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A B S T R A C T

Lockdown and social distancing restrictions have been widely used as part of policy efforts aimed at controlling the ongoing COVID-19 pandemic. Since these
restrictions have a negative impact on the economy, there exists a strong incentive to relax these policies while protecting public health. Using a modified SEIR
epidemiological model, this paper explores the costs and benefits associated with the sequential release of specific groups based on age and risk from lockdown
and social distancing measures. The results in this paper suggest that properly designed staggered-release policies can do better than simultaneous-release policies
in terms of protecting the most vulnerable members of a population, reducing health risks overall, and increasing economic activity.

1. Introduction

Between March 19 and April 7, various lockdown and social dis-
tancing measures were issued around the United States. Most of these
restrictions were initially slated to last 30 days, after which the states
reevaluated and decided on different paths forward. Since then, most
states have begun some form of reopening process. While these policy
choices vary from state to state, all of these restrictions apply to
every member of the population uniformly. This simultaneous-release
methodology ignores the importance of differential impacts of disease
on various subsets of the population.

Severity and survival rates for COVID-19 infections vary signifi-
cantly. They are a function of age and various comorbidities [1]. In
this paper, we use documented infection–response variation to COVID-
19 to design modified lockdown and social distancing restrictions
that reduce overall death rates while increasing economic activity.
Staggered-release policies are compared to the benchmark policy of
simultaneously releasing all groups at a predetermined time. Policies
are specifically evaluated on the reduction of overall death rates from
the resulting projected outbreak.

Reported data show that infected individuals over the age of 65
face a much higher case mortality than individuals under the age of
44, while those between the ages 45 and 65 have an intermediate
case mortality ([2,3], see also Fig. 1). Thus far, lockdown and social
distancing restrictions have kept the overall number of deaths much
lower than they would have been otherwise, particularly among the
elderly. However, there are deleterious effects on the economy as well.
Since restrictions were put in place in America, visits to commercial
venues are down two-thirds [4], a decrease in activity that has led
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to small business closure and layoff rates of around 50% in the Mid-
Atlantic states [5]. Shutdown sectors represent over 20% of all US
payroll employment [6] and the burden of these job losses has fallen
primarily on the poor [7]. All told, the economic cost of closing
non-essential businesses could total nearly $10,000 per household per
quarter [8], which may cause persistent harm in the form of lower
output and employment and associated higher overall morbidity and
mortality even after the shutdown ends [9].

While saving lives must be the primary concern, judiciously in-
creasing economic activity is an important secondary goal as well.
Perhaps the most important result from the analysis in this paper
is tied to the identification of policies that can responsibly mitigate
the economic effects of a sustained shutdown without jeopardizing
the most vulnerable members of the population. This paper analyzes
the costs and benefits of policies that are predicated upon the timely
release of younger individuals who face lower risk from COVID-19
infections from social distancing restrictions before the release of older
individuals. Compared to a policy that simultaneously releases all sub-
populations, carefully planned and executed staggered-release polices
are likely to lead to:

• Fewer infections over the entire duration of the outbreak
• Lower disease mortality rate among the elderly
• Fewer total disease deaths across the whole population
• Increased economic activity at an earlier date

The intuition behind the merit of staggered-release policies is closely
related to the ‘flattening the curve’ narrative that motivated initial
public support for restrictions in the first place [1,10]. The worst case
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Fig. 1. COVID-19 data for New York City showing age-dependent numbers of cases
(top), hospitalizations (middle), and deaths (bottom) per 100,000 people (see [2].
Accessed June 9, 2020.)

scenario in terms of public health risk and lives lost transpires when
infection rates are allowed to grow unchecked in a manner which
leads to too many severe infections at once, overwhelming health care
systems. Because these severe infections are much more likely among
the elderly, reducing and managing elderly infection rates is a useful
avenue toward improving health outcomes overall.

At the time of writing, it is believed that severe restrictions, even
if maintained for an extended period of time, would be unlikely to
prevent a second peak of infection since the population would not
have built up significant levels of immunity before economic activity
is resumed. It is strongly believed that releasing everybody at once will
result in the population experiencing dramatic increases in infections,
and we believe this risk may be well addressed through the usage of
staggered-release policies.

This paper is organized as follows: Section 2 introduces the 3-group
model and presents the setup of the benchmark and staggered-release
policies. Analyses and results are presented in Section 3. Section 4
discusses the findings.

2. The three-group model and sequential release policies

Simple SIR and SEIR types of epidemic models have been used in
most current studies of COVID-19 dynamics (see, for example, [11–
20]). The model introduced in this section is based on the standard
Susceptible–Exposed–Infectious–Removed (SEIR) model with the in-
corporation of asymptomatic infections, disease-induced deaths, hos-
pitalizations, and preferential mixing between different age groups.
These modifications enable a flexible description of COVID-19 disease
transmission dynamics within a model that accounts for special features
associated with age-dependent groups. Since we are modeling a single
outbreak, other considerations such as aging, migration, births, and
unrelated deaths are ignored.

The population is divided into three groups: group 1 consisting
of healthier younger people aged under 44 who have no medical
conditions which may increase their risks to disease death, group 2
include people aged between 45 and 65 without health conditions,
and group 3 consisting of the vulnerable members of the population
including the elderly (65 years old and over) and people with higher
risks than those in groups 1 and 2. These three sub-populations are
labeled by 𝑖 = 1, 2, 3 and will be referred to as Group 𝑖 (or simply
G1, G2, and G3). This separation of age groups is motivated by the

Fig. 2. Depiction of disease transmission process. The infection rate 𝜆(𝑡) includes
transmissions from infectious people in all sub-groups. The sub-groups are connected
through a mixing function given in Eq. (3).

age-specific COVID-19 data for New York presented in Fig. 1, which
shows age-dependent numbers of cases, hospitalizations, and deaths per
100,000 people (see [2]), with the consideration that vulnerable people
in the younger groups will be included in the high-risk group 3.

