log P values. The starting 

point for the model fit is simulated titration curves constructed using aqueous pKa values 

(using prior pKa measurements, here taken from [29]), predicted log P values, input analyte 

mass, and volumes of aqueous and organic phases dispensed to prepare the sample. 

Collected experimental measurements (pH vs dispensed volume of acid and base solutions) 

were used to refine the model parameters (log P of neutral species, log P of ionic species, 

analyte concentration factor, carbonate content, acidity error) to determine the log P values 

of neutral species and ions [48]. Potentiometric log P measurements have the potential to 

determine the partition coefficients of the ionic species (log P1) in addition to log P of the 

neutral species (log P0). It was, however, very challenging to design experiments to capture 

log P values of the ionic species due to volumetric limitations of the glass analysis vial and 

measurable pH range. Therefore, while optimizing experimental protocols, we prioritized 

the accuracy for only log P of the neutral species. Experimental protocols were optimized 

iteratively by adjusting octanol-water ratios, analyte concentration, and pH interval of the 

titration.

A partitioning and ionization equilibrium model [48] was fit to potentiometric measurements 

to estimate log P values of the neutral species and also the charged species, as implemented 

in Sirius T3 Refine Software. Experiments were optimized to determine log P of neutral 

species with good precision. log P estimates of charged species had high variance between 

replicate experiments performed in this study and were judged to be unreliable. Optimizing 

experiments further to be able to capture log P values of ionic species accurately would 

require larger log R values, which was limited by sample vial volume. Therefore, we 

decided not to pursue experimental data collection for ionic partition coefficients further.

2.3 Reporting uncertainty of log P measurements

Experimental uncertainties of log P measurements were reported as the standard error of the 

mean (SEM) of three or four replicates. The standard error of the mean (SEM) was 

estimated as

SEM = σ
N ; σ = 1

N − 1 ∑
i = 1

N
xi − μ 2; μ = 1

N ∑
i = 1

N
xi (7)

where σ denotes the unbiased sample estimator for the true standard deviation and μ denotes 

the sample mean. xi are observations and N is the number of observations.

The SEM calculated from independent replicate experiments as above was found to be larger 

than non-linear fit error reported by the Sirius T3 Refine Software from potentiometric log P 
model fit of a single experiment, thus leading us to believe that running replicate 
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measurements and reporting mean and SEM of log P measurements better captured all 

sources of experimental uncertainty. We caution, however, that the statistical error estimated 

from three replicates is only determined to an order of magnitude [60].

2.4 Quality control of analytes

Purities of all SAMPL6 pKa Challenge compounds—a subset of which formed the log P set 

used here—were determined by LC-MS and reported elsewhere [29]. The same lots of 

compounds were used for pKa and log P measurements. LC-MS assessment showed that the 

11 compounds reported in this study have a minimum of 96.5% purity and matching 

molecular weight to supplier reported values (Table S1).

When questions were raised about the accuracy of log P measurements for SM13 by a 

participant of SAMPL6 log P Challenge, we had additional quality control experiments 

performed to confirm the compound identity of SM13. LC-MS and NMR data were fully 

consistent with the structure of SM13 as originally provided (Figure S1, S2). High-

Resolution Mass Spectrometry (HRMS) data was acquired using an Agilent 6560 Q-ToF by 

+ESI. NMR data were acquired for the sample dissolved in pyridine-d5. 1H, DQF-COSY, 

and ROESY spectra were acquired using a 600 MHz Bruker AVANCE III HD spectrometer 

equipped with a liquid nitrogen-cooled broadband Prodigy probe. Chemical shifts were 

assigned to validate the structure of SM13.

