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a b s t r a c t 

In this paper, a nonlinear fractional order epidemic model for HIV transmission is proposed and analyzed 

by including extra compartment namely exposed class to the basic SIR epidemic model. Also, the infected 

class of female sex workers is divided into unaware infectives and the aware infectives. The focus is on 

the spread of HIV by female sex workers through prostitution, because in the present world sexual trans- 

mission is the major cause of the HIV transmission. The exposed class contains those susceptible males 

in the population who have sexual contact with the female sex workers and are exposed to the infection 

directly or indirectly. The Caputo type fractional derivative is involved and generalized Adams-Bashforth- 

Moulton method is employed to numerically solve the proposed model. Model equilibria are determined 

and their stability analysis is considered by using fractional Routh-Hurwitz stability criterion and frac- 

tional La-Salle invariant principle. Analysis of the model demonstrates that the population is free from 

the disease if R 0 < 1 and disease spreads in the population if R 0 > 1 . Meanwhile, by using Lyapunov 

functional approach, the global dynamics of the endemic equilibrium point is discussed. Furthermore, 

for the fractional optimal control problem associated with the control strategies such as condom use for 

exposed class, treatment for aware infectives, awareness about disease among unaware infectives and be- 

havioral change for susceptibles, we formulated a fractional optimality condition for the proposed model. 

The existence of fractional optimal control is analyzed and the Euler-Lagrange necessary conditions for 

the optimality of fractional optimal control are obtained. The effectiveness of control strategies is shown 

through numerical simulations and it can be seen through simulation, that the control measures effec- 

tively increase the quality of life and age limit of the HIV patients. It significantly reduces the number of 

HIV/AIDS patients during the whole epidemic. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Epidemiology mainly deals with the infectious diseases and

redicts their occurrence, transmission as well as control in a pop-

lation. It identifies the factors responsible for disease spread, fa-

ilitates treatment quality and health services, provides necessary

easures for prevention, treatment, planning in order to improve

he efficiency and effectiveness of health services [1] . HIV is a

etrovirus which is discovered in 1981 in USA among the gay

ommunity causes an AIDS a severe life intimidating ailment. At

resent, there is no vaccine or cure for AIDS, that makes it an in-

urable disease with high mortality rate (there are almost 25 mil-

ion deaths by AIDS per year worldwide), also it spread quickly af-

ecting about 14,0 0 0 new case/day. The time duration for HIV to
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evelop AIDS mostly lasts from 6 months to 15 year. The virus

estructs CD4 + T-cells ending of loss of cell mediated immunity,

hus makes the immune system susceptible to cancers and vari-

us infectious diseases. The routes of transmission of HIV virus are

nprotected sexual intercourse, through blood by sharing contam-

nated needles or infected blood transfusion, from mother to her

hild during pregnancy i.e., vertical transmission [2] . 

Mathematical models act as a tool which the researchers have

xtensively used in the epidemiology of HIV/AIDS to get the un-

erstanding of the major contributing factors in a given epi-

emic. Zafar et al. [3] fractionally studied the HIV/AIDS epidemics

ith three solution approaches namely Adams-Bashforth Moulton

ethod, Grunwald Letnikov approach and Grunwald Letnikov ap-

roach with binomial coefficients. In their study, they have an-

lyzed the model and obtained the necessary conditions for the

xistence and stability of both the equilibria. They have shown

hat the system is stable if R 0 < 1 and if R 0 > 1 , then system

ecomes unstable and endemic equilibrium exists which behaves

https://doi.org/10.1016/j.chaos.2020.109826
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109826&domain=pdf
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as an attractor. Wang et al. [4] studied a delayed fractional or-

der SIR model with saturated incidence and treatment functions.

They have provided the sufficient conditions that guarantee the ex-

istence of equilibria and discussed the global stability results for

both disease-free equilibrium as well as endemic equilibrium by

constructing a suitable Lyapunov functions. Almeida [5] in his pa-

per studied a fractional SEIR epidemic model in presence of treat-

ment. He analysed the model and his main focus was on the frac-

tional differential equations in order to describe the dynamics of

certain epidemics. Further, he proved the local stability for both

equilibria. Carvalho et al. [6] provided a HIV/HCV coinfection frac-

tional order model to understand the impact of HIV viral load on

the coinfection. Their main motive in the model was to provide

good fits to real data from patients suffering from several diseases

such as HIV, HCV, dengue fever and many more. They have numer-

ically suggested that the HIV viral load impacts impressively the

severity of the HCV infection. Also, by their results they showed

that the treatment efficacy is also influential over the natural pro-

gression of HCV on the HIV/HCV coinfection. Recently, Kheiri and

Jafari [7] analysed a multi-patch HIV/AIDS epidemic model with

fractional order derivatives and investigated the effect of human

movement on the spread of HIV/AIDS epidemic among patches.

They derived the basic reproduction number R 0 of the model and

studied the local as well as global stability of the equilibria on the

basis of R 0 . They have shown that the system is stable if R 0 < 1

and it becomes unstable if R 0 > 1 . They also obtained the suffi-

cient conditions under which the endemic equilibrium is unique

and globally asymptotically stable. Besides this, they formulated

a fractional optimal control problem in which the state and co-

state equations are given in term of the left fractional derivatives.

They incorporated in the model time dependent controls in order

to control the spread of HIV/AIDS epidemics. They also derived the

necessary conditions for the fractional optimal control in their pro-

posed model. The effect of varying the fractional order on the dis-

ease spread is also studied in their model. Researchers have con-

tinuously studied the fractional order models of HIV disease dy-

namics and provided many well-known mathematical techniques

for the solution of these models for the dynamics of HIV epidemics

[8-19] . Besides this, a number of studies on fractional order model-

ing of other infectious diseases can be found in the literature [20-

23] . The fractional order derivative not only find its application on

modeling infectious diseases but in other fields as well like vibra-

tion equation [24] and so on. 

The optimal control theory is developing fast and its various

applications are extensively used in many fields of science and

engineering [25] . This theory for linear systems has been highly

improved [26] , however, the nonlinear optimal control problem

(OCP) has become a strong topic and should be deeper investi-

gated [27-28] . Jajarmi and Baleanu [29] proposed a new approach

based on the modal series method and eigenvalue decomposition

technique to solve a class of nonlinear optimal control problems.

They have also investigated the convergence analysis of their sug-

gested technique. Jajarmi et al . [30] proposed a new approach for

the optimal control of time-varying delay systems with external

persistent matched disturbances. In their internal model principle,

they converted original time-delay model with disturbance into an

augmented system without any disturbance. Then, they selected

a quadratic performance index for the augmented system to form

an undisturbed time-delay optimal control problem. The necessary

optimality conditions are then derived in terms of a two-point

boundary value problem involving advance and delay arguments.

At the end they finally provided a fast iterative algorithm for the

latter advance-delay boundary value problem. They also investi-

gated the convergence of the new iterative technique. 

The purpose of dealing with fractional order systems is the

memory and hereditary properties which are the complex behav-
oral patterns of biological systems gives us more realistic way to

odel HIV/AIDS systems. In the fractional order models, the mem-

ry property allows the integration of more information from the

ast which predicts and translates the models more accurately.

lso, the hereditary property describes the genetic profile along

ith age and status of the immune system. Because of such prop-

rties fractional order calculus have found wide applications to

odel dynamics processes in many well-known fields of science,

ngineering, biology, medicine and many other [31-32] . Saeedian

t al. [33] formulated SIR epidemic model with the inclusion of

emory effect and studied its behavior along the memory effect

n the disease spread with the help of fractional derivatives. Rihan

34] provided a class of fractional order differential models of bio-

ogical systems with memory, such as dynamics of tumor-immune

ystem and dynamics of HIV infection of CD4 + T cells. 

Communicable diseases have been a cause of global concern

hroughout the history of mankind. Its outbreak severely affects

he morbidity and the mortality rates across the globe. It is

herefore important to implement the control measures to pre-

ent and control the disease spread among the populations. Kheiri

nd Jafari [35] formulated a fractional optimal control epidemic

odel of HIV/AIDS with random testing and contact tracing. In

heir model, they have incorporated the control measures of con-

om use and antiretroviral therapy for the control of spread of

IV/AIDS in the susceptible population. They have presented a

orward-Backword sweep numerical method based on Adams-

ashforth-Moulton method for the solution of their model. Agrawal

36] formulated a fractional optimal control problem by using the

eimann-Liouville fractional derivatives and presented a numerical

ethod for its solution. Bashir et al. [37] presented a fractional op-

imal control for a kinetic model and provided a numerical scheme

or its solution. 

Going by the antecedents, we have seen clearly that modeling

f physical and real-life scenarios with the fractional order deriva-

ives is much more accurate when compared with the integer or-

er cases. This assertion has been demonstrated a number of re-

earch papers, monographs and books, see for example [38-41] .

n view of these achievements, we are motivated in this research

ork by modeling the control and analysis of SEI 1 I 2 R dynamics of

IV disease transmission using the Caputo fractional order oper-

tor which is most suited for modeling the biological and physi-

al facts [42-47] . The choice of using the Caputo derivative is due

o the fact that, if the given function is a constant, then the Ca-

uto derivative of that function gives zero. Primarily, the Caputo

perator computes an ordinary differential equation, followed by a

ractional integral to obtain the desired order of fractional deriva-

ive. More importantly, the Caputo fractional differential equation

FDO) permits the use of local initial conditions to be included in

he derivation of the model. 

In the present paper, we propose and analyze a fractional opti-

al control problem, in which the state and co-state equations are

iven in terms of the Caputo fractional derivatives. This approach

implifies the use of fractional numerical methods to solve the

tate and co-state equations. Fractional optimal control problems

an be regarded as a generalization of classic optimal control prob-

ems for which the dynamics of the control system are described

y fractional differential equations. We incorporate into the model

ime dependent controls such as condom use for exposed individ-

als, treatment for infected female sex workers, awareness about

he disease among unaware infectives and behavioral change for

usceptibles in order to reduce the risk of the spread of HIV/AIDS

isease. Conditions for fractional optimal control of the disease

re derived and the state and co-state equations are character-

zed by Caputo fractional derivatives. The numerical solution of the

roposed fractional optimal control problem is obtained by using

eneralized Adams-Bashforth-Moulton method. Furthermore, the
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h  
fficacy of order of fractional derivative, the control strategies and

he value of objective functional is investigated. 