Based on available information about COVID-19, there is only a very
small proportion of younger people who might have a higher risk to
COVID-19 infections and deaths. Based on the US demographic data,
there are about 13% of people above the age of 65, and about 25% of
people between ages 45–64. Thus, the majority population is in the
age group 0–44. Moving a very small proportion of the vulnerable
young people into group 3 will not change much of the population
size for Group 1. Each sub-population is further sub-divided into seven
epidemiological classes: susceptible (𝑆𝑖), exposed (𝐸𝑖), infectious but
asymptomatic (𝐴𝑖), infectious and symptomatic (𝐼𝑖), hospitalized (𝐻𝑖),
recovered (𝑅𝑖), and dead due to disease (𝑀𝑖). The total population is
𝑁 =

∑3
𝑖=1 𝑁𝑖, where 𝑁𝑖 = 𝑆𝑖+𝐸𝑖+𝐴𝑖+𝐼𝑖+𝐻𝑖+𝑅𝑖+𝑀𝑖, with 𝑖 = 1, 2, 3.

Let 𝑘𝑖 denote the per capita rate of progression to the infectious
state (1∕𝑘𝑖 represents the mean latent period), 𝛾𝑖 and 𝛾𝑎𝑖 denote the per-
capita recovery rates (1∕𝛾𝑖 and 1∕𝛾𝑎𝑖 are the mean infectious periods),
𝜂𝑖 denote the rate of transition from 𝐼𝑖 to 𝐻𝑖, 𝜙𝑖 denote the rate at
which hospitalized individuals leave the 𝐻𝑖 class with proportion 1−𝑞𝑖
recovered and 𝑞𝑖 dead, and 𝛿𝑖 denote the disease related death rate for
individuals in the 𝐼𝑖 class. Among the infectious people, assume that
proportions 𝑝𝑖 and 1 − 𝑝𝑖 are symptomatic and asymptomatic, respec-
tively. Asymptomatic and hospitalized individuals can also transmit
the disease but possibly at lower rates than symptomatic individuals,
which are denoted by the factors 𝜃𝑖 ≤ 1 and 𝜒𝑖 < 1, respectively.
The parameters 𝛾𝑖, 𝛿𝑖, and 𝜙𝑖 are assumed to be independent. Other
assumptions on the dependence of these parameters might also be
considered, but they would not affect the qualitative conclusions of this
study (see Feng et al. [21], for more detailed discussions about various
underlying biological assumptions on this topic in the context of Ebola
models). A disease transmission diagram for each sub-group is depicted
in Fig. 2.

The model is given by the following system of differential equations:

𝑆′
𝑖 = −𝑆𝑖𝜆𝑖(𝑡),

𝐸′
𝑖 = 𝑆𝑖𝜆𝑖(𝑡) − 𝑘𝑖𝐸𝑖,

𝐴′
𝑖 = (1 − 𝑝𝑖)𝑘𝑖𝐸𝑖 − 𝛾𝑎𝑖𝐴𝑖,

𝐼 ′𝑖 = 𝑝𝑖𝑘𝑖𝐸𝑖 − [𝛾𝑖 + 𝜂𝑖 + 𝛿𝑖]𝐼𝑖,

𝐻 ′
𝑖 = 𝜂𝑖𝐼𝑖 − 𝜙𝑖𝐻𝑖,

𝑅′
𝑖 = 𝛾𝑎𝑖𝐴𝑖 + 𝛾𝑖𝐼𝑖 + (1 − 𝑞𝑖)𝜙𝑖𝐻𝑖,

𝑀 ′
𝑖 = 𝑞𝑖𝜙𝑖𝐻𝑖 + 𝛿𝑖𝐼𝑖, 𝑖 = 1, 2, 3,

(1)

2
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where 𝜆𝑖(𝑡) denotes the force of infection (FOI), the generator of new
cases of infection among susceptible individuals in group 𝑖. The func-
tional form of the FOI for group 𝑖 is given by

𝜆𝑖(𝑡) =
3
∑

𝑗=1
𝑎𝑖(𝑡)𝑐𝑖𝑗

𝐼𝑗 + 𝜃𝑗𝐴𝑗 + 𝜒𝑗𝐻𝑗

𝑁𝑗
, 𝑖 = 1, 2, 3, (2)

where 𝑐𝑖𝑗 describes the mixing among the groups and defined as the
proportion of the 𝑖th sub-group’s contacts that is with members of the
𝑗th group. We will adopt the commonly used preferential mixing ([22]
and later extended by [23]), in which case, the elements of 𝐶 have the
following form:

𝑐𝑖𝑗 = 𝜖𝑖𝛿𝑖𝑗 + (1 − 𝜖𝑖)𝑓𝑗 , where 𝑓𝑗 =
(1 − 𝜖𝑗 )𝑎𝑗𝑁𝑗

∑

𝑘(1 − 𝜖𝑘)𝑎𝑘𝑁𝑘
, 𝑖, 𝑗 = 1, 2, 3, (3)

where 𝜖𝑖 ∈ [0, 1] describes the preference level of group 𝑖 and 𝛿𝑖𝑗 is the
Kronecker delta (1 when 𝑖 = 𝑗 and 0 otherwise). The function 𝑐𝑖𝑗 in
(3) satisfies the required constraints for mixing functions (see [24]). In
our previous study, we estimated the mixing parameters including the
age-dependent contact rates and preference levels 𝜖𝑖 using the PolyMod
data and other observations [25], which suggests that younger people
tent to have higher contact rates. These results help inform our choice
of model parameters in this study.

In the FOI function (2), 𝑎𝑖(𝑡) is the per capita effective contact
rate, i.e., contacts that can lead to infection [26]. In the absence
of any intervention (and no hospitalization), the group-specific basic
reproduction number (i.e., without interactions with other groups) for
group 𝑖 is

0𝑖 = 𝑎0𝑖
[ 𝑝𝑖
𝛾𝑖

+
𝜃𝑖(1 − 𝑝𝑖)

𝛾𝑎

]

.

Thus, we can fix 0𝑖 to get the baseline value for the effective contact
rate for group 𝑖:

𝑎0𝑖 = 0𝑖∕
[ 𝑝𝑖
𝛾𝑖

+
𝜃𝑖(1 − 𝑝𝑖)

𝛾𝑎

]

. (4)

Note that the effective contact rate 𝑎0𝑖 is often expressed as a product
of the contact rate with the probability of infection on contact (e.g., 𝛽𝑖).
If we assume 𝛽𝑖 to be the same for all 𝑖 then it can be canceled in the
function 𝑓𝑖 in (3). Thus, the balance condition for mixing still holds.
For ease of reference, we will refer to 𝑎𝑖 simply as a contact rate.