3 Results

In this study, we attempted to use the potentiometric log P measurement method of the 

Sirius T3 to measure log P values for 24 compounds of the SAMPL6 pKa Challenge set. For 

13 of the selected compounds, experimental constraints set by solubility, lipophilicity, pKa 

properties of the analytes, and experiment analysis volume limitations of the Sirius T3 

instrument resulted in an inability to achieve reliable log P measurements suitable for the 

blind challenge (Table S4). For example, SM24 has a basic pKa of 2.60 and we could not 

optimize log P measurement protocol because in the presence of octanol phase apparent pKa 

was shifting beyond the measurable pH range of the Sirius T3. On the other hand SM03 log 

P could not measured with potentiomentric method due to its low aqueous solubility. Only 

11 of 24 compounds from the SAMPL6 pKa Challenge set were found to be suitable for 

potentiometric log P measurements with the Sirius T3. The resulting challenge dataset 

presented here has a log P range of 1.95–4.09. Six of these represent the 4-amino 

quinazoline scaffold (SM02, SM04, SM07, SM09, SM12, SM13). There are two 

benzimidazoles (SM14, SM15), one pyrazolo[3,4-d]pyrimidine (SM11), one pyridine 

(SM16), and one 2-oxoquinoline (SM08) (Fig. 3). The mean and SEM of replicate log P 
measurements, SAMPL6 compound IDs (SMXX), and SMILES identi1ers of these 

compounds are presented in Table 1. In all cases, the SEM of the log P measurements ranged 

between 0.01–0.07 log10 units.

Results of independent replicate measurements are presented in Table S2. Preparation of 

each replicate sample started from weighing dry powder of the same analyte lot. The log P 
estimates from potentiometric titrations were evaluated using the partitioning and ionization 

equilibrium model as implemented in the Sirius T3 Refine software, which produces log P 
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estimates for both neutral and ionic species. We observed that log P values of neutral species 

were highly reproducible, while variance of log P of ionized species between replicate 

experiments was high. It was also not possible to measure log P values of the ionized species 

reliably as doing so would require sampling higher log R values. Since it was probihitively 

difficult to optimize experimental protocols to capture partitioning of ionic species 

accurately, we optimized the experiments to prioritize accurate measurement of neutral 

species log P (log P0) and constructed the blind computational prediction challenge based on 

log P0 values.

4. Discussion

4.1 Dynamic range of log P measurements and solubility limitations

We attempted to measure the log P for all 24 SAMPL6 pKa Challenge compounds, but the 

Sirius T3 potentiometric log P measurement method was able to provide reliable 

measurements for only a subset of 11 molecules which were included in the blind challenge. 

We only included molecules that yielded reliable, precise log P measurements in the 

computational blind challenge.

A number of factors restricted the ability to perform reliable log P measurements and led to 

elimination of some compounds from the initial set of 24: low water solubility within the pH 

range of the titration, the limited volume capacity of the glass sample vial which limits the 

maximum achievable octanol:water ratio, the octanol-dependent poKa values shifting outside 

the measurable pH range of 2–12 (especially high acidic pKas and low basic pKas). If an 

analyte does not suffer from the issues mentioned above, dynamic range of this log P 
measurement method is limited by smallest (related to dispensing accuracy and evaporation 

rate) and largest octanol volumes (related to analysis vial volume) that can be dispensed.

4.2 Optimizing experimental protocols for each compound

For the set of compounds in SAMPL6 Challenge, we observed that the Sirius T3 

potentiometric log P measurement experiments were in practice very low throughput 

because of the necessary iterative protocol optimization for each compound. The parameters 

determining a potentiometric log P experiment are: mass of analyte, initial volume of ISA 

water, three target volumes of octanol for sequential titrations with increasing log R, and pH 

range of the pH titration. Factors that were considered in this optimization and limitations of 

choice are discussed below.

4.2.1 Optimizing the sequence of octanol-water volumetric ratios and range 
of pH titration—To obtain reliable and precise log P estimates from experimental data, it 

is recommended to fit the ionization and partitioning equilibrium model to at least three 

potentiometric titrations with well separated poKa values (Figure 2A, B). log P values can 

also be estimated from two potentiometric titrations, but not as accurately. poKa values of 

sequential titrations need to be at least 0.3 pKa units separated from one another and from 

the aqueous pKa. To achieve this, selecting an optimal set of octanol-water volumetric ratios 

is key.
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It is logical to target the largest difference in octanol volumes, but the minimum volume of 

aqueous phase that provides enough depth for the pH probe (1.4 mL) and maximum analysis 

vial volume (3 mL) result in only 1.6 mL of available volume for the octanol phase, limiting 

the maximum octanol:water volume ratio R to ~ 1.1. Typically, one would pick octanol 

volumes for each of three sequential titrations that maximize the difference in poKa by 

maximizing the difference in log R values as much as possible considering the other 

experimental constraints. Simulated log R profiles based on predicted log P and 

experimental pKa values provide guidance in the selection of octanol volumes (Fig. 2C, D). 