The structure of the paper is designed as: in the next Section 2 ,

ome preliminary results required for the formulation of mathe-

atical model is provided. Development of the proposed math-

matical model and its well-posedness is discussed in Section 3 .

n Section 4 , we discuss the mathematical analysis of the pro-

osed fractional order SEI 1 I 2 R epidemic model along with equilib-

ium points and the stability of equilibrium points. In Section 5 ,

he fractional optimal control problem is formulated and discussed.

lso, in this Section, the necessary conditions for the optimal-

ty of proposed fractional optimal control problem is provided.

urthermore, in Section 6 , application of the generalized Adams-

ashforth-Moulton method is performed on the proposed model

nd the numerical simulations are done to validate the analytical

tudies. In Section 7 , numerical results are given to illustrate the

apability of generalized Adams-Bashforth-Moulton method and

he behavior of the obtained solutions is also discussed in this

ection. Finally, Section 8 concludes all the major findings of the

resent research study. 

. Mathematical preliminaries 

Researchers have continuously extended the definitions of frac-

ional order derivatives like the Riemann-Liouville, the Caputo,

aputo-Fabrizio, Atangana-Baleanu, the Grunwald-Letnikov, the 

eyl, the Marchaud, the Riesz, and the Miller and Ross [48-52] .

ecently, many new definitions of fractional derivative [53] have

ugely evolved, going from the derivatives with nonsingular ker-

el and new Riemann-Liouville fractional derivative without singu-

ar kernel to the two-parameter derivatives with non-singular and

on-local kernel [54-56] . 

efinition 2.1. A real function ψ( t ), t > 0 is said to be in the space

 η, η ∈ R , if there exists a real number l > η, such that ψ(t) =
 

l ψ 1 (t) , where ψ 1 ( t ) ∈ C [0, ∞ ) and it is said to be in the space

 

n 
η, if and only if ψ 

n ( t ) ∈ C η , n ∈ N. 

efinition 2.2. The Riemann-Liouville form of fractional integral

perator RL 
0 

D 

−κ
t of order κ > 0 for a function ψ : R 

+ → R is defined

s 

L 
 

D 

−κ
t ψ ( t ) = 

1 

�( κ) 

t 

∫ 
0 

(t − ε) κ−1 ψ ( ε ) dε, t > 0 , (1)

or 

L 
 

I κt ψ ( t ) = 

1 
�( κ) 

t 

∫ 
0 

(t − ε) κ−1 ψ ( ε ) dε, t > 0 , 

L 
 

I 0 t ψ ( ε ) = ψ ( ε ) , 
(2) 

here κ > 0 and �(.) is a well-known Gamma function. 

efinition 2.3. The Riemann-Liouville form of fractional derivative

f ψ( t ) order κ > 0 is defined as 

L 
 

D 

κ
t ψ ( t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

�( n − κ) 

(
d 

dt 

)n ∫ 
0 

t ψ ( ε ) 

( t − ε ) κ−n +1 
dε, 

0 ≤ n − 1 < κ < n, n = [ κ] , n ∈ N, (
d 

dt 

)n 

ψ ( t ) , κ = n, n ∈ N. 

(3) 
c  
efinition 2.4. The Caputo fractional derivative of ψ( t ) order

> 0 is defined as 

 

 

D 

κ
t ψ ( t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

�( n − κ) 

∫ 
0 

t ( d/ dt ) 
n ψ ( ε ) 

( t − ε ) κ−n +1 
dε, 

0 ≤ n − 1 < κ < n, n = [ κ] , n ∈ N, (
d 

dt 

)n 

ψ ( t ) , κ = n, n ∈ N. 

(4) 

where the operator C 
0 
D 

κ
t satisfies the following two basic prop-

rties: 

C 
0 D 

κ
t 

RL 
0 I 

κ
t ψ ( t ) = ψ ( t ) and 

RL 
0 I 

κ
t 

C 
0 D 

κ
t ψ ( t ) 

= ψ ( t ) −
n −1 ∑ 

ϑ=0 

ψ 

( ϑ ) ( a ) 

ϑ! 
(t − a ) ϑ , t > a. 

The definition 2.3 and definition 2.4 are not equivalent to each

ther, and their difference is expressed by 

 

 

D 

κ
t ψ ( t ) = 

RL 
0 D 

κ
t ψ ( t ) −

n −1 ∑ 

x =0 

r κx ( t ) ψ 

( x ) ( 0 ) , r κx ( t ) = 

t x −κ

�( x + 1 − κ) 

The Caputo operator C 
0 
D 

κ
t , has advantages for differential equa-

ions with initial values. In the case of Riemann-Liouville and Ca-

uto derivatives, respectively, the initial values are usually given as

57] 

L 
 

D 

κ
t ψ ( 0 ) = b v , 

C 
0 D 

κ
t ψ ( 0 ) = b v , v = 1 , 2 , 3 ..., n 

A direct definition of the fractional derivative D 

κ
t ψ(t) , is based

n finite differences of an equidistant grid in [0, t ]. Assume that

he function D 

κ
t ψ(t) , satisfies some smoothness conditions in ev-

ry finite interval (0, t ), t ≤ T . Choosing the grid 

0 = τ0 < τ1 < ... < τn +1 = t = ( n + 1 ) u, τn +1 − τn = u, and using

he classical notation of finite differences, 

1 

u 

κ
	κ

u ψ ( t ) = 

1 

u 

κ

( 

ψ ( τn +1 ) −
n +1 ∑ 

v =1 

c κv ψ ( τn +1 −v ) 

) 

here 

 

κ
v = −(1) v −1 

(
κ
v 

)
efinition 2.5. The Laplace transform of the Caputo fractional

erivative of ψ( t ) order κ > 0 is defined as 

 

[
C 
0 D 

κ
t ψ ( t ) 

]
= s κ
( s ) −

n −1 ∑ 

ϑ=0 

ψ 

( ϑ ) ( 0 ) s κ−ϑ−1 (5) 

efinition 2.6. The Laplace transform of the function

 

κ1 −1 E κ, κ1 
( ±λt κ ) is defined as 

 

[
t κ1 −1 E κ, κ1 ( ±λt κ ) 

]
= 

s κ−κ1 

s κ ∓ λ
(6) 

where E κ, κ1 
is the two-parameter Mittage-Leffler function with

, κ1 > 0. 

Further, the Mittage-Leffler function satisfies the following

quation [58] 

 κ, κ1 ( q ) = q. E κ,κ+ κ1 ( q ) + 

1 

�( κ1 ) 
. (7) 

. Model formulation 

To describe the transmission dynamics of HIV epidemics, we

ave generalized the basic SIR epidemic model by including more

ompartments, to one in which population is divided into five
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C

sub-classes, the susceptible population S ( t ), the exposed popula-

tion E ( t ), the infective population that don’t know they are infected

I 1 ( t ), the infective population that know they are infected I 2 ( t ), by

means of medical screening or otherwise and recovered population

R ( t ). The proposed model is considered as the generalization of the

original Kermack-Mckendrick model [8] , where only three com-

partments were considered, but here the exposed compartment is

included contains those susceptible males in the population who

have sexual intercourse with the female sex workers as a result by

having sexual contact they are exposed to the infection. Further-

more, the infected class is divided into two sub-classes namely in-

fected female sex workers who are unaware about their disease

status and the infected female sex workers who knows their dis-

ease status. Thus, the model takes the following form [ 3 , 15 , 18 ]. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS ( t ) 

dt 
= � − S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − λS ( t ) 

dE ( t ) 

dt 
= S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + σ ) E ( t ) 

dI 1 ( t ) 

dt 
= σE ( t ) − ( ρ + λ + θ ) I 1 ( t ) 

dI 2 ( t ) 

dt 
= θ I 1 ( t ) − ( λ + ρ) I 2 ( t ) 

dR ( t ) 

dt 
= ρ( I 1 ( t ) + I 2 ( t ) ) − ( d + λ) R ( t ) 

(8)

For the understanding of HIV disease dynamics, the total pop-

ulation N ( t ) is divided into five sub-population compartments

namely susceptible, exposed, infected but unaware, infected but

aware and recovered such that N(t) = S(t) + E(t) + I 1 (t) + I 2 (t) +
R (t) for all t . The following description is associated to the above

classical model: the susceptibles are recruited at a rate �, β1 is

the per capita rate for susceptibles individuals with unaware in-

fectives, β2 is the per capita rate for susceptibles individuals with

aware infectives, λ is the natural death rate unrelated to AIDS,

σ is the break through into infected class, θ is the rate of un-

aware infectives to become aware infectives by screening or test-

ing, ρ is the rate by which types of infectives develop AIDS and

d is the AIDS related death rate. It may further be noted that

N 

′ (t) = S ′ (t) + E ′ (t) + I ′ 
1 
(t) + I ′ 

2 
(t) + R ′ (t) = 0 reveals constancy of

total population. 

We further extend the above ordinary differential model to the

following fractional order system of order κ , with σ , ρ > 0 being

the rate that exposed individuals become infectious and recovery

rate, respectively and λ ≥ 0 being the infection related death rate.

The purpose of considering the fractional order case is the signifi-

cant uniqueness of these varieties of fractional order systems with

non-local characteristics (memory) and hereditary properties that

have not been seen with the integer-order differential operators

which widely exists in biology. Also, using fractional order differ-

ential equations can help us to reduce the errors arising from the

neglected parameters in modelling real life phenomena. In each

case, we replace the ordinary derivative by a fractional derivative.