Lockdown and social distancing restrictions are introduced to re-
duce the normal contact rates. Here, it is assumed that 𝑎𝑖(𝑡) is a function
of time and that their values are influenced by the selected policy.
Specifically, we model them via step functions defined as follows:

𝑎𝑖(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

1 − 0.95𝑠𝑏
)

𝑎0𝑖, 𝑇0 ≤ 𝑡 ≤ 𝑇1,
(

1 − 0.95𝑠(𝑖)2
)

𝑎0𝑖, 𝑇1 < 𝑡 ≤ 𝑇2,
(

1 − 0.95𝑠(𝑖)3
)

𝑎0𝑖, 𝑇2 < 𝑡 ≤ 𝑇𝑒𝑛𝑑 ,
(

1 − 0.95𝑠𝑟
)

𝑎0𝑖, 𝑡 > 𝑇𝑒𝑛𝑑 ,

(5)

where 𝑇1, 𝑇2, and 𝑇𝑒𝑛𝑑 represent the times when policies may change.
In the case of (5), 𝑇0 is the time when the initial restriction on everyone
begins, 𝑇1 and 𝑇2 are the numbers of days from 𝑇0 when Group 1 and
Group 2 may be released from restrictions, respectively, and 𝑇𝑒𝑛𝑑 is the
day from 𝑇0 when the restriction for all groups is reduced to a residual
level until the outbreak is over. The factor 0.95 on the severity of
restrictions is meant to reflect the fact that complete isolation of every
single member of a population is infeasible and likely inhumane.

The parameters 𝑠(𝑖)𝑗 in (5) represent the reductions of contacts for
group 𝑖 (or severity of restrictions imposed on group 𝑖 from business
as usual (0) to no contact (1)) during the period of time 𝑡 ∈ (𝑇𝑗−1, 𝑇𝑗 ],
with 𝑖 = 1, 2, 3 and 𝑗 = 1, 2, 3 (𝑇3 = 𝑇𝑒𝑛𝑑). We remark that the parameters
𝑠(𝑖)𝑗 also allow us to take into consideration that a proportion of Group
𝑖 may not change their contacts for any reason. For example, 𝑠(1)2 is a
weighted average of restriction levels of people in Group 1 who will

or will not change their contacts during the time period (𝑇1, 𝑇2]. To
simplify notation, let 𝑠𝑏 denote the reduction of contacts during the
initial restrictions, i.e., 𝑡 ∈ (𝑇0, 𝑇1], and 𝑠𝑟 denote the residual restriction
after the strict policies are lifted for all groups, i.e., for 𝑡 > 𝑇𝑒𝑛𝑑 .
Throughout this paper, the policy corresponding to 𝑠(𝑖)𝑗 = 𝑠𝑏 = 0.8 for
𝑡 ≤ 𝑇𝑒𝑛𝑑 and 𝑠(𝑖)𝑗 = 𝑠𝑟 = 0.2 for 𝑡 > 𝑇𝑒𝑛𝑑 , which is the case where all
groups are held under the same severity of restrictions for the period
(𝑇0, 𝑇𝑒𝑛𝑑 ] and then all released at once at the time 𝑇𝑒𝑛𝑑 , will be referred
to as the simultaneous-release policy. We use this policy as a baseline
or benchmark for evaluating the efficacy of other release policies. A
staggered-release policy will be represented by relaxed restrictions for
G1 at time 𝑇1 and for G2 at 𝑇2 with levels 𝑠(1)2 , 𝑠(2)3 ∈ [0.4, 0.8]. Examples
of the schedules of the benchmark simultaneous-release policy and a
staggered-release policy are depicted in Fig. 3(a) and (b), respectively.
Staggered-release scenarios involving releasing Group 2 at 𝑇2 < 𝑇𝑒𝑛𝑑
will also be considered.

We will explore the effects of different policies by simulating Model
(1) with various schedules of relaxing restrictions prescribed by chosen
paths determined by 𝑠(𝑖)𝑗 , 𝑇𝑖, and 𝑇𝑒𝑛𝑑 .

3. Analysis and results

In this section, whenever we state results about staggered-release
policies, they will be in terms of their performance against the bench-
mark delayed simultaneous-release policy. One such scenario is de-
picted in Fig. 4. It illustrates that when all groups are released after
a long period of strong restrictions (larger 𝑠𝑏), there could be a sec-
ond wave with a high peak if the residual restriction level 𝑠𝑟 is not
sufficiently high and there are no other intervention measures in place
to prevent it. This figure is produced by a single-group model using
parameter values within the ranges listed in Table A.1.

Fig. 4 is a special case of Model (1) when all groups are identical so
there is only one group. We selected a value for 0 to be between the
lower estimates of 2–3 (assumed in many modeling studies for COVID-
19) and the high estimates such as those reported in [19], which is 5.7
(95% CI 3.8, 8.9). The value 0 = 3.4 provided a better match of the
data of new cases shown in Fig. A.1 (see Fig. A.1 in the Appendix).
Other parameter values used in this figure are 0 = 3.4, 𝑝𝑖 = 0.7,
𝛾𝑖 = 𝛾𝑎 = 1∕7, 𝑘𝑖 = 1∕10, 𝜃𝑖 = 0.5, 𝜒𝑖 = 0.1, 𝑞𝑖 = 0.052, 𝜂𝑖 = 0.05,
𝛿𝑖 = 0.0006.

When three groups are considered, because of the higher activity
level in the younger group, 01 would be much higher than other
groups. For given 0𝑖 (𝑖 = 1, 2, 3), the overall basic reproduction num-
ber 0 for the entire population can be calculated using the formula
derived in the Appendix (see Appendix A.1). In most of the numerical
simulations in this section, we used the values 01 = 3.6, 02 = 2.7,
and 03 = 2.1, for which 0 = 3.4. To demonstrate that the results are
not sensitive to the choice of 0𝑖, examples with other lower or higher
values are also included in the Appendix. Some other parameters are
also assumed to have different values for the three groups. For example,
𝑞1 = 0.00064, 𝑞2 = 0.008, 𝑞3 = 0.032 (i.e., Group 1 has a much lower
probability of dying from COVID-19 than the older groups, as shown
in Fig. 1).