These plots show how much |pKa-poKa| difference can be gained with respect to a change in 

log R, based on the titration and ionization propensity of each molecule, but they are only as 

useful as the accuracy of log P prediction. For that reason, potentiometric log P 
measurements needs to be optimized with an iterative process where the first experimental 

protocol is designed using predicted log P and experimental pKa of the analyte. Based on the 

poKa shifts and quality of titration curves observed, a second experiment is designed to 

improve poKa shifts by adjusting the octanol volumes after consulting the log R profile and 

using the estimated log P from the previous experiment as a guide. Sometimes 3 or 4 

iterations were necessary to reach an optimal protocol that results in a good fit between 

predicted and experimental titration curves and produces reproducible log P estimates. An 

example protocol optimization for SM02 guided by log R values is shown in Fig. 4.

While maximizing the difference in poKa values from each other and from the aqueous pKa 

is desirable, sometimes it is necessary to reduce the octanol volume to limit the shift in poKa 

so that it remains within a measurable range. This would be necessary when the aqueous 

pKa is a weak acid (pKa>9) or weak base (pKa<5), since the presence of the octanol phase 

causes poKa shifts towards higher and lower values, respectively, approaching the limit of 

the measurable pH range of the instrument. Measurable pH range is mainly limited by the 

acid and base strength of titration solutions against the increasing buffering capacity of water 

at pH values below 2 and above 12. It is also important to mention that even if the poKa 

value itself is within the stated measurement range of 2–12, if a large portion of the titration 

curve is beyond limits (i.e., saturation of fractional population on both sides of the poKa), 

then the experimental titration curve may not be fit to the model titration curve exactly and 

poKa cannot be determined as precisely. When the dynamic part of the titration curve (poKa 

± 2) shifts outside of the measureable pH range, it reduces the confidence in poKa estimates 

of the fit. Therefore, poKa values should ideally be at least ± 1 unit, and preferably ± 2 units 

away from the limits of pH measurement with this instrument, which can be extended to pH 

1 and 13 at most. For this reason, it is easier to optimize log P experiments for monoprotic 

molecules which have acidic pKas between 3–10 and basic pKas between 4–11. Some 

molecules in the SAMPL6 set which were not suitable for potentiometric log P 
measurements because of this criteria were: SM01, SM17, SM18, SM19, and SM24 (Table 

S4).

4.2.2 Sample preparation considerations and determination of appropriate 
starting concentration—Sample preparation starts with the weighing of solid powder 

material to analysis vials. How much analyte to use is another important decision that 

requires optimization. General guidance according to the Sirius T3 manual is to use 1–10 
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mg, and the aqueous phase volume is typically adjusted to the minimum volume (1.4–1.5 

mL). The buffering capacity and compound solubility are the two factors that guide lower 

and higher limits of suitable analyte concentration. The Sirius T3 produces buffer index vs 

pH plots (Fig. 2E, D) which provide guidance on how much analyte is needed for sufficient 

potentiometric signal. To guide the first experiment, these plots can be simulated based on 

analyte mass, experimental pKa, predicted log P, and selected octanol volumes. In further 

iterations of experiments, the buffer index profiles of the previous experiment guides the 

decisions about how to optimize the protocol. On the other hand, aqueous solubility limits 

the maximum concentration of the analyte in the aqueous phase. Moreover, since the 

experimental methodology depends on measuring the poKa shift during pH titrations as 

species partition into the nonaqueous phase, the analyte must stay in solution over the 

titrated pH range for the entire experiment, as the presence of an insoluble phase represents 

another reservoir for compound partitioning that would invalidate the coupled ionization-

and-partitioning model used to compute the log P. The pH titration range is adjusted to 

capture a sufficient region below and above the poKa to ensure ionization states with lower 

solubility are also visited (neutral and zwitterionic states).