Thus, our proposed fractional order model for HIV disease trans-

mission has the form ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C 
0 D 

κ
t S ( t ) = � − S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − λS ( t ) 

C 
0 D 

κ
t E ( t ) = S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + σ ) E ( t ) 

C 
0 D 

κ
t I 1 ( t ) = σE ( t ) − ( ρ + λ + θ ) I 1 ( t ) 

C 
0 D 

κ
t I 2 ( t ) = θ I 1 ( t ) − ( λ + ρ) I 2 ( t ) 

C 
0 D 

κ
t R ( t ) = ρ( I 1 ( t ) + I 2 ( t ) ) − ( d + λ) R ( t ) 

(9)

subject to the initial conditions 

S ( 0 ) = S 0 , E ( 0 ) = E 0 , I 1 ( 0 ) = I 1 , 0 , I 2 ( 0 ) = I 2 , 0 and R ( 0 ) = R 0 (10)

where 0 < κ ≤ 1, N(t) = S(t) + E(t) + I 1 (t) + I 2 (t) +
R (t) , ( S(t) , E(t) , I 1 (t) , I 2 (t) , R (t) ) ∈ � 

5 + and if κ = 1 , then sys-

tem (9) reduces to an integer order system (8) . It is clear that the
 0
ariable R ( t ) does not appear in the first four equations, thus it is

eaningful to consider the reduced system (9) as: 
 

 

 

 

 

 

 

 

 

C 
0 D 

κ
t S ( t ) = � − S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − λS ( t ) 

C 
0 D 

κ
t E ( t ) = S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + σ ) E ( t ) 

C 
0 D 

κ
t I 1 ( t ) = σE ( t ) − ( ρ + λ + θ ) I 1 ( t ) 

C 
0 D 

κ
t I 2 ( t ) = θ I 1 ( t ) − ( λ + ρ) I 2 ( t ) 

(11)

ubject to the positive initial conditions 

 ( 0 ) = S 0 , E ( 0 ) = E 0 , I 1 ( 0 ) = I 1 , 0 , I 2 ( 0 ) = I 2 , 0 (12)

Here, it is assumed that the functions S ( t ), E ( t ), I 1 ( t ), I 2 ( t ), R ( t )

nd their Caputo fractional derivatives are continuous at t ≥ 0.

gain, since C 
0 
D 

κ
t N(t) = 0 , the population size is constant. To start,

he existence, uniqueness, and non-negativity of the solution of

ystem (11) are analyzed. The schematic diagram of the proposed

ractional order SEI 1 I 2 R epidemic model (9) is shown in Fig. 1 . 

. Analysis of the model 

In this section, we first prove the existence and uniqueness of

ositive solution, then the basic reproduction number and the ex-

stence conditions for both equilibria (disease-free equilibrium and

ndemic equilibrium) are obtained, finally, the conditions for the

tability of both the equilibria are obtained. 

.1. Positivity and boundedness 

Let us denote R 

4 + = { ψ(t) ∈ R 

4 : ψ(t) ≥ 0 } and let ψ(t) =
 S(t) , E(t) , I 1 (t) , I 2 (t) ] T . For the proof of the main theorem about

he non-negativity of the solutions, we recall the following lemma

 3 , 8 , 15 ]. 

emma 4.1. (Generalized Mean Value Theorem [ 3 , 8 , 15 ]). Let

( t ) ∈ C [ a, b ] and Caputo fractional derivative C 
0 
D 

κ
t ψ(t) ∈ C( a, b ]

or 0 < κ ≤ 1, then we have 

 ( t ) = ψ ( a ) + 

1 

�( κ) 
C 
0 D 

κ
t ψ ( ε) (t − a ) κ

with 0 ≤ ε ≤ t, ∀ t ∈ ( a, b ] . 

emark 4.1. If ψ( t ) ∈ C [0, b ] and Caputo fractional deriva-

ive C 
0 
D 

κ
t ψ(t) ∈ ( 0 , b ] for 0 < κ ≤ 1. It is clear from the

emma 4.1 that if C 
0 
D 

κ
t ψ(t) ≥ 0 , ∀ t ∈ ( 0 , b ] , then the function ψ( t )

s non-decreasing and if C 
0 
D 

κ
t ψ(t) ≤ 0 , ∀ t ∈ ( 0 , b ] , then the function

( t ) is non-increasing for all t ∈ [0, b ].This completes the proof. �

heorem 4.1. There is a unique solution ψ(t) =
 S(t) , E(t) , I 1 (t) , I 2 (t) ] T for the initial value problem given by

11) along initial conditions (12) on t ≥ 0 in (0, κ) and the

olution will remain in R 

4 + . Furthermore, the solutions are all

ounded. 

roof. According to Lin [58] from the Theorem 3.2 [58] and Re-

ark 3.2 [58] , we can determine the solution on (0, ∞ ) by solving

he model (11) along initial conditions (12) which is not only exis-

ent but also unique. Subsequently, we have to explain the non-

egative domain R 

4 + , is positively invariant region. From model

11) , we find 

 

 

D 

κ
t S ( t ) | S=0 = � > 0 , C 

0 D 

κ
t E ( t ) | E=0 = S ( t ) [ β1 I 1 ( t ) + β2 I 2 ( t ) ] ≥ 0 , 

 

 

D 

κ
t I 1 ( t ) | I 1 =0 = σE ( t ) ≥ 0 , C 

0 D 

κ
t I 2 ( t ) | I 2 =0 = θ I 1 ( t ) ≥ 0 , 

On each hyperplane bounding the non-negative orthant, the

ector field points into R 

4 + . Furthermore, from system (11) 

 

 

D 

κ
t N ( t ) + λN ( t ) ≤ �
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Fig. 1. Schematic diagram of the fractional order HIV epidemic model. 
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Thus, by Lemma 4.1 , in the case of HIV infection, the total

opulation N ( t ), i.e., the subpopulations S ( t ), E ( t ), I 1 ( t ) and I 2 ( t ) are

ounded. 

By positivity means the population survives and boundedness

efers as a natural restriction to growth as a consequence of lim-

ted resources. This completes the proof of the theorem 4.1 . �
Therefore, the biologically feasible region for the system (9) is 

= 

{
( S ( t ) , E ( t ) , I 1 ( t ) , I 2 ( t ) ) 

∈ R 

4 
+ | 0 < S ( t ) + E ( t ) + I 1 ( t ) + I 2 ( t ) ≤ �

λ

}

.2. Existence of equilibria and their stability 

For the equilibrium points, setting the right-hand side of the

ystem (11) equal to zero, we obtain equilibrium points as 
 

 

 

 

 

 

 

 

 

� − S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − λS ( t ) = 0 

S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + σ ) E ( t ) = 0 

σE ( t ) − ( ρ + λ + θ ) I 1 ( t ) = 0 

θ I 1 ( t ) − ( λ + ρ) I 2 ( t ) = 0 

(13) 

After simplification, the system (13) gives the disease-free equi-

ibrium point Đ0 = ( �
λ

, 0 , 0 , 0 ) and the endemic equilibrium point
∗ = ( S ∗, E ∗, I ∗

1 
, I ∗

2 
) , where 

 

∗ = 

( λ + ρ) ( λ + σ ) ( λ + ρ + θ ) 

σ ( β1 ( λ + ρ) + β2 θ ) 
, E ∗ = 

( ρ + λ + θ ) 

σ
I ∗1 , I ∗1 

= 

�σ

( λ + σ ) ( λ + ρ + θ ) 
+ 

λ( λ + ρ) 

β1 ( λ + ρ) + β2 θ

 

∗
2 = 

θ

( λ + ρ) 
I ∗1 

Thus, the proposed nonlinear fractional order SEI 1 I 2 R epidemic

odel has at most two equilibria namely disease-free equilibrium

oint Đ0 = ( �
λ

, 0 , 0 , 0 ) and the endemic equilibrium point Đ∗ =
( S ∗, E ∗, I ∗

1 
, I ∗

2 
) . 

In order to study the local stability of the disease-free equilib-

ium, we first compute the basic reproduction number by using
ext generation matrix method [61-64] . Let ϕ 

′ = ( E, I 1 , I 2 , S ) 
T . Sys-

em (11) can be written as 

 

′ = F ( ϕ ) − V ( ϕ ) 

here 

 ( ϕ ) = 

⎛ 

⎜ ⎝ 

S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) 
0 

0 

0 

⎞ 

⎟ ⎠ 

, V ( ϕ ) 

= 

⎛ 

⎜ ⎝ 

( λ + σ ) E ( t ) 
( ρ + λ + θ ) I 1 ( t ) − σE ( t ) 

( λ + ρ) I 2 ( t ) − θ I 1 ( t ) 
S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) + λS ( t ) − �

⎞ 

⎟ ⎠ 

By the next generation matrix method, the matrices Ғ and Ѵ at

he disease-free equilibrium point Đ0 are obtained by 

= 

[ 

∂ F p 

(
−D 

0 
)

∂ y m 

] 

and V = 

[ 

∂ V p 
(
−D 

0 
)

∂ y m 

] 

, 1 ≤ p, m ≤ 4 , 

here Ғ is non-negative and V is a non-singular M-matrix. 

Therefore, the basic reproduction number denoted by R 0 which

s considered as the spectral radius of the next generation matrix

V −1 at the disease-free equilibrium Đ0 is thus given by 

 0 = 

�( β1 ( λ + ρ) ( λ + σ ) + β2 θ ( λ + σ ) ) 

λ( λ + σ ) ( λ + ρ) ( ρ + λ + θ ) 

It shows that if R 0 < 1 , then the disease does not spread in the

opulation and the infection dies. On the other hand, if R 0 > 1 ,

hen the disease persists in the whole population. 