We will compare the total number of disease deaths in Group 𝑖
from 𝑇0 to the end of the outbreak under a staggered-release policy
and the benchmark policy, denoted by 𝐷𝑖 and 𝐷𝐵𝑖, respectively, which
can be calculated by ∫ ∞

𝑇0

[

𝑞𝑖𝜙𝑖𝐻𝑖(𝑡) + 𝛿𝑖𝐼𝑖(𝑡)
]

𝑑𝑡 (or equivalently 𝑀𝑖(∞))
for a given policy. A staggered-release policy is evaluated based on the
reductions in the cumulative deaths of group 𝑖 in comparison with the
benchmark policy, which is termed ‘‘efficacy’’ and denoted by 𝑖, i.e.,

𝑖 =
𝐷𝐵𝑖 −𝐷𝑖

𝐷𝐵𝑖
, 𝑖 = 1, 2, 3. (6)

Elderly and overall deaths are the primary outcomes. We will generally
also present the effect of a staggered-release policy on the projected
overall number of deaths in all groups, since this provides context for

3
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Fig. 3. Depiction of examples showing the policy switching for the three groups. The top plot represents the benchmark simultaneous-release scenario in which all groups have
restriction level 𝑠𝑏 for 𝑇0 < 𝑡 ≤ 𝑇𝑒𝑛𝑑 and all groups have relaxed restriction level 𝑠𝑟 < 𝑠𝑏 for 𝑡 > 𝑇𝑒𝑛𝑑 . The bottom diagram corresponds to one staggered-release scenario in which
the times for policy switching are at 𝑇1 and 𝑇𝑒𝑛𝑑 : all groups have the restriction level 𝑠𝑏 for 𝑇0 < 𝑡 ≤ 𝑇1 and the level 𝑠𝑟 for 𝑡 > 𝑡𝑒𝑛𝑑 , but Group 1 has a relaxed level of restriction
𝑠(1)2 ∈ (𝑠𝑟 , 𝑠𝑏) for 𝑇1 < 𝑡 ≤ 𝑇𝑒𝑛𝑑 .

Fig. 4. Illustration of a potential scenario where a second wave can occur with high
peak after lockdown and social distancing restrictions are relaxed. 𝑇0 is the time when
the restriction started and 𝑇𝑒𝑛𝑑 is the time when the restrictions are lifted.

the possible trade-offs that occur in order to save elderly lives. Let
0 =

∑3
𝑖=1 𝑖 denote the overall efficacy. Another consideration in

the comparison of policies is the peak size of the total symptomatic
infections.

3.1. Releasing the low-risk young group first saves lives

In this section, we analyze the costs and benefits of releasing Group
1 from restrictions before other groups. In this case, 𝑇2 = 𝑇𝑒𝑛𝑑 . Examples
of releasing all three groups at different time points are considered in

Section 3.2. To identify the effects, we hold constant the total duration
of restrictions and the severity of restrictions on Group 2 and elderly
Group 3. At 𝑇1 ∈ (𝑇0, 𝑇𝑒𝑛𝑑 ), there is a choice of whether (and to what
degree) to release Group 1 from restrictions; a choice of 𝑠(1)2 ∈ (𝑠𝑟, 𝑠𝑏) =
(0.2, 0.8).

For ease of presentation, in the remainder of this paper we will
shift the time axis to have 𝑇0 = 0 (the time when the initial restriction
starts) and let 𝑇1 and 𝑇𝑒𝑛𝑑 represent the times from 𝑇0. The values at
𝑇0 of the state variables of the original system (1) without intervention
will be taken as the initial values at 𝑡 = 0 for the shifted system. The
comparisons of outcomes between staggered- and simultaneous-release
scenarios will be considered based on changes after 𝑇0.

Fig. 5 presents how the efficacy for the elderly group (3) and
the overall efficacy (0) vary with the policy parameters 𝑇1 and 𝑠(1)2 .
Several staggered-release policies are represented by 𝑇1 = 20, 30, 40, 50
and 𝑠(1)2 = 0.4, 0.5, 0.6, 0.7, while the delayed simultaneous-release policy
corresponds to 𝑇1 = 𝑇𝑒𝑛𝑑 = 120 or 𝑠(1)2 = 0.8. Other parameter values are:
𝛾𝑖 = 𝛾𝑎 = 0.14, 𝜖1 = 0.7, 𝜖2 = 0.5, 𝜖3 = 0.9, 𝑝1 = 0.4, 𝑝2 = 0.6, 𝑝3 = 0.8,
𝜃𝑖 = 0.5, 𝜒𝑖 = 0.1, 𝑞1 = 0.00064, 𝑞2 = 0.008, 𝑞3 = 0.032, 𝛿1 = 0.01𝑞1,
𝛿2 = 0.01𝑞2, 𝛿3 = 0.025𝑞3, 𝜂1 = 0.0125, 𝜂2 = 0.05, 𝜂3 = 0.1. The efficacies
for Group 3 and overall are illustrated in Fig. 5(a) and (b), respectively.

Results shown in Fig. 5 suggest that there is a significant reduction
in elderly deaths and overall deaths as the low-risk young group faces
less severe restrictions (𝑠(1)2 ) and as this relaxation of restrictions takes
place at an earlier date (𝑇1), and these responses are strictly monotonic
in both 𝑠(1)2 and 𝑇1. Particularly, the timely release of Group 1 with
𝑠(1)2 = 0.4 and 20 ≤ 𝑇1 ≤ 50 can decrease elderly and overall disease
deaths by 7% to 28% of their projected values under the simultaneous-
release policy, for the parameter values used. Results for different sets
of parameter values are discussed in later sections.

Fig. 6 illustrates the influence of the policy parameters 𝑠(1)2 and 𝑇1
on the total symptomatic infections (per 100,000). All parameter values
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Fig. 5. Dependence of the efficacy for elderly (3) and the overall efficacy (0) on the timing 𝑇1 and restriction level 𝑠(1)2 .

Fig. 6. Dependence of the total symptomatic infections on the policy parameters 𝑇1 and 𝑠(1)2 . In all four plots, the benchmark simultaneous-release scenario corresponds to the
curve with the highest peak, which corresponds to the strict restriction level 𝑠(1)2 = 0.8.

are the same as in Fig. 5. It shows that in all 4 plots the peak size
decreases when 𝑠(1)2 decreased from 0.8 to 0.5, but in (a) the peak
increased when 𝑠(1)2 is decreased further to 0.4. For 𝑠(1)2 = 0.4, the early
releases of Group 1 reduce the peak size by 19%–44% in all four plots.