For these compounds resembling fragments of kinase inhibitors –the compounds considered 

in the SAMPL6 pKa Challenge [29] and this study– this solubility criterion turned out to be 

very challenging to meet. A large portion of compounds in the SAMPL6 pKa Challenge set 

were found to be insufficiently soluble for potentiometric log P experiments at some region 

of the pH range that needs to be titrated during the experiment, more likely the pH region 

where the neutral population of analytes are prominent. These compounds for which 

potentiometric log P measurement could not be optimized due to solubility limitations are 

listed in Table S4. For other compounds, we had to try reducing the analyte sample quantity 

from 3 mg to 1 mg of compound to find the optimum balance between ensuring the 

compound remained fully soluble and ensuring sufficiently high buffering capacity signal. 

The rate of change of pH vs. volume of acid or base titrated in analyte solution must differ 

from the rate of pH change in just water. This quantity is expressed as a buffering index in 

buffer index profiles generated by Sirius T3 (Fig. 2E,F), where a black solid line describes 

the theoretical buffering capacity of water and colored triangles describe the experimental 

buffering capacity of the analyte. For high quality measurements, reaching at least 0.001 

buffer index at the maximum point of the titration (at pH that equals poKa) is recommended.

In our case, the exact solubility of compounds was not known prior to log P measurements. 

We had to evaluate precipitation issues based on the distortion of mean molecular charge vs 

pH profies (Fig. 2E, D) from ideal shape by adjusting starting analyte masses until the 

distortions disappear. Distortions manifest as very steep drops or oscillations in relative 

ionization state populations with respect to pH. An example is shown in Fig 5A Sample 

Ionization Graph. The turbidity indicator of Sirius T3 can not be utilized for solubility 

detection during log P experiments since the presence of octanol causes turbidity in the 

aqueous phase due to vigorous stirring during titrations. Predosing 80–100 μL octanol before 

addition of ISA water, as well as sonication and stirring after titrant addition, were also 

helpful for overcoming kinetic solubility problems. An example protocol optimization for 

SM08 to overcome solubility problems is shown in Fig 5.
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If possible, measuring solubility of compounds prior to potentiometric log P measurements 

can provide helpful information for more efficient log P measurement protocol optimization. 

However, since solubility is pH-dependent, the lowest solubility of the compound during the 

entire pH 2–12 range would be the information necessary to guide the experimental design. 

An experiment for a compound with 400 g/mol molecular weight using the minimum 

analysis made of 1 mg and 1.5 mL of aqueous phase corresponds to 1.67 mM. To be suitable 

for potentiometric log P measurements with the Sirius T3, at least 1.67 mM aqueous 

solubility is necessary throughout the pH range of the analysis.

One way to increase the dynamic range of potentiometric log P measurement with the Sirius 

T3 is to increase the range of log R that can be sampled by performing three different poKa 

measurements in three different analysis vials instead of three sequential titrations in one 

vial. But since log R is dependent on the cumulative octanol volume in sequential titrations, 

the advantage of the single titration approach is not significant. The single titration approach 

can only allow a small additional volume for octanol phase which would be used to dispense 

multiple acid and base stock solution volumes (~0.2 mL). We did not elect to investigate this 

design because we did not want to introduce another source of error: the variance in sample 

mass between measurements. Since the initial sample mass is an input parameter to the 

experimental model, using three different sample masses would introduce effects coming 

from the inaccuracy of the analytical balance to log P estimates.