.3. Local stability of equilibria 

Now, we will discuss the local stability analysis of equilibrium

oints. For this, we state the results in the form of theorems and

rove them. 

heorem 4.2. The disease-free equilibrium Đ0 of proposed frac-

ional order SEI 1 I 2 R epidemic model is locally asymptotically stable

f R < 1 and unstable if R > 1 . 
0 0 
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Proof. To prove the above theorem 4.2 , the general Jacobian ma-

trix and the matrices corresponding to each equilibrium point will

be obtained. Therefore, the Jacobian matrix is given by 

�= 

⎡ 

⎢ ⎣ 

−( β1 I 1 + β2 I 2 ) − λ 0 −β1 S −β2 S 
β1 I 1 + β2 I 2 −( λ+ σ ) β1 S β2 S 

0 σ −( ρ+ λ+ θ ) 0 

0 0 θ −( λ + ρ) 

⎤ 

⎥ ⎦ 

Now at the disease-free equilibrium Đ0 , 

�
(
−D 

0 
)

= 

⎡ 

⎢ ⎣ 

−λ 0 −�
λ
β1 −�

λ
β2 

0 −( λ + σ ) �
λ
β1 

�
λ
β2 

0 σ −( ρ + λ + θ ) 0 

0 0 θ −( λ + ρ) 

⎤ 

⎥ ⎦ 

Therefore, by the Routh-Hurwitz stability conditions for frac-

tional order systems [65] , the necessary and sufficient condition

| arg ( eig ( �) ) | = | arg ( γi ) | > κ
π

2 

(14)

for various fractional order models. Therefore, the disease-free

equilibrium of system (11) is asymptotically stable if all of the

eigenvalues, γi , i = 1 , 2 , 3 , 4 , of �( −D 

0 ) satisfy the condition (14) . 

Hence, a sufficient condition for the local asymptotic stability

of the equilibrium points is that the eigenvalues γi , i = 1 , 2 , 3 , 4 ,

of the Jacobian matrix �( −D 

0 ) satisfy the condition | arg ( γi ) | > κ π
2 .

This confirms that fractional order differential equations are, at

least, as stable as their integer order counterpart. By solving the

characteristic equation, the eigenvalues can be obtained as 

det 
(
�
(
−D 

0 
)

− γ I 
)

= 0 

The simplification allows us to get the following algebraic equa-

tion 

( λ + γ ) ( λ + ρ + γ ) 
(
γ 2 + ( δ1 + δ2 ) γ + δ1 δ2 − δ3 

)
= 0 

where δ1 = ( λ + σ ) , δ2 = ( ρ + λ + θ ) and δ3 = 

�σ
λ

β1 . 

If R 0 < 1 , then δ3 > 0 and also 

λ( λ+ σ ) ( λ+ ρ) ( ρ+ λ+ θ ) > �( β1 ( λ+ ρ) ( λ + σ ) + β2 θ ( λ + σ ) ) 

This implies, 

( λ + σ ) ( ρ + λ + θ ) > 

�σ

λ
β1 

Therefore, the roots of the characteristic equation are 

γ1 = −λ, γ2 = −( λ + ρ) , 

γ3 , 4 = 

−( δ1 + δ2 ) ±
√ 

( δ1 + δ2 ) 
2 − 4 ( δ1 δ2 − δ3 ) 

2 

, 

because δ1 + δ2 > 0 and δ1 δ2 > δ3 , all of the eigenvalues γ i for

i = 1 , 2 , 3 , 4 , satisfy the condition given by (14) . Therefore, all the

eigenvalues have negative real parts if R 0 < 1 . This completes the

proof of the theorem 4.2 . �
In the next theorem 4.3 , we discuss the local asymptotic stabil-

ity of the endemic equilibrium of the system given by (11) . 

Theorem 4.3. The endemic equilibrium Đ∗ is locally asymptotically

stable whenever R 0 > 1 and unstable otherwise. 

Proof. The Jacobian matrix of the system (11) evaluated at en-

demic equilibrium Đ∗ is given as 

�( −D 

∗
) = 

⎡ 

⎢ ⎣ 

β1 I 
∗
1 + β2 I 

∗
2 − λ 0 −β1 S 

∗ −β2 S 
∗

β1 I 
∗
1 + β2 I 

∗
2 −( λ+ σ ) β1 S 

∗ β2 S 
∗

0 σ −( ρ+ λ+ θ ) 0 

0 0 θ −( λ+ ρ) 

⎤ 

⎥ ⎦ 
The characteristic equation of the linearized system is in the

orm 

 ( γ ) = −( λ + ρ + γ ) −P ( γ ) = 0 

ith −P (γ ) = γ 3 + ϑ 1 γ
2 + ϑ 2 γ + ϑ 3 , where 

 1 = ( 3 λ + σ + ρ + θ − β1 I 
∗
1 − β2 I 

∗
2 ) , (15)

 2 = 

(
λ2 + λσ − β1 I 

∗
1 ( λ + σ ) − β1 I 

∗
1 ( ρ + λ + θ ) − β2 I 

∗
2 ( λ + σ ) 

−β2 I 
∗
2 ( ρ + λ + θ ) − λρ − σρ − σθ ) , (16)

 3 = 

(
β1 I 

∗
1 ( λ + σ ) ( ρ + λ + θ ) − β2 

1 σ I ∗1 S 
∗

+ β2 I 
∗
2 ( λ + σ ) ( ρ + λ + θ ) 

−β1 β2 σ I ∗2 S 
∗ − λ( λ + σ ) ( ρ + λ + θ ) + β1 λσ S ∗) , (17)

Now, the discriminant of the polynomial −P (γ ) = γ 3 + ϑ 1 γ
2 +

 2 γ + ϑ 3 is described by [ 3 , 12 , 15 ] 

 ( −P ) = 18 ϑ 1 ϑ 2 ϑ 3 + ( ϑ 1 ϑ 2 ) 
2 − 4 ϑ 3 ϑ 

2 
1 − 4 ϑ 

2 
2 − 27 ϑ 

2 
3 (18)

nd using the construction of results by Ahmed et al. [ 19 , 66 ], fol-

owing fractional Routh-Hurwitz conditions associated with are ob-

erved. We have the following result. 

orollary 4.1. The positive equilibrium point Đ∗ of the system

11) is asymptotically stable for R > 1 , if one of the following con-

itions holds for polynomial −P (γ ) and coefficients ϑ1 , ϑ2 , ϑ3 which

re given by (15) ,(16),(17) respectively. 

i If D (−P ) > 0, then the necessary and sufficient condition for the

equilibrium point to be locally asymptotically stable is ϑ1 > 0,

ϑ3 > 0, ϑ1 ϑ2 > ϑ3 , 

ii If D (−P ) < 0, ϑ1 ≥ 0, ϑ2 ≥ 0, ϑ3 > 0, then the equilibrium point

is locally asymptotically stable if κ < 

2 
3 , 

iii If D (−P ) < 0, ϑ1 < 0, ϑ2 < 0 and κ > 

2 
3 , then all roots of the

Eq. (18) satisfy the condition | arg ( γi ) | < κ π
2 , i = 1 , 2 , 3 , 4 . 

.4. Global stability of equilibria 

The global existence of the solution of the fractional differential

quation always becomes a most important concern, which is carry

ut in the following section. 

heorem 4.4. [ 12 , 58 ], Assume that the function � : R + × R 

4 →
 

4 satisfies the following conditions in the global space: 

1) The function �( t, ψ( t )) is Lebesgue measurable with respect to

t on R . 

2) The function �( t, ψ( t )) is continuous with respect to ψ( t ) on

R 

4 . 

3) The function 

∂�( t,ψ( t) ) 
∂ψ 

is continuous with respect to ψ( t ) on

R 

4 . 

�( t, ψ( t) ) ≤ α1 + α2 ψ(t) , for all most every t ∈ R and all

(t) ∈ R 

4 . 

Here α1 , α2 are two positive constants and ψ(t) =
 S(t) , E(t) , I 1 (t) , I 2 (t) ] T . Then, the initial value problem 

C 
0 D 

κ
t ψ ( t ) = �( t , ψ ( t ) ) , κ ∈ ( 0 , 1 ] 

ψ ( t 0 ) = ψ 0 , 
(19)

as a unique solution. 

heorem 4.5. The system (11) has a unique solution and the solu-

ion remains in R 

4 + . 

roof. From the Theorem 4.4 , we obtain the unique solution on

0, ∞ ) by solving the system (11) . Firstly, Lin [58] discussed the
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roof of theorem and shows that the solution is not only exist but

lso unique. In Theorem 4.1 , we already proved that the solution

f model (11) will remain in R 

4 + . 

emma 4.2. ([ 52 , 67 ]) Let ψ(t) ∈ R 

+ be a continuous and derivable

unction. Then, for any time instant t ≥ 0, 

 

 

D 

κ
t 

(
ψ ( t ) − ψ 

∗ − ψ 

∗ ln 

ψ ( t ) 

ψ 

∗

)
≤
(

1 − ψ 

∗

ψ ( t ) 

)
C 
0 D 

κ
t ψ ( t ) (20) 

and 

1 

2 

C 
0 D 

κ
t ψ 

2 ( t ) ≤ ψ ( t ) C 0 D 

κ
t ψ ( t ) (21) 

here κ ∈ (0, 1). 

Note that for κ = 1 , the inequalities in (20) and (21) becomes

qualities. 