For the scenarios presented in Figs. 5 and 6, we observe that the
restriction level 𝑠(1)2 = 0.4 would provide the most beneficial policy for
all values of 𝑇1, and that 𝑇1 = 20 and 30 are better choices than 𝑇1 = 40
or 50. For ease of reference, we refer to these two policies as:

• Policy I: 𝑇1 = 30 and 𝑠(1)2 = 0.4;
• Policy II: 𝑇1 = 20 and 𝑠(1)2 = 0.4.

If we compare Policy I and Policy II, both have advantages and
disadvantages. Policy I has a relatively lower peak size (see the thicker-
red curve in Fig. 6(a) and (b)) while Policy II leads to higher efficacies
(see the red column in Fig. 5(a) and (b)). Examples of policies with
𝑠(1)2 < 0.4 will be discussed later.

Additional simulations of Model (1) with a wider range of parameter
values show similar qualitative behavior, some of which are included
in the following sections and in Appendix. Particularly, the main results
are not sensitive to the choices of group-specific and overall basic
reproduction numbers (0𝑖 and 0), proportions of symptomatic in-
fections (𝑝𝑖), mean infectious period (1∕𝛾), and 𝑇𝑒𝑛𝑑 . The following
results summarize how the reductions in disease deaths (𝑖) for the
elderly group and overall respond to the early release of Group 1 from
restrictions.

Result 1. The following results are based on a large number of simulations
of Model (1) with a broader range of reasonable parameter values for
COVID-19.

(i) Both the overall efficacy 0 and the efficacy for the most vulnerable
and elderly group 3 are strictly increasing as the severity of secondary
restriction level 𝑠(1)2 decreases.

5
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Fig. 7. Similar to Fig. 5 but for Groups 1 and 2. All parameter values are the same as in Fig. 5.

Fig. 8. Comparison of the G1-release and G2-release policies represented by the solid and dashed curves, respectively, in (a) and (b). The efficacies for Group 3 and overall are
shown in (c) for four values of 𝑠(2)3 , where 𝑠(2)3 = 0.4 and 0.8 correspond to the G1-release and G2-release, respectively.

(ii) The peak size of the total symptomatic infections may be the lowest
at an intermediate value of severity 𝑠(1)2 ∈ (𝑠𝑟, 𝑠𝑏).

(iii) For smaller 𝑠(1)2 > 𝑠𝑟, the efficacy 1 for Group 1 may become negative
if the disease mortality for Group 1 is high.

In all simulated results, staggered-release policies are more beneficial than
the simultaneous-release benchmark policy in the sense that they help reduce
disease deaths in the most vulnerable population and lower the peak size,
while allowing increased economic activities.

Results presented in Figs. 5 and 6 suggest that, in the evaluation of
staggered-release policies, balanced considerations are needed between
reductions of disease deaths and the peak size of symptomatic infec-
tions. We may also consider the efficacies for Groups 1 and 2. This
is presented in Fig. 7. We observe that the behavior of 2 as shown
in Fig. 7(b) is very similar to that of Group 3 as shown in Fig. 5(a),
while Fig. 7(a) shows that the changes of disease deaths for Group 1
are much smaller. This is because the disease mortality for Group 1 is
much lower. Parameter values are the same as in Fig. 5.

3.2. Fully staggered releases require proper timing

Results in the previous sections present the positive impacts of
releasing Group 1 before the other two groups are released at the same
time. In this section, we explore the impact of relax restrictions for
Group 2 at some point before the final releases of all groups at 𝑇𝑒𝑛𝑑 . The
intuition would be that since Group 2 is less vulnerable than Group 3,
staggering their releases may have similar benefits to the early release
of Group 1 only. We will observe a similar result here, but with some
caveats.

Let 𝑇2 represent the timing for releasing Group 2 with a restriction
level 𝑠(2)3 . As before, the restriction level for Group 3 will be kept at 0.8
for all 𝑡 < 𝑇𝑒𝑛𝑑 , but now 𝑠(2)3 is another policy variable. Assume that

the severity level for Group 1 does not change in (𝑇2, 𝑇𝑒𝑛𝑑 ], i.e., 𝑠(1)2 =
𝑠(1)3 . As more detailed analysis of the degree of Group 1 release, 𝑠(1)2 ,
and the timing 𝑇1 have already been done in the previous sections,
in this section we will fix 𝑠(1)2 = 0.4 and 𝑇1 = 30. We will vary the
cutoff time 𝑇2 and the severity 𝑠(2)3 ∈ [0.4, 0.8]. Note that the staggered
policy considered in the previous section corresponds to (𝑇1, 𝑇2, 𝑇𝑒𝑛𝑑 ) =
(30, 120, 120). We refer to this as the ‘‘G1-release’’ policy. The baseline
simultaneous-release policy will be the same idea as before, with all
three groups being held under the same initial restrictions until 𝑇𝑒𝑛𝑑 .
This is represented by 𝑇1 = 𝑇2 = 𝑇𝑒𝑛𝑑 = 120 with 𝑠(1)2 = 𝑠(2)3 = 0.8.

Two natural comparisons are the ‘‘G1-release’’ policy and the ‘‘G2-
release’’ policy with 𝑇1 < 𝑇2 < 𝑇𝑒𝑛𝑑 . One example is illustrated in Fig. 8,
in which 𝑇1 = 30, 𝑇2 = 60, 𝑠(1)2 = 0.4, with various values of 𝑠(2)3 . All other
parameter values are the same as in Figs. 5 and 6.

We observe from Fig. 8(a) that the G2-release (𝑠(2)3 = 0.4) has a
higher peak size than the G1-release (𝑠(2)3 = 0.8), although both peaks
are much lower than that of the simultaneous-release. Fig. 8(b) shows
that the increased infections of the G2-release resulted in an increased
number of disease deaths in Group 2, particularly during an earlier
period of the outbreak. Plot (c) shows that the early release of Group 2
generated slightly higher efficacy in the elderly group 3 but decreased
the overall efficacy, which is due to the increased deaths in Group 2.
The changes in peak size, number of deaths, and efficacy vary with
the timing 𝑇2. This suggests that a careful selection of 𝑇2 and a more
detailed cost-benefit analysis should be carried out to determine the
most beneficial policies for releasing Group 2.