Another way to prepare analyte samples for Sirius T3 measurements is to start from DMSO 

stock solutions instead of dry powder stocks. However, potentiometric measurements require 

1–10 mg/mL analyte concentration in order to reach sufficient buffering capacity. The 

required concentration of the DMSO stock solution would be quite high, and sometimes 

impossible due to solubility limits in DMSO. Typical DMSO stock solution concentrations 

are 10 mM. For an analyte with 400 g/mol molecular weight, the concentration of 10 mM 

DMSO stock solution corresponds to 4 mg/mL. In order to achieve the minimum required 1 

mg/mL analyte solution for the Sirius T3 experiment, the aqueous phase would have to 

consist of 25% DMSO which would cause significant cosolvent effects. On the other hand, 

achieving lower cosolvent presence, such as 2.5% DMSO, would require DMSO stock 

solutions of 100 mM at which concentration the analyte may not be soluble. Presence of 

cosolvent at even low amounts is undesirable due to the potential the effect on the log P 
measurements. Therefore, it is not recommended to perform these experiments starting from 

DMSO stock solutions.

4.3 Reliable determination of log P values of ionized species was not possible

Although it is possible to use Sirius T3 potentiometric log P measurements to determine the 

partition coefficients of ionic species as well, in practice, we were not able to achieve log P1 

estimates with low variance between experiments. The partitioning of ionic species into the 

organic phase is typically much lower than that of the neutral species, and to capture this 

accurately by measuring sufficiently large poKa shifts, it would be necessary to use much 

larger octanol to water volumetric ratios R. The Sirius T3 glass analyte vials can hold up to 3 

mL, which limits the maximum achievable octanol to water volumetric ratio. Since at least 

1.4 mL must be devoted to the aqueous phase for the pH probe, this leaves only 1.6 mL for 
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the octanol phase, producing a maximum achievable R ~ 1.1. Another limitation was the 

measureable pH range. Since log P measurements rely on determining well-separated poKa 

values at different log R values to get a good model fit, the octanol to water volumetric ratio 

needs to be selected such that poKa values are well separated but not out of the measurable 

pH range (2–12).

To capture the partitioning of ionic species to the octanol layer reliably, experiments need to 

be set up with larger log R ratios which is problematic if this causes poKa to shift outside of 

the measureable pH range. Therefore, we designed the experiments to capture only the 

partition coefficient of the neutral species (log P0) accurately. The SAMPL6 log P Prediction 

Challenge was constructed only on prediction of neutral species.

The lack of reliable determination of partition coefficient values of the ionic species (log P+1 

or log P−1) may be a source of systematic error in the estimate of log P of the neutral species 

(log P0). For hydrophobic compounds with negligible partitioning of the ionic species into 

the octanol-rich phase (log P+1, log P−1 2), log P0 estimates would still be accurate even if 

ion partitioning is not captured well. For compounds that may have higher levels of ionic 

partitioning, to minimize the impact of inaccurate log P+1 or log P−1 experimental estimates 

on log P0 measurements, we used ACD/Labs predicted log P+1 and log P−1 values as the 

starting point for the refinement of the ionization and partitioning equilibrium model 

parameters (performed with Sirius T3 Refine Software).

4.4 Absence of zwitterions allowed accurate log P measurements of amphoteric 
molecules

Multiple publications point out discrepancies between log P values determined by the 

potentiometric method and the shake-flask experiments for zwitterionic compounds [62, 63]. 

There are multiprotic compounds in the SAMPL6 dataset (SM14, SM15, and SM16), but we 

believe these measurements were not affected by this problem because they are not 

zwitterionic. Zwitterionic molecules have a zwitterion as the dominant neutral state in the 

pH region between the two pKas (a lower acidic pKa and a higher basic pKa). SM14 has two 

basic pKas and is not found as a zwitterion at any pH between 2–12. SM15 and SM16 are 

amphoteric compounds that possess both acidic and basic titratable groups, however, 

according to spectrophotometric pKa measurements in the presence of cosolvent their acidic 

pKa values are higher than their basic pKa values. This means the major neutral form of 

these compound is the non-charged state, not a zwitterion. Spectrophotometric pKa 

measurements with varying percentage of methanol as cosolvent were performed with the 

Sirius T3 and included in supplementary documents. Acidic or basic character of 

macroscopic pKa values was assigned based on the slope of Yasuda-Shedlovsky plots.