Now, we provide the global stability results of the equilib-

ia in the following theorems by considering the Lyapunov direct

ethod. 

heorem 4.6. The disease-free equilibrium −D 

0 = ( �
λ

, 0 , 0 , 0 ) of

roposed model (11) is globally asymptotically stable in 
 , if R 0 ≤
 and unstable when R 0 > 1 . 

roof. To prove this, we define a Lyapunov function φ1 ( t ) given

y 

1 ( t ) = 

1 

2 S 0 
( S − S 0 ) 

2 + E 

This function is defined, continuous and positive definite for all

 ≥ 0. It can be verified that the equality holds if and only if S(t) =
 0 , E(t) = I 1 (t) = I 2 (t) = 0 . Now, we have 

 

 

D 

κ
t φ1 ( t ) = 

1 

2 S 0 

C 
0 D 

κ
t ( S − S 0 ) 

2 + 

C 
0 D 

κ
t E ( t ) 

1 

S 0 
( S − S 0 ) 

C 
0 D 

κ
t S ( t ) + 

C 
0 D 

κ
t E ( t ) 

= 

1 

S 0 
( S − S 0 ) [ � − ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) − λS ( t ) ] 

+ ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) − ( λ + σ ) E ( t ) (22) 

Using the disease-free steady state condition of model (11) , S 0 =
�
λ

, we have from the equation (22) as 

C 
0 D 

κ
t φ1 ( t ) ≤ − λ

S 0 
( S − S 0 ) 

2 − ( β1 I 1 ( t ) + β2 I 2 ( t ) ) ( S − S 0 ) S ( t ) 

+ ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) − ( λ + σ ) E ( t ) 

= − λ

S 0 
( S − S 0 ) 

2 − ( β1 I 1 ( t ) + β2 I 2 ( t ) ) ( S − S 0 ) S ( t ) 

S 0 

+ ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) − ( λ + σ ) E ( t ) 

= − λ

S 0 
( S − S 0 ) 

2 − ( β1 I 1 ( t ) + β2 I 2 ( t ) ) ( S − S 0 ) 
2 

S 0 

−( β1 I 1 ( t ) + β2 I 2 ( t ) ) ( S − S 0 ) + ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) 

− ( λ + σ ) E ( t ) 

= − ( λ + β1 I 1 ( t ) + β2 I 2 ( t ) ) 

S 0 
( S − S 0 ) 

2 

−( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) + ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S 0 

+ ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) − ( λ + σ ) E ( t ) 
= − ( λ + β1 I 1 ( t ) + β2 I 2 ( t ) ) 

S 0 
( S − S 0 ) 

2 

+ ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S 0 − ( λ + σ ) E ( t ) 

= − ( λ + β1 I 1 ( t ) + β2 I 2 ( t ) ) 

S 0 
( S − S 0 ) 

2 

+ 

(
β1 I 1 ( t ) + β2 

θ I 1 ( t ) 

( λ + ρ) 

)
�

λ
− ( λ + σ ) ( λ + ρ + θ ) 

σ
I 1 ( t ) 

= − ( λ + β1 I 1 ( t ) + β2 I 2 ( t ) ) 

S 0 
( S − S 0 ) 

2 

+ 

σ�

λ

(
β1 I 1 ( t ) ( λ+ ρ) + β2 θ I 1 ( t ) 

( λ+ ρ) 

)
−( λ+ σ ) ( λ+ ρ + θ ) I 1 ( t ) 

= − ( λ + β1 I 1 ( t ) + β2 I 2 ( t ) ) 

S 0 
( S − S 0 ) 

2 

+ 

σ

( λ + σ ) 

(
�( β1 ( λ + σ ) ( λ + ρ) + β2 θ ( λ + σ ) ) 

λ( λ + σ ) ( λ + ρ) ( λ + ρ + θ ) 
− 1 

)
I 1 ( t ) 

This further implies, 

C 
0 D 

κ
t φ1 ( t ) ≤ − ( λ + β1 I 1 ( t ) + β2 I 2 ( t ) ) 

S 0 
( S − S 0 ) 

2 

+ 

σ

( λ + σ ) 
( R 0 − 1 ) I 1 ( t ) ≤ 0 

Therefore, 

 

 

D 

κ
t φ1 ( t ) ≤ 0 

It follows that if R 0 < 1 , then we have C 
0 
D 

κ
t φ1 (t) | ( 11 ) ≤ 0 . In

ddition, we know that C 
0 
D 

κ
t φ1 (t) | ( 11 ) = 0 , if and only if S(t) = S 0 

nd I 1 (t) = 0 .Substituting I 1 (t) = 0 into (11) , one can directly ob-

ain E(t) = 0 . Using I 1 (t) = E(t) = 0 again in (11) , then I 2 (t) =
 . Therefore, the maximum invariant set for { ( S, E, I 1 , I 2 ) ∈ �0 :
 

 

D 

κ
t φ1 (t) | ( 11 ) = 0 } is the singleton set -D 

0 . According to the

aSalle’s invariance principle [61-64] , we know that all solutions

n �0 converge to -D 

0 .Therefore, the disease-free steady state of

odel (11) is globally asymptotically stable when R 0 ≤ 1 . This

ompletes the proof of the theorem 4.6 . �

heorem 4.7. The endemic equilibrium Đ∗ = ( S ∗, E ∗, I ∗
1 
, I ∗

2 
) of pro-

osed model (11) is globally asymptotically stable in 
 , when

 0 > 1 . 

roof. To prove this, we define a Lyapunov function φ2 ( t ) given

y 

2 ( t ) = 

1 

λ

(
S − S ∗ − S ∗ ln 

S 

S ∗

)
+ �
(

E − E ∗ − E ∗ ln 

E 

E ∗

)
+ 

1 

( ρ + λ + θ ) 

(
I 1 − I ∗1 − I ∗1 ln 

I 1 
I ∗
1 

)

where � = 

( R 0 −1 ) 
( λ+ σ ) 

> 0 , when R 0 > 1 . 

This function is defined, continuous and positive definite for all

 ≥ 0. It can be verified that the equality holds if and only if S(t) =
 

∗, E(t) = E ∗, I 1 = I ∗
1 

. Now, we have from Lemma 4.2 

C 
0 D 

κ
t φ2 ( t ) = 

C 
0 D 

κ
t 

[ 
1 

λ

(
S − S ∗ − S ∗ ln 

S 

S ∗

)
+�
(

E − E ∗ − E ∗ ln 

E 

E ∗

)
+ 

1 

( ρ + λ + θ ) 

(
I 1 − I ∗1 − I ∗1 ln 

I 1 
I ∗
1 

)]

C 
0 D 

κ
t φ2 ( t ) ≤ 1 

λ

(
1 − S ∗

S 

)
C 
0 D 

κ
t S ( t ) 
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C

 

 

 

 

 

C
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

 

w

S

 

 

t  

i  

i  

b  

l

 

s  

t  

c

a  

t  

t  

a  

c  

f  

t  

Y

 

s  

i

V

 

 

p

−  

a

H

 

+�
(

1 − E ∗

E 

)
C 
0 D 

κ
t E ( t ) + 

1 

( ρ + λ + θ ) 

(
1 − I ∗1 

I 1 

)
C 
0 D 

κ
t I 1 ( t ) 

= 

1 

λ

(
1 − S ∗

S 

)
[ � − ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) − λS ( t ) ] 

+�
(

1 − E ∗

E 

)
[ ( β1 I 1 ( t ) + β2 I 2 ( t ) ) S ( t ) − ( λ + σ ) E ( t ) ] 

+ 

1 

( ρ + λ + θ ) 

(
1 − I ∗1 

I 1 

)
[ σE ( t ) − ( ρ + λ + θ ) I 1 ( t ) ] (23)

Using the endemic conditions, 

� − ( β1 I 
∗
1 + β2 I 

∗
2 ) S 

∗ = λS ∗

( β1 I 
∗
1 + β2 I 

∗
2 ) S 

∗ = ( λ + σ ) E ∗

σE ∗ = ( ρ + λ + θ ) I ∗1 

θ I ∗1 = ( λ + ρ) I ∗2 
in equation (23) , we get 

 

0 D 

κ
t φ2 ( t ) ≤ − ( S − S ∗) 2 

S 
− ( E − E ∗) 2 

E 
( R 0 − 1 ) −

(
I 1 − I ∗1 

)2 

I 1 

This implies, 

 

0 D 

κ
t φ2 ( t ) ≤ 0 

It follows that if R 0 > 1 , then we have C 
0 
D 

κ
t φ2 (t) | ( 11 ) ≤ 0 . There-

fore, φ2 ( t ) is bounded and non-increasing. Further, the limit of

φ2 ( t ) exits as t → ∞ . In addition, we know that C 
0 
D 

κ
t φ2 (t) | ( 11 ) =

0 , if and only if S(t) = S ∗, E(t) = E ∗, I 1 (t) = I ∗
1 

and I 2 (t) = I ∗
2 
.

Therefore, the maximum invariant set for { ( S ∗, E ∗, I ∗1 , I ∗2 ) ∈ �∗ :
 

0 
D 

κ
t φ2 (t) | ( 11 ) = 0 } is the singleton set { Đ∗}. According to the

LaSalle’s invariance principle [61-64] , we know that all solutions

in �∗ converge to Đ∗.Therefore, the endemic equilibrium of pro-

posed model (11) is globally asymptotically stable when R 0 > 1 .

This completes the proof of the theorem 4.7 . �

5. Fractional optimal problem 

In this section, we extend the basic model (8) by including

some particular control measures aimed at controlling the spread

of the HIV infection and formulate the fractional optimal control

problem by proposing the control objectives. The aim of the con-

trol measures is to reduce the infection in the population and

thus there is the need to formulate the optimal control problem

to achieve this goal. The first control function v 1 ( t ) represents the

behavioral change for susceptibles which reduced the number of

exposed by a factor ( 1 − v 1 (t) ) . The control v 1 ( t ) is proposition of

the susceptible individuals who change their sexual habits per unit

of time. The second control function v 2 ( t ) is the use of condoms

to the exposed individuals who are going to have sexual interac-

tion with the female sex workers. The third control function v 3 ( t )

represent the enhancement of the strength of treatment for the

infected individuals. The fourth control function v 4 ( t ) is the aware-

ness source among the unaware infectives about their disease sta-

tus. Under these control measures the proposed model (8) is mod-

ified as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 
0 D 

κ
t S ( t ) = � − ( 1 − v 2 ) S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + v 1 ) S ( t ) 

C 
0 D 

κ
t E ( t ) = ( 1 − v 2 ) S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + σ ) E ( t ) 

C 
0 D 

κ
t I 1 ( t ) = σE ( t ) − ( ρ + λ + θ + v 4 ) I 1 ( t ) 

C 
0 D 

κ
t I 2 ( t ) = θ I 1 ( t ) − ( λ + ρ + v 3 ) I 2 ( t ) 

C 
0 D 

κ
t R ( t ) = ρ( I 1 ( t ) + I 2 ( t ) ) − ( d + λ) R ( t ) + v 1 S ( t ) 
All formulas and models should be left aligned 