3.3. Robustness of the simulation results

In most of our simulations of Model (1) using a broad range of
parameter values, the qualitative behavior concerning the efficacies
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Fig. 9. Influence of the policy parameter 𝑠(1)2 on (a) symptomatic infections, (b) cumulative disease deaths, and (c) Efficacies 𝑖.

Fig. 10. Effects of 𝑇𝑒𝑛𝑑 on the efficacy 𝑖 with fixed 𝑇1 = 30 days and 𝑠(1)2 = 0.4. All other parameters are the same as in Figs. 5 and 6.

𝑖 and the peak sizes of symptomatic infections are similar. Several
examples are provided in this section and in the Appendix.

Fig. 9 illustrates results for reduced group reproduction numbers:
01 = 3,02 = 2.25, and 02 = 1.75. All other parameters are the
same as in Figs. 5 and 6 with 𝑇1 = 20 and 𝑇𝑒𝑛𝑑 = 150. As 𝑠(1)2
decreases from 0.8 to 0.4, plot (a) shows that the peak size is the lowest
at 𝑠(1)2 = 0.5; plot (b) shows that the cumulative numbers of deaths
decrease monotonically in Groups 2 and 3 but remains almost the same
in Group 1; and plot (c) presents the corresponding efficacies 𝑖 for all
groups. These plots show a similar qualitative behavior as in Figs. 5
and 6 (see the case of 𝑠(1)2 = 0.4 and 𝑇1 = 20).

To explore the influence of 𝑇𝑒𝑛𝑑 , Fig. 10 illustrates the results for
𝑇𝑒𝑛𝑑 = 80, 90, 100, 110, 120. All other parameters are the same as in
Figs. 5 and 6 with 𝑇1 = 30 and 𝑠(1)2 = 0.4. It shows that, as 𝑇𝑒𝑛𝑑
decreases, the peak size increases while the efficacy 𝑖 decreases within
each group. One of the reasons for the larger peak size for smaller 𝑇𝑒𝑛𝑑
values (e.g., 80–100) is because the number of infections are still in
the increasing phase at the time of releasing all groups, whereas for
𝑇𝑒𝑛𝑑 = 120 the infection curve has already started decreasing. This
suggests that the timing of group releases can be critically important.

The significantly lower case mortality for the younger groups shown
in Fig. 1 was considered in the choice for values of 𝑞𝑖 for the figures
in previous sections. If, however, in a different population 𝑞1 is not so
much lower than 𝑞2 and 𝑞3, a more detailed cost and benefit analysis
might be needed in the examination of policies for releasing Group
1 earlier. In Fig. 11, the values 𝑞1 = 0.0016, 𝑞2 = 0.008, 𝑞3 = 0.032
are used. All other parameters are the same as in Figs. 5 and 6 with
𝑇1 = 30, and an additional of 𝑠(1)2 = 0.2 is included in the comparison.
One key difference between the results shown in Fig. 11 and others
presented earlier is that, the least strict restriction (𝑠(1)2 = 0.2) may
shift the peak earlier in time with a much higher peak size than the
case of 𝑠(1)2 = 0.4 (see (a)). On one hand, this can greatly increase the
population immunity, which may reduce the loss of life in the elderly
group 3 (see (b)) and increase the efficacies for both Group 3 and

overall (see (c)). On the other hand, however, the efficacy 1 for Group
1 is negative for 𝑠(1)2 = 0.2 (see (c)), which represents increased deaths
in Group 1, although by a very small number. This can be avoided by
restricting 𝑠(1)2 to be higher than 0.2 to ensure non-negative 1, as done
in the earlier examples.

4. Discussion

The findings generated by a careful study of various scenarios
support the view that releasing some appropriately defined groups
earlier from lockdown and social distancing restrictions may be highly
beneficial under the premise that reducing overall disease deaths is the
priority. The use of a staggered-release policy built on the immuno-
logical strength of sub-groups of a population may indeed prove to
be highly effective in terms of protecting vulnerable individuals while
mitigating economic setbacks.

Staggered-release policies are designed to avoid dangerous levels
of severe infections among the most vulnerable by redistributing the
timing and likelihood of infection across groups. The release of low-
risk and young from restrictions earlier might increase their disease
exposure, but most infections would be asymptomatic or mild. The
second group would be then released after some level of population
immunity has been achieved among the first group. The related concept
of deploying recovered individuals with antibodies into society to
restart the economy while keeping infectious contacts low has been put
forward in Weitz et al. [27], who term it ‘shield immunity.’

The effectiveness of staggered-release policies is crucially tied to
timing choices. We show that the mistimed release of groups may lead
to an increase in overall disease deaths. While the early release of
the youngest group is generally going to be significantly helpful, the
response of the epidemic curve to specific choices of when to release
older groups is complicated, as pointed out more generally by Morris
et al. [17].

Simulations show that if the second group’s release is timed to take
place just before the peak of infections, then the release may lead to a
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Fig. 11. Similar to Fig. 9 but for 𝑞1 = 0.0016, 𝑇1 = 30. The values of 𝑖 are the same as in Fig. 5 and an additional value of 𝑠(1)2 = 0.2 is included.

higher peak of infections and more disease deaths. On the other hand,
releasing this second group after the peak of infections generated by the
first group has passed produces only a small or no bump in infections
that does not increase significantly the risks of those involved, a result
consistent with the findings in Morris et al. [17]. Morris et al. observe
that optimal control in this context responds to changing levels of
susceptibility and infection rates in the population.

Compared to the delayed simultaneous-release benchmark,
staggered-release policies that release Group 1 first can save a sig-
nificant portion of lives among the elderly. In most of the examples
presented in this paper, we see commonly 10%–20% reduction in
elderly disease deaths compared to the simultaneous-release policy.
The estimated size of this effect is robust to alternate parameter
specifications.

Results shown in Figs. 10 and A.3 reveal a stark change in outcomes
if the release of older groups is mistimed, even if it is carried out a
few weeks too early. Releasing these individuals from restrictions while
infections are still rising results in a significantly higher peak size of
symptomatic infections compared to those from a policy of waiting to
release them only after infections have begun to fall.