In addition, quantum mechanics calculations [64] do not predict the presence of multiple 

tautomers of the neutral state at significant populations for any of the molecules in the 

SAMPL6 log P Challenge set. Possible tautomers, such as the zwitterionic state, are 

predicted to be much higher in energy and thus unlikely to play a significant role even if we 

considered a prediction error margin for quantum mechanics-based calculations. Therefore, 

we do not think our potentiometric log P measurements are influenced by presence of 

zwitterions or minor tautomeric forms.
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4.5 Suggestions for future log P data collection

High quality datasets of experimental physicochemical property measurements are valuable 

for testing computational predictions. Benchmarking and evaluation efforts like the SAMPL 

challenges benefit from large experimental datasets with diverse chemical species. The 

quality of log P measurements collected with the Sirius T3 potentiometric method are 

satisfactory and comparable to gold standard shake flask measurements [45, 49, 51]. The 

Sirius T3 potentiometric log P method requires aqueous pKas to be measured experimentally 

ahead of time. The ability to obtain log P measurements of neutral and charged species 

separately, instead of measuring pH dependent log D, is a unique advantage of the Sirius T3 

approach compared to shake-flask or HPLC-based methods where ionization effects are 

involved with partitioning behaviour. However, due to previously discussed limitations and 

the necessity for extensive protocol optimization for each analyte, we are reluctant to 

suggest potentiometric log P measurements with the Sirius T3 as a general and high-

throughput method for future log P data collection unless significant resources and work 

hours of a human expert can be dedicated to protocol optimization and data collection.

Informed selection of analytes can help improve the success of Sirius T3 experiments. For 

example, this approach is easier to apply to highly soluble compounds (more than 1 mg/ml 

solubulity in 0.15 M KCl through the entire range of pH titration range at room temperature) 

with pKa values in the midrange (3<acidic pKa<10 and 4<basic pKa<11). There is no 

significant difference in difficulty between the measurements of monoprotic vs multiprotic 

compounds, as long as one of the pKa values of the multiprotic compound is in the 

midrange. For determining the log P of neutral species, it is sufficient to collect 

potentiometric titration data between the neutral state and the +1 or −1 charged states by 

titrating the pH region that captures the relevant poKa values. It is not necessary to capture 

the titration of a second pKa (Fig. 2B).

Our opinion is that log D measurements at a buffered pH can be much more easily obtained 

in a higher throughput fashion using miniaturized shake-flask measurements, such as those 

used in SAMPL5 log D Challenge experimental data collection [21]. To obtain log P values 

from experiments that were designed to measure log Ds, it is necessary to measure the pKa 

of compounds (such as with the Sirius T3) and conduct log D measurements using a 

buffered aqueous phase at a pH that will ensure that the analyte is completely in the neutral 

state. According to our experience, optimizing pKa measurements with the Sirius T3 is 

significantly easier than optimizing log P measurements, especially if a spectrophotometric 

(UV-metric) pKa method can be used instead of potentiometric, which is not an option for 

log P measurements.

5. Conclusin

This study reports the collection of experimental data for the SAMPL6 Part II log P Blind 

Prediction Challenge. In the physico- chemical property prediction challenge components of 

SAMPL6, we aimed to separately evaluate performance of computational methods for 

predicting ionization (pKa) and nonaqeuous partitioning (log P) of small molecules, 

collecting experimental data for these properties on the same set of compounds and fielding 

sequential, independent prediction challenges. While we attempted to measure octanol-water 
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log P for all compounds in the SAMPL6 pKa Challenge set—consisting of 24 compounds 

that resemble fragments of kinase inhibitors—experimental limitations of the Sirius T3 

potentiometric log P method meant that reliable log P measurements could only be 

performed for 11 of these compounds. The resulting compound set had meaured log P 
values in the range of 1.95–4.09. This set included six molecules with 4-aminoquinazoline 

scaffolds, and two molecules with benzimidazole scaffolds. Although the chemical diversity 

and number of compounds was rather limited, blind high-quality log P datasets are rare, and 

still highly valuable for evaluating the performance of computational predictions. Therefore, 

the SAMPL6 Part II log P Blind Prediction Challenge was held between November 1, 2018 