. (24)
ith the non-negative initial conditions 

 ( 0 ) = S 0 , E ( 0 ) = E 0 , I 1 ( 0 ) = I 1 , 0 , I 2 ( 0 ) = I 2 , 0 and R ( 0 ) = R 0 

(25)

The control is completely effective when v i (t) = 1 and

he control is not effective when v i (t) = 0 , for i = 1 , 2 , 3 , 4

.e., 0 ≤ v i ( t ) < 1. Our focus is to minimize the number of exposed

ndividuals under the cost of applying control measures which can

e done by consider the following fractional optimal control prob-

em to minimize the objective functional given by 

γ ( v 1 , v 2 , v 3 , v 4 ) 

= 

τ
∫ 
0 

(
Q E + 

−p 1 

2 

v 2 1 ( t ) + 

−p 2 

2 

v 2 2 ( t ) + 

−p 3 

2 

v 2 3 ( t ) + 

−p 4 

2 

v 2 4 ( t ) 

)
dt 

(26)

ubjected to the state system given in (24) along non-negative ini-

ial conditions (25) . In Eq. (26) , Q represent the positive weight

onstant of the exposed population, while -p 1 , -p 2 , -p 3 , and -p 4 

re positive weight constants for behavioral change, personal pro-

ection, treatment strategy and awareness source respectively. The

erms 1 
2 −p 1 v 2 1 

, 1 
2 −p 2 v 2 2 

, 1 2 −p 3 v 2 3 
and 

1 
2 −p 4 v 2 4 

describe the costs associ-

ted with the corresponding interventions. It is supposed that the

osts are proportional to the square of the corresponding control

unction. Our objective of the fractional optimal control problem is

o find out the optimal control functions v ∗
1 
, v ∗

2 
, v ∗

3 
, v ∗

4 
such that

 ( v ∗1 , v ∗2 , v ∗3 , v 
∗
4 ) = min { Y ( v 1 , v 2 , v 3 , v 4 ) , ( v 1 , v 2 , v 3 , v 4 ) ∈ V } , 

(27)

ubjected to the state system given in (24) , where the control set

s defined as 

 = { ( v 1 , v 2 , v 3 , v 4 ) | v i ( t ) is Lebesgue measuerable on [ 0 , 1 ] , 

i = 1 , 2 , 3 , 4 } . (28)

The Lagrangian Ɫ and Hamiltonian H for the fractional optimal

roblem (24) - (28) are respectively given by [ 35 , 68-69 ] 

L ( E, v 1 , v 2 , v 3 , v 4 ) = Q E + 

−p 1 

2 

v 2 1 + 

−p 2 

2 

v 2 2 + 

−p 3 

2 

v 2 3 + 

−p 4 

2 

v 2 4 (29)

nd 

H = −L ( E, v 1 , v 2 , v 3 , v 4 ) + λS 
C 
0 D 

κ
t S ( t ) + λE 

C 
0 D 

κ
t E ( t ) 

+ λI 1 
C 
0 D 

κ
t I 1 ( t ) + λI 2 

C 
0 D 

κ
t I 2 ( t ) + λR 

C 
0 D 

κ
t R ( t ) 

This further implies, 

 = Q E + 

−p 1 
2 

v 2 1 + 

−p 2 
2 

v 2 2 + 

−p 3 
2 

v 2 3 + 

−p 4 
2 

v 2 4 

+ λS [ � − ( 1 − v 2 ) S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + v 1 ) S ( t ) ] 
+ λE [ ( 1 − v 2 ) S ( t ) ( β1 I 1 ( t ) + β2 I 2 ( t ) ) − ( λ + σ ) E ( t ) ] 
+ λI 1 [ σE ( t ) − ( ρ + λ + θ + v 4 ) I 1 ( t ) ] 
+ λI 2 [ θ I 1 ( t ) − ( λ + ρ + v 3 ) I 2 ( t ) ] 
+ λR [ ρ( I 1 ( t ) + I 2 ( t ) ) − ( d + λ) R ( t ) + v 1 S ( t ) ] 

(30)
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w to prove the necessary conditions for the optimality of the fractional 

s mance index 

Y (31) 

s

C
0 (32) 

w

π (33) 

w ly, L and ω are differentiable functions, and 0 < κ ≤ 1. We have the 

f

T  constraint (32) and the boundary condition (33) , then there exists a 

f⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34) 

P [ 7 , 35-36 ], where the authors have given the proof in detail. This com- 

p

T with associated optimal control variables v ∗
1 
, v ∗

2 
, v ∗

3 
, v ∗

4 
for the optimal 

c S , λE , λI 1 
, λI 2 

and λR satisfying ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 4 (35) 

λ

by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36) 

P ined from the Hamiltonian H as 

 

∂H 

∂R 
, 

λ

a (36) is obtained by solving the equations 

o trol space V . 
here λS , λE , λI 1 
, λI 2 

and λR are the adjoint variables. We have 

ystem (24) . For the optimal control v ( t ), that minimizes the perfor

 ( v ) = 

τ
∫ 
0 

L ( t, π, v ) dt 

ubjected to the dynamical constraints 

 

 

D 

κ
t π( t ) = ω ( t, π, v ) 

ith initial conditions 

( 0 ) = π0 

here π ( t ) and v ( t ) are the state and control variables, respective

ollowing theorem. 

heorem 5.1. If ( π , v ) is a minimizer of (31) under the dynamic

unction λ such that the triplet ( π , v, λ) satisfies 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 
0 D 

κ
t π( t ) = 

∂H 

∂λ
( t , π( t ) , v ( t ) , λ( t ) ) 

C 
0 D 

κ
t λ( t ) = −∂H 

∂π
( t , π( t ) , v ( t ) , λ( t ) ) 

0 = 

∂H 

∂v ( 
t , π( t ) , v ( t ) , λ( t ) ) 

λ( τ ) = 0 

for the Hamiltonian H( t, π, v , λ) = L ( t, π, v ) + λT ω( t, π, v ) . 

roof. For the proof of theorem 5.1 , readers are suggested to see 

letes the proof of the theorem 5.1 . �

heorem 5.2. Let S ∗, E ∗, I ∗
1 
, I ∗

2 
and R ∗ be optimal state solutions 

ontrol problems (24) and (26) . Then there exist adjoint variables λ
 

 

 

 

 

 

 

 

 

 

 

 

 

λ′ 
S = ( λS − λE ) [ ( 1 − v 2 ) ( β1 I 1 + β2 I 2 ) ] + ( λS − λR ) v 1 + λλS 

λ′ 
E = −Q + λE ( λ + σ ) − λI 1 σ

λ′ 
I 1 = ( λS −λE ) [ ( 1 −v 2 ) β1 S ] + ( λI 1 −λR ) ρ+ ( λI 1 −λI 2 ) θ+ λλI 1 + λI 2 v

λ′ 
I 2 = ( λS − λE ) [ ( 1 − v 2 ) β2 S ] + ( λI 2 − λR ) ρ + λλI 2 + λI 2 v 3 

λ′ 
R = λR ( d − λ) 

with transversality conditions or boundary conditions 

S ( τ ) = 0 , λE ( τ ) = 0 , λI 1 ( τ ) = 0 , λI 2 ( τ ) = 0 and λR ( τ ) = 0 

Furthermore, the control functions v ∗
1 
, v ∗

2 
, v ∗

3 
and v ∗

4 
are given 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v ∗1 = min 

(
1 , max 

(
0 , 

( λS − λR ) S ( t ) 

−p 1 

))

v ∗2 = min 

(
1 , max 

(
0 , 

( λE − λS ) ( β1 I 1 ( t ) + β2 I 2 ( t ) S ( t ) 

−p 2 

))

v ∗3 = min 

(
1 , max 

(
0 , 

λI 2 I 2 ( t ) 

−p 3 

))

v ∗4 = min 

(
1 , max 

(
0 , 

λI 1 I 1 ( t ) 

−p 4 

))
. 

roof. The adjoint system (35) i.e., λ′ 
S , λ

′ 
E , λ

′ 
I 1 

, λ′ 
I 2 

and λ′ 
R are obta

− d λS 

dt 
= 

∂H 

∂S 
, − d λE 

dt 
= 

∂H 

∂E 
, − d λI 1 

dt 
= 

∂H 

∂ I 1 
, − d λI 2 

dt 
= 

∂H 

∂ I 2 
, − d λR 

dt 
=

with zero final time conditions (transversality) conditions 

S ( τ ) = 0 , λE ( τ ) = 0 , λI 1 ( τ ) = 0 , λI 2 ( τ ) = 0 and λR ( τ ) = 0 

nd the characterization of the fractional optimal control given by 

∂H 

∂ v 1 
= 0 , 

∂H 

∂ v 2 
= 0 , 

∂H 

∂ v 3 
= 0 , and 

∂H 

∂ v 4 
= 0 

n the interior of the control set and using the property of the con

This completes the proof of the theorem 5.2 . �
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order SEI 1 I 2 R epidemic model (9) is presented. Because no analytical 

the technique so-called generalized Adams-Bashforth-Moulton method 

 algorithm, we derive the predictor-corrector scheme for obtaining the 

solution by means of this algorithm, consider the subsequent nonlinear 

(37) 

(38) 

quation (37) , we can obtain on the solution ψ( t ) by solving the follow- 

(39) 

ed on the Adams-Bashfort-Moulton algorithm to integrate (39) . Setting 

iscretized as follows: 

 

n ∑ 

q =0 

a q,n +1 f ( t q , ψ h ( t q ) ) (40) 

 ≤ n, . (41) 

(42) 

model 

al SEI 1 I 2 R epidemic model using the proposed method. In view of the 

me for the proposed model (9) is given in the following form [73-77] 

( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
 

) , R h ( t q ) 
)
, 

 

( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
 

) , R h ( t q ) 
)
, 

p 

 ,h 
( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
 

t q ) , R h ( t q ) 
)
, 
6. Numerical scheme for the solution 

In this section numerical solution for the proposed fractional 

solution to the nonlinear fractional system (9) is available, we use 

[ 3 , 35 , 37 ] to obtain the numerical solution of the system (9) . In this

numerical solution of the nonlinear FDEs. To provide the estimated 

fractional differential equation [ 3 , 35 , 37 ] 

0 D 

κ
t ψ ( t ) = f ( t , ψ ( t ) ) , 0 ≤ t ≤ T 

with the following initial conditions 

ψ 

( j ) ( 0 ) = ψ 

j 
0 
, j = 0 , 1 , 2 , ..., [ κ] − 1 , 

Now, with operating by the fractional integral operator on the e

ing equation: 

ψ ( t ) = 

[ κ] −1 ∑ 

j=0 

ψ 

j 
0 

j! 
t j + 

1 

�( κ) 

t 

∫ 
0 

(t − τ ) κ−1 f ( τ, ψ ( τ ) ) dτ, 

this equation (39) is equivalent to the Volterra integral equation. 