Importantly, while economic considerations were mentioned as a
motivating factor behind the earlier removal of restrictions for some
groups, there were no actual economic components in the model we
used in this paper. Our conclusion that staggered-release policies out-
perform simultaneous-release policies is shown through a direct com-
parison of health risks and aggregate loss of life estimated from projec-
tions of the outbreak under these policies. The fact that earlier release
of certain sub-groups enhances economic activity on the whole is a
further benefit to staggered-release policies, but this is a benefit that
exists outside of our model.

It would be insightful to incorporate the adverse health conse-
quences associated with lengthy lockdown restrictions, such as in-
creased risk of depression and loss of health insurance from employ-
ment to cover unrelated medical issues, within the comparison struc-
ture used in this paper. However, we wanted the focus to be on a direct
comparison of health risks associated with the disease itself, so that it
is clear that these additional consequences do not drive the result. We
leave the explicit consideration of these additional health risks to future
work.

Ultimately, it was our goal to analyze the use of staggered-release
policies and compare the outcomes to those resulting from a policy
of the delayed simultaneous release of everyone. This is meant to be
an illustrative paper, not a prescriptive one. Implementing staggered-
release policies would require a more thorough analysis of the specific
population under consideration in order to appropriately structure the
schedule of release.

4.1. Conclusion

Lockdown and social distancing restrictions have been an important
tool in controlling the spread of COVID-19 and keeping infection rates
low enough to avoid exceeding health care capacity. Now that the
initial phase of the outbreak has been addressed, the next step is to
properly schedule the relaxation of constraints in order to optimally
control the entirety of the outbreak. The decision to lift restrictions
on everyone simultaneously is perhaps the natural policy, but this can
have dire consequences if a second peak arises as a result of insufficient
immunity in the population. Such an outcome would defeat the purpose
of installing restrictions in the first place, so it is crucially important to
consider more effective policies in terms of when to release people from
restrictions.

To summarize, the early release of low-risk young individuals pro-
vides an interim period that allows them to build up some degree of
immunity without facing significant health risks themselves, in order to
protect older and more vulnerable individuals from severe health risks
by reducing their likelihood of infection and death. As an added benefit,
the staggered-release policy allows for more activity in the population
at an earlier date than the delayed simultaneous-release policy would.
Thus staggered-release policies can positively impact everyone involved
by allowing people to return to their lives without risking them.
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Table A.1
Definition of the symbols used in Model (1) and their values used in the examples.

Symbol Description Values & range

𝑘𝑖 Rate of progression from 𝐸𝑖 to 𝐼𝑖, i.e., 1∕𝑘𝑖 is the mean latent period (1/10, 1/7)
𝛾𝑎𝑖 Rate of recovery, i.e., 1∕𝛾𝑎𝑖 is the mean infectious period for 𝐴 class (1/10, 1/5)
𝛾𝑖 Rate of recovery, i.e., 1∕𝛾𝑖 is the mean infectious period for 𝐼 class (1/10, 1/5)
0𝑖 Basic reproduction number for group 𝑖 (1.7, 3.6)
𝑎0𝑖 Effective contact rate in the absence of intervention See Eq. (4)
𝑎𝑖(𝑡) Effective contact rate under intervention such as social distancing See Eq. (5)
𝜃𝑖 Infectivity ratio of 𝐴𝑖 to 𝐼𝑖 individuals, 0 ≤ 𝜃𝑖 ≤ 1 (0.3, 0.6)
𝜒𝑖 Infectivity ratio of 𝐻𝑖 to 𝐼𝑖 individuals, 0 ≤ 𝜒𝑖 ≤ 1 (0, 0.2)
𝜖𝑖 Level of preference for contacting one’s own group, 0 ≤ 𝜖𝑖 ≤ 1 (0.5, 0.9)
𝑐𝑖𝑗 Proportion of contacts a member of group 𝑖 has with group 𝑗 See Eq. (3)
𝜆𝑖(𝑡) Force of infection for susceptibles in group 𝑖 at time 𝑡 See Eq. (2)
𝑝𝑖 Proportions of infectious that are symptomatic. 𝑝1 ≤ 𝑝2 ≤ 𝑝3 (0.4,0.8)
𝑞𝑖 Proportions of disease deaths from the 𝐻 class (0.00064, 0.032)
𝜙𝑖 1∕𝜙𝑖 is the mean duration in 𝐻𝑖 before disease death (0.05, 0.1)
𝛿𝑖 Rate of disease death from the 𝐼𝑖 class (0,0.0008)
𝜂𝑖 Rate of moving from the 𝐼𝑖 class into the 𝐻𝑖 class (0.2, 0.5)
𝑇𝑗 Time points when a new policy starts. 𝑇0 ≤ 𝑇1 ≤ 𝑇2 ≤ 𝑇3 = 𝑇𝑒𝑛𝑑 Vary
𝑠(𝑖)𝑗 Reduction of contacts for group 𝑖 in time interval (𝑇𝑗−1 , 𝑇𝑗 ] Vary
𝑠𝑏 = 𝑠(𝑖)1 Reduction of contacts during the initial restrictions, i.e., in (𝑇0 , 𝑇1] 0.8
𝑠𝑟 Reduction of contacts in the residual period 𝑡 > 𝑇𝑒𝑛𝑑 0.2

Note: 𝑖, 𝑗 = 1, 2, 3. Time unit is days. Most parameter ranges are based on [1,16,19,28].

Appendix

In this appendix, we include the derivation of the basic reproduction
number of the 3-group model (1) and present several examples to
demonstrate that the main conclusions discussed in this paper are
not sensitive to the choice of those model parameters that may have
higher levels of uncertainty. These include the proportions of symp-
tomatic infections (𝑝𝑖), the recovery rate (𝛾𝑖), and group-specific basic
reproduction numbers 0𝑖.

A.1. Basic reproduction number of model (1)

Let 𝐯 denote the vector of infected state variables (without hospital-
ization) in the following order:

𝐯 = (𝐸1, 𝐴1, 𝐼1, 𝐸2, 𝐴2, 𝐼2, 𝐸3, 𝐴3, 𝐼3)

and consider the system for fractions of these variables within each
group (e.g., 𝑥𝑖 = 𝐸𝑖∕𝑁𝑖, 𝑦𝑖 = 𝐴𝑖∕𝑁𝑖, 𝑧𝑖 = 𝐼𝑖∕𝑁𝑖, 𝑖 = 1, 2, 3). Let

𝑇𝑖 =
𝑝𝑖

𝛾𝑖 + 𝜇𝑖
+ 𝜃𝑖

1 − 𝑝𝑖
𝛾𝑎

, 𝑖 = 1, 2, 3.