and March 22 ,2019 using the log P measurements presented in this paper. This dataset can 

be utilized as part of a benchmark set for the assessment of future log P predictions methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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0.2 Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands

log P log10 of the organic solvent-water partition coefficient (Kow, refers to 

partition of neutral species unless stated otherwise)

log D log10 of organic solvent-water distribution coefficient (Dow)

log R log10 of the volumetric ratios of partition solvents (octanol to water)

pKa −log10 of the acid dissociation equilibrium constant

poKa −log10 apparent acid dissociation equilibrium constant in octanol-

water biphasic system
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ISA Ionic-strength adjusted solution with 0.15 M KCl

SEM Standard error of the mean

LC-MS Liquid chromatography-mass spectrometry

NMR Nuclear magnetic resonance spectroscopy

HRMS High-resolution mass spectrometry

octanol 1-octanol, also known as n-octanol
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Figure 1. Potentiometric log P measurements are based on a model of ionization and partitioning 
equilibria [50].
Measurements of the pKa and apparent pKa (poKa) at three octanol-water volumetric ratios 

(log R) are performed to estimate the partition coefficients of neutral and ionized species, 

log P0 and log P−1, respectively. An ionization and partitioning equilibria model, along with 

estimated potentiometric titration curves, are shown for a monoprotic acid in this figure.
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Figure 2. Illustrative potentiometric log P measurements of phenol (monoprotic, acid, log P 1.49) 
and SM16 (diprotic, amphoteric, log P 2.62) with the Sirius T3.
Triangles represent experimental data points collected during the octanol-ISA water 

titrations and solid lines represent the ionization and partitioning model fit to the data. A, B: 
Computed mean molecular charge vs pH. Mean molecular charge is calculated based on 

experimental pKa values and types (acid or base type) of the analyte. The black line is the 

model titration curve in aqueous media and based on the aqueous pKa. Blue, red, and green 

triangles represent three sequential titrations with increasing log R (increasing octanol) that 
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show shifted poKa values. The inflection point of titration curves indicates the pKa or poKa, 

though these values are obtained by a global fit. For titration of acidic species, partitioning 

into the octanol phase increases the observed poKa. In the titration of the basic pKa of SM16, 

increasing log R causes a decrease in poKa. The pH range of the experiment was determined 

such that only the titration of basic pKa was captured (molecular charge between +1 and 0). 

C, D: log R profiles show a shift in poKa with respect to increasing relative octanol volume. 

These plots aid in the design of the experiment and selection of optimal octanol volumes that 

aim to maximize separation between poKa values for better model fit within experimental 

limitations (pH and analysis vial volume). E, F: Buffer index profiles show buffering 

capacity observed in three titrations with increasing log R (blue to green). The black line is 

the intrinsic buffering capacity of water. For an accurate potentiometric measurement, 

buffering capacity signal of the analyte must be above the buffering capacity of water. As 

octanol volume increases, the concentration of the analyte in aqueous phase, and thus 

buffering capacity, decreases. G, H: Predicted relative populations of ionization states in 

octanol and water phases as a function of pH, based on the equilibrium model fit to 

experimental data.
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Figure 3. Molecules included in the SAMPL6 Part II log P Challenge set.
Reliable experimental potentiometric log P measurements were collected for the 11 

molecules depicted here. Reported uncertainties are expressed as the standard error of the 

mean (SEM) of replicate measurements. Molecules are depicted using OpenEye OEDepict 

Tool [61]. Canonical isomeric SMILES strings of all compounds are given in Table 1, and 

replicate log P measurements can be found in Table S2.
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Figure 4. Potentiometric log P protocol optimization of SM02 based on log R.
Experimental results of initial trial (A) and optimized protocol (B) are shown for SM02. log 