Diethelm et al. [70-72] used the predictor-corrector scheme bas

h = 

T 
N , t n = nh and n = 0 , 1 , 2 , ..., N ∈ Z + , the equation (39) can be d

ψ h ( t n +1 ) = 

[ κ] −1 ∑ 

j=0 

ψ 

j 
0 

j! 
t j 

n +1 
+ 

h 

κ

�( κ + 2 ) 
f 
(
t n +1 , ψ 

p 

h 
( t n +1 ) 

)
+ 

h 

κ

�( κ + 2 )

where 

a q,n +1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n 

κ+1 − ( n − κ) ( n + 1 ) 
κ
, if q = 0 , 

( n − q + 2 ) 
κ+1 + ( n − q ) 

κ+1 − 2 ( n − q + 1 ) 
κ+1 

, if 0 < q

1 , if q = n + 1 

and the predicted value ψ 

p 

h 
( t n +1 ) is determined by 

ψ 

p 

h 
( t n +1 ) = 

[ κ] −1 ∑ 

j=0 

ψ 

j 
0 

j! 
t j 

n +1 
+ 

1 

�( κ) 

n ∑ 

q =0 

b q,n +1 f ( t q , ψ h ( t q ) ) 

with 

b q,n +1 = 

h 

κ

κ

(
(n + 1 − q ) 

κ − (n − q ) 
κ
)
. 

The error estimate is 

max 
q =0 , 1 , 2 ,...,m 

| ψ ( t q ) − ψ h ( t q ) | = o ( h 

p ) , 

in which p = min (2 , 1 + κ) . 

6.1. Application of Adams-Bashforth-Moulton method to the proposed 

In this subsection, we solve numerically the nonlinear fraction

generalized Adams-Bashforth-Moulton method, the numerical sche

S h ( t n +1 ) = S 0 + 

h 

κ

�( κ + 2 ) 
f S 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h 

+ 

h 

κ

�( κ + 2 ) 

n ∑ 

q =0 

a q,n +1 f S 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q

E h ( t n +1 ) = E 0 + 

h 

κ

�( κ + 2 ) 
f E 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h

+ 

h 

κ

�( κ + 2 ) 

n ∑ 

q =0 

a q,n +1 f E 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q

I 1 ,h ( t n +1 ) = I 1 , 0 + 

h 

κ

�( κ + 2 ) 
f I 1 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 2

+ 

h 

κ

�( κ + 2 ) 

n ∑ 

q =0 

a q,n +1 f I 1 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h (
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I p 

 ,h 
( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
 

t q ) , R h ( t q ) 
)
, 

R
 

( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
 

) , R h ( t q ) 
)
, 

w

S
 

, R h ( t q ) 
)
, 

E
 

, R h ( t q ) 
)
, 

I  q ) , R h ( t q ) 
)
, 

I  q ) , R h ( t q ) 
)
, 

R
 

, R h ( t q ) 
)
. 

 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 
)
, 

 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 
)
, 

a the following functions, 

2 I 2 ( t ) ) − λS ( t ) (43) 

 

t ) ) − ( λ + σ ) E ( t ) (44) 

) I 1 ( t ) (45) 

 ) (46) 

 + λ) R ( t ) (47) 

a  n +1 , n = 1 , 2 , 3 , ..., m. 

ction 5 , similar procedure is followed for the numerical results. There- 

f

π
 +1 ω π ( t q , πh ( t q ) , v h ( t q ) ) 

] 
 2 ,h ( t n +1 ) = I 2 , 0 + 

h 

κ

�( κ + 2 ) 
f I 2 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 2

+ 

h 

κ

�( κ + 2 ) 

n ∑ 

q =0 

a q,n +1 f I 2 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h (

 h ( t n +1 ) = R 0 + 

h 

κ

�( κ + 2 ) 
f R 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h

+ 

h 

κ

�( κ + 2 ) 

n ∑ 

q =0 

a q,n +1 f R 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q

here 

 

p 

h 
( t n +1 ) = S 0 + 

1 

�( κ) 

n ∑ 

q =0 

b q,n +1 f S 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q )

 

p 

h 
( t n +1 ) = E 0 + 

1 

�( κ) 

n ∑ 

q =0 

b q,n +1 f E 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q )

 

p 

1 ,h 
( t n +1 ) = I 1 , 0 + 

1 

�( κ) 

n ∑ 

q =0 

b q,n +1 f I 1 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t

 

p 

2 ,h 
( t n +1 ) = I 2 , 0 + 

1 

�( κ) 

n ∑ 

q =0 

b q,n +1 f I 2 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t

 

p 

h 
( t n +1 ) = R 0 + 

1 

�( κ) 

n ∑ 

q =0 

b q,n +1 f R 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q )

Further, the quantities 

f S 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 

)
, f E 
(
t q , S h ( t q ) , E h ( t q ) , I 1

f I 1 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 

)
, f I 2 
(
t q , S h ( t q ) , E h ( t q ) , I 1

nd f R ( t q , S h ( t q ), E h ( t q ), I 1, h ( t q ), I 2, h ( t q ), R h ( t q )), are computed from 

f S 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 

)
= � − S ( t ) ( β1 I 1 ( t ) + β

f E 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 

)
= S ( t ) ( β1 I 1 ( t ) + β2 I 2 (

f I 1 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 

)
= σE ( t ) − ( ρ + λ + θ

f I 2 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 

)
= θ I 1 ( t ) − ( λ + ρ) I 2 ( t

f R 
(
t q , S h ( t q ) , E h ( t q ) , I 1 ,h ( t q ) , I 2 ,h ( t q ) , R h ( t q ) 

)
= ρ( I 1 ( t ) + I 2 ( t ) ) − ( d

In addition, the quantities 

f S 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h 
( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
, 

f E 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h 
( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
, 

f I 1 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h 
( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
, 

f I 2 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h 
( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
, 

f R 
(
t n +1 , S 

p 

h 
( t n +1 ) , E 

p 

h 
( t n +1 ) , I 

p 

1 ,h 
( t n +1 ) , I 

p 

2 ,h 
( t n +1 ) , R 

p 

h 
( t n +1 ) 

)
, 

re computed from equations (43) - (47) respectively, at the points t

For the fractional optimal control problem (24) discussed in se

ore 

h ( t n +1 ) = π0 + 

h 

κ

�( κ + 2 ) 

[ 

ω π

(
t n +1 , π

p 

h 
( t n +1 ) , v h ( t n +1 ) 

)
+ 

n ∑ 

q =0 

a q,n
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Table 1 

Parameters and variables with their values for fractional order SEI 1 I 2 R epidemic model 

[ 3 , 5 , 15 , 18 , 59-60 ]. 

Parameters and functions Meaning Values 

S ( t ) Susceptible individuals at time t Variable 

E ( t ) Exposed individuals at time t Variable 

I 1 ( t ) Unaware infected individuals at time t Variable 

I 2 ( t ) Aware infected individuals at time t Variable 

R ( t ) Recovered individuals at time t Variable 

� Recruitment rate 0.32 

β1 Unaware infection rate 0.00009 

β2 Aware infection rate 0.000027 

λ Natural death rate 0.2 

σ Infected class rate 0.01 

θ Awareness rate 0.015 

ρ Recovery rate 0.5 

d AIDs related death rate 0.1 

S 0 Initially susceptible individuals 200 

E 0 Initially exposed individuals 0.01 

I 1, 0 Initially unaware infected individuals 0.02 

I 2, 0 Initially aware infected individuals 0.01 

R 0 Initially recovered individuals 0.0 
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where 

π p 

h 
( t n +1 ) = π0 + 

h 

κ

�( κ) 

n ∑ 

q =0 

b q,n +1 ω π ( t q , πq , v q ) 

with π = S, E, I 1 , I 2 , R and the control v . 

Similarly, for the adjoint system we have 

λh ( t n +1 ) = 

h 

κ

�( κ + 2 ) 

[
∂H 

∂π

(
t n +1 , πh ( t n +1 ) , v h ( t n +1 ) , λ

p 

h 
( t n +1 ) 

)

+ 

n ∑ 

q =0 

a q,n +1 
∂H 

∂π
( t q , πh ( t q ) , v h ( t q ) , λh ( t q ) ) 

] 

where 

λp 

h 
( t n +1 ) = 

h κ

�(κ) 

n ∑ 

q =0 

b q,n +1 
∂H 

∂π
( t q , πq , v q , λq ) . 

The coefficients a q,n +1 , b q,n +1 are given by equations (41) and

(42) respectively. 

7. Numerical results and discussion 

In order to justify our theoretical findings, we introduced in

this section some numerical experiments obtained for different in-

stances of fractional power κ for the HIV epidemic model without

control (9) and with control (24) along with adjoint variable sys-

tems and the control strategies. We present the numerical results

for the model (9) when all control measures are absent and also to

examine the role of fractional order κ on the HIV disease spread.

Then, we simulate the fractional optimal control of the model and

investigate the effect of the controls introduced in the model on

the spread of epidemics. We use the generalized Adams-Bashforth-

Moulton method for the simulation of both the systems and use

the values of parameters described in Table 1 . 