Then, the group-specific basic reproduction number for group 𝑖 is

0𝑖 = 𝑎0𝑖𝑇𝑖 = 𝑎0𝑖
[ 𝑝𝑖
𝛾𝑖 + 𝜇𝑖

+ 𝜃𝑖
1 − 𝑝𝑖
𝛾𝑎

]

. (7)

For the whole population, the next generation matrix is a 3 × 3 block
matrix 𝐾 = (𝐾𝑖𝑗 ) with

𝐾𝑖𝑗 =
⎛

⎜

⎜

⎝

𝑎0𝑖𝑇𝑗𝑐𝑖𝑗 ∗ ∗
0 0 0
0 0 0

⎞

⎟

⎟

⎠

for 𝑖, 𝑗 = 1, 2, 3,

where the ‘‘*’’ entries do not affect the result. The non-zero eigenvalues
of 𝐾 are given by the following matrix:

𝐻 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎01𝑇1𝑐11 𝑎01𝑇2𝑐12 𝑎01𝑇3𝑐13

𝑎02𝑇1𝑐21 𝑎02𝑇2𝑐22 𝑎02𝑇3𝑐23

𝑎03𝑇1𝑐31 𝑎03𝑇2𝑐32 𝑎03𝑇3𝑐33

⎞

⎟

⎟

⎟

⎟

⎠

.

Let 𝜌(𝐻) denote the dominant eigenvalue of 𝐻 , then the basic repro-
duction number for the whole population is given by

0 = 𝜌(𝐻). (8)

For the parameter values used in Figs. 5 and 6, 0 = 3.4.

A.2. Choice of parameter values

Most of the simulations in this study used parameter values moti-
vated by the data for New York City (see [2]). Fig, A.1 demonstrates
that the new cases generated by these values are on a similar order

Fig. A.1. (a) Data of new cases for NYC. (b) New cases from our model.
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Fig. A.2. Effects of the proportion of symptomatic infections 𝑝𝑖 and the infectious period 1∕𝛾 on the efficacy 𝑖 with fixed 𝑇1 = 30 days and 𝑠(1)2 = 0.4. All other parameters are
the same as in Figs. 5 and 6.

Fig. A.3. Symptomatic infections under four different policies corresponding to 𝑠(2)3 = 0.4, 0.5, 0.6, 0.8 with (a) 𝑇1 = 30, 𝑇2 = 60 and (b) 𝑇1 = 30 and 𝑇2 = 90. Both plots are for
𝑠(1)2 = 0.4 and 𝑇𝑒𝑛𝑑 = 120. The benchmark simultaneous-release policy (𝑠(1)2 = 𝑠(2)3 = 0.8) is also plotted. Plot (a) shows a much higher peak size than plot (b) for 𝑠(2)3 = 0.4.

to that observed in data. This figure is produced by the same model
that generated Figs. 5 and 6 in the case of a homogeneous population
(assumed same contact rates and other parameters for all groups) for
𝑡 between 03/15 and 5/13 with 𝑠𝑏 = 0.8. For other parameter values,
using the data shown in Fig. 1 we get the following estimates used to
produce Fig. A.1(b): 0𝑖 = 0 = 3.4, 𝑝𝑖 = 0.7, 𝛾𝑖 = 𝛾𝑎 = 1∕7, 𝑘𝑖 = 1∕10,
𝜃𝑖 = 0.5, 𝜒𝑖 = 0.1, 𝑞𝑖 = 0.052, 𝜂𝑖 = 0.05, 𝛿𝑖 = 0.0006. The case numbers
are scaled to 8.4 million total population size for NYC.

A.3. Proportion of symptomatic infections and infectious period

Fix all other parameter as in Fig. 5 with 𝑇1 = 30 and 𝑠(1)2 = 0.4.
Consider two sets of 𝑝𝑖 and 𝛾𝑖: (i) 𝑝𝑖 = 𝑝 = 0.5, 0.6, 0.7, 0.8 and 1∕𝛾𝑖 = 7,
and (ii) 1∕𝛾𝑖 = 1∕𝛾 = 6, 7, 8, 10 with 𝑝𝑖 being the same as in Fig. 5.
Results are presented in Fig. A.2. We observe that the efficacies for the
elderly and overall are very similar for different values of 𝑝𝑖 or 𝛾𝑖.

A.4. Group-specific basic reproduction numbers

First, consider the group-specific basic reproduction numbers: 01 =
4.8, 02 = 3.6, 03 = 2.4, which are higher than those used in Fig. 5.

All other parameter values are the same as in Figs. 5 and 6 with
𝑇1 = 30 days and 𝑠(1)2 = 0.4. Fig. A.3 illustrates numerical results
of two scenarios of G2-release: (a) 𝑇2 = 60, 𝑇𝑒𝑛𝑑 = 120, and 𝑠(2)3 =
0.4, 0.5, 0.6, 0.8; and (b) 𝑇2 = 90 and other parameters are the same as
in (a). We observe in (a) that the peak size increases as 𝑠(2)3 decreases
from 0.8 to 0.4, whereas in (b) the increase of the peak size is not as
large as in (a). This demonstrates a similar behavior as in Fig. 10. That
is, the reason for the higher peak sizes in (a) is because at the time of
release (𝑇2 = 60) of Group 2 the infections are still increasing, which is
not the case in (b).

Next, consider the group-specific reproduction numbers: 01 = 3.18,
02 = 2.39, 03 = 1.86, which are lower than those used in Fig. 5.
In this case 0 = 3 (see Eqs. (7) and (8) in Appendix A.1). All other
parameters are the same as in Figs. 5 and 6 except that 𝑇𝑒𝑛𝑑 = 160.
Fig. A.4 shows that the effect of 𝑠(1)2 on the infection curves is very
similar to that shown in Fig. 6. The efficacies 3 and 0 also show
similar properties as in Fig. 5 (omitted here).
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Fig. A.4. Similar to Fig. 6 but for lower values of 0𝑖 and 𝑇𝑒𝑛𝑑 = 160.
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