R profie before optimization (A lower panel) shows insufficient apparent pKa shift due to 

poor choice of octanol-water volume ratios. This experiment led to log P and log P+1 

estimates of 4.32 and 1.38. For a good measurement, triangles that indicate |pKa-poKa| of 

each titration in log R profies must fall on the slope region of the log R profie instead of the 

plateau region. Adjusting log R by decreasing octanol volumes in each titration led to a 

better experiment with distinct titration curves and well separated poKa values (B). log P and 

log P+1 were measured as 4.10 and 1.32 with the optimized protocol. Once we achieved 

optimization of potentiometric log P protocol, triplicate measurements were collected using 

the same protocol.
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Figure 5. Potentiometric log P protocol optimization for SM08 to alleviate aqueous solubility 
problems.
Experimental results of initial protocol (A) and the optimized protocol (B) are shown for 

SM08. Both first (blue) and second (red) titrations in Sample Ionization Graph before 

optimization (A lower panel) show deviation from expected sigmoidal shape which is an 

indication of an insoluble analyte. This experiment with solubility issues led to log P and log 

P+1 estimates of 3.97 and 1.86. To eliminate precipitation, we could not lower analyte mass 

below 1 mg. Instead we were able to optimize the experimental protocol by increasing the 

predosed octanol volume and increasing additional octanol volumes added in each titration. 

Predosing octanol helps only with kinetic solubility issues. Larger octanol volumes can help 

to improve the experiment when thermodynamic solubility is the limitation, by allowing 

larger amounts of analyte partitioning into the octanol phase and reducing the analyte 
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concentration in aqueous phase. Additional octanol volumes were selected such that they 

would also improve log R profile of the measurement. With optimized protocol (B) we 

achieved sample ionization profiles without any precipitation effects. log P and log P+1 were 

measured as 3.16 and 0.23. Once we achieved optimization of potentiometric log P protocol, 

triplicate measurements were collected using the same protocol.
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Table 1.
Experimental log P measurements for the SAMPL6 Part II log P Challenge.

Potentiometric log P measurements were per- formed with the Sirius T3 in ISA water. Triplicate 

measurements were performed at 25.0 ± 0.5 °C and in the presence of 150 mM KCl to control ionic strength. 

log P values are reported as mean ± SEM of at least three independent replicates. log P values of independent 

replicate measurements are presented in Table S2. A computer readable form of this table can be found in the 

SI documents bundle (logP_experimental_values.csv).

Molecule ID N
1 log P (mean ± SEM) Assay Type Isomeric SMILES

SM02 3 4.09 ± 0.03 potentiometric octanol log P c1ccc2c(c1)c(ncn2)Nc3cccc(c3)C(F)(F)F

SM04 3 3.98 ± 0.03 potentiometric octanol log P c1ccc2c(c1)c(ncn2)NCc3ccc(cc3)Cl

SM07 3 3.21 ± 0.04 potentiometric octanol log P c1ccc(cc1)CNc2c3ccccc3ncn2

SM08 3 3.10 ± 0.03
potentiometric octanol log P 

2 Cc1ccc2c(c1)c(c(c(=O)[nH]2)CC(=O)O)c3ccccc3

SM09 3 3.03 ± 0.07 potentiometric octanol log P COc1cccc(c1)Nc2c3ccccc3ncn2.Cl

SM11 4 2.10 ± 0.04 potentiometric octanol log P c1ccc(cc1)n2c3c(cn2)c(ncn3)N

SM12 4 3.83 ± 0.03 potentiometric octanol log P c1ccc2c(c1)c(ncn2)Nc3cccc(c3)Cl.Cl

SM13 3 2.92 ± 0.04
potentiometric octanol log P 

3 Cc1cccc(c1)Nc2c3cc(c(cc3ncn2)OC)OC

SM14 4 1.95 ± 0.03 potentiometric octanol log P c1ccc(cc1)n2cnc3c2ccc(c3)N

SM15 3 3.07 ± 0.03 potentiometric octanol log P c1ccc2c(c1)ncn2c3ccc(cc3)O

SM16 3 2.62 ± 0.01
potentiometric octanol log P 

3 c1cc(c(c(c1)Cl)C(=O)Nc2ccncc2)Cl

1
Number of replicates

2
Sample predosed with 80 μL octanol to address kinetic solubility issues

3
Sample predosed with 100 μL octanol to address kinetic solubility issues
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