7.1. Numerical simulation without control measures 

In this subsection, we present numerical results for fractional

system (9) and allow the values of κ to varies from k = 0 . 75 to

k = 1 as seen in the Fig. 2 . It is clear from the Fig. 2 that fractional

order has significant effect on dynamic behavior of all the com-

ponents. We observe that when the derivative order κ is reduced

from 1, the memory effect of the system increases, and there-

fore the infection grows slowly and the number of HIV-infected

population and AIDS people increases for a long time. Also, undi-

agnosed HIV-infected population in some societies refuse to per-
orm HIV test for reasons such as stigma and fear of identifica-

ion due to lack of knowledge about the disease. This results in

 delay in identification of HIV-infected individuals, an increase

n the undiagnosed HIV-infected population, fast progress of AIDS

nd an increase in people diagnosed with AIDS. On the other

and, the experience or knowledge of individuals about the dis-

ase causes susceptible and exposed individuals to take different

recautions, such as behavioral change, vaccination, treatment and

ondom use, against infection transmission. This leads to a slow

rowth of infection among the population. Therefore, from the nu-

erical results in Fig. 2 , we conclude that the derivative order κ
0.75 ≤ κ ≤ 1) can play the role of precautionary measures against

nfection transmission, treatment of infection and delay in accept-

ng HIV test. 

Existence of attractors for some fractional order κ for differ-

nt population groups are given in Fig. 3 . Thus, the results from

ig. 3 shows that there is tendency of each population class to ex-

st and enter into permanence with time. Numerical results for the

ifference of integer-order and fractional order are given in Figs. 4–

 . It is clearly visible from Figs. 4–5 that the differential equations

ith fractional order derivative have rich dynamics and describe

iological systems better than traditional integer-order models. 

From the above discussion and numerical results in Figs. 2-5 ,

e conclude that the derivative order κ can play the role of expe-

ience or knowledge of individuals about the past of the disease.

herefore, the numerical results confirm that differential equations

ith fractional order derivative have rich dynamics and describe

iological systems better than traditional integer order models. As

 result, our numerical results are more logical than the results of

ther articles on the modeling of the HIV/AIDS epidemic and other

odels with integer-order derivative due to the presence of the

ractional derivative order κ (0.75 < κ ≤ 1). 

Now, we investigate the effect of the control measures intro-

uced in the model on the spread of the epidemic. We consider

he following strategies and examine the corresponding numerical

esults. 

.2. Numerical simulation with control measures 

In this subsection, we present the numerical results for the

odel (24) when all control measures are present. The results are

btained in different ways by applying control strategies in the fol-

owing five ways. 
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Fig. 2. Numerical results for different fractional order κ . 
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Fig. 3. Numerical results showing the existence of attractors for different values of κ . 
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Fig. 4. Numerical results showing comparison between the classical model (8) and the fractional dynamics (9) with κ = 0 . 89 . 
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Fig. 5. Numerical results showing comparison between the classical model (8) and the fractional dynamics (9) with κ = 0 . 99 . 
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Fig. 6. Numerical results showing the effect of control measures v 1 = 0 . 5 , v 2 = 0 . 5 and v 3 = v 4 = 0 on the dynamics (9) for different fractional order κ . 
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Fig. 7. Numerical results showing the effect of control measure v 2 = 0 . 5 and v 1 = v 3 = v 4 = 0 on the dynamics (9) for different fractional order κ . 
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Fig. 8. Numerical results showing the effect of control measure v 3 = 0 . 7 and v 1 = v 2 = v 4 = 0 on the dynamics (9) for different fractional order κ . 
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Fig. 9. Numerical results showing the effect of control measure v 1 = v 2 = 0 and v 3 = v 4 = 0 . 5 on the dynamics (9) for different fractional order κ . 
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Fig. 10. Numerical results showing the effect of all control measures v 1 = 0 . 5 , v 2 = 0 . 5 , v 3 = 0 . 5 and v 4 = 0 . 8 on the dynamics (9) for different fractional order κ . 
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Strategy-1. Using behavioral change control and condom use

control ( v 1  = 0, v 2  = 0) and ( v 3 = v 4 = 0) . 

In the first control strategy, we set the control measures

v 3 = 0 , v 4 = 0 and active the control measures v 1 = 0 . 5 , v 2 = 0 . 5

namely the behavioral change for susceptible individuals and con-

dom use for the exposed individuals which is shown in Fig. 6 , for

different values of fractional order κ . Analysis of control strategy-

1 predicts that susceptible and exposed individuals greatly de-

crease after implementing control measure v 1 , v 2 . In Fig. 6 , we ob-

serve that this control strategy results in a significant decrease

in the number of undiagnosed HIV-infected population and AIDS

people for a long time compared with the case without control.

Fig. 6 shows that, by applying the strategy-1, the value of R 0 will

be less than 1 for more time when κ is reduced from 1. This means

that by decreasing κ from 1, we can control the spread of disease

over a longer period of time. Therefore, the presence of the frac-

tional derivative order κ in the model increases the use of condom

control and behavioural control in the population. 

The control v 1 is proportion of the susceptible individuals who

change their sexual habits per unit time. The class R , the removed

class, represents the number of people who have greatly changed

their sexual habits such that they cannot easily be infected through

sexual contact. People in the class R take on safe habits and keep

these habits in the rest of their lives. The importance of class R is

that it emphasizes the need for prevention for a disease like HIV

that has no treatment. Therefore, increasing the members of this

class plays an important role in controlling the spread of disease. 

Strategy-2. Using only condom use control

( v 2  = 0 and v 1 = v 3 = v 4 = 0 ) . 

In the second control strategy, we set the control measures v 1 =
0 , v 3 = 0 , v 4 = 0 and active the control measure v 2 = 0 . 5 namely

the condom use for the exposed individuals which is shown in

Fig. 7 , for different values of fractional order κ . Analysis of con-

trol strategy-2 predicts that exposed individuals greatly decrease

after implementing control measure v 2 . The results in Fig. 7 , fur-

ther show that condom use is the main control measure which can

be helpful in controlling the disease more properly. This is because

the control is applied to exposed class which is the main source

from which the virus can transmit and spread due to the fact that

this class is easily available for virus during their sexual contact

with infected female sex workers. 

Strategy-3. Using only treatment control

( v 3  = 0 and v 1 = v 2 = v 4 = 0 ) . 

In the third control strategy, we set the control measures v 1 =
0 , v 2 = 0 , v 4 = 0 and active the control measure v 3 = 0 . 7 namely

the efficiency of treatment given to the aware infected individu-

als which is shown in Fig. 8 , for different values of fractional or-

der κ . Analysis of control strategy-3 predicts that infected individ-

uals greatly decreases after implementing control measure v 3 . This

is due to the fact that treatment of diagnosed HIV-infected pop-

ulation results in an increase in the level of CD4 + T-cells of this

class. Therefore, this strategy prolongs the lifespan of HIV-infected

patients and delays the onset of AIDS. Fig. 8 shows that differ-

ential equations with fractional order derivative have rich dynam-

ics and describe biological systems better than traditional integer-

order models. 

Strategy-4. Using treatment control and awareness control

( v 1 = v 2 = 0 and v 3  = 0 , v 4  = 0 ) . 

In the fourth control strategy, we set the control measures

v 1 = 0 , v 2 = 0 and active the control measures v 3 = 0 . 5 , v 4 = 0 . 5

namely the efficiency of treatment given to the aware infected in-

dividuals and the awareness source for unaware infected individu-

als which is shown in Fig. 9 , for different values of fractional order

κ . Analysis of control strategy-4 predicts that infected individuals

greatly decreases after implementing control measures v 3 and v 4 .

In Fig. 9 , we observe that this control strategy results in a signif-
cant decrease in the number of aware infected HIV people and

nware infected people compared with the case without control. 

Strategy-5. Using all controls ( v 1  = 0, v 2  = 0, v 3  = 0, v 4  = 0) .

In last control strategy, we activate all the control measures

 1 = 0 . 5 , v 2 = 0 . 5 , v 4 = 0 . 5 and v 4 = 0 . 8 namely the behavioral

hange for susceptible individuals, condom use for exposed indi-

iduals, efficiency of treatment given to the aware infected indi-

iduals and the awareness source for unaware infected individuals

hich is shown in Fig. 10 , for different values of fractional order

. Analysis of control strategy-5 predicts that susceptible individ-

als and exposed individuals decreases with the control measures

 1 and v 2 while infected individuals greatly decrease after imple-

enting control measures v 3 and v 4 . 

By adding the behavioral change control v 1 or condom use con-

rol v 2 to the ART treatment control v 3 , we see from Figs. 6-9 , that

he strategies 1-4 result in a decrease in the HIV infected popu-

ation and AIDS people compared with the case without control.

ith implementing all the control effort s, we observe that the

trategy-5 results in a significant decrease in the HIV-infected pop-

lation and AIDS people compared with the case without control.

ith comparison of the strategies, we see that the strategy-5 is

etter than the other strategies in control and reduction of the

pread of HIV/AIDS epidemic. Therefore, by applying the strategy-5,

e can increase the life time and the quality of life for those liv-

ng with HIV and decrease significantly the number of HIV-infected

opulation and AIDS people. 

On the other hand, in human societies, the process of evolution

nd control of the epidemic is associated with memory. When a

isease spreads in a society, the experience or knowledge of indi-

iduals about the past of the disease helps susceptible individu-

ls to take different precautions, such as behavioural change, treat-

ent, awareness and condom use against infection transmission.

lso, the experience or knowledge can lead to the screening mea-

ures of entry and exit between different groups. 

It is noticeable from Fig. 10 that due to the memory property

f fractional derivatives, the derivative order κ affects the values of

he controls. We see that the maximum levels of the controls are

educed when κ limits to 1. On the other hand, the memory effect

haracterized by fractional derivative is reduced when κ limits to

. Therefore, by reducing the memory effect, the maximum levels

f the controls are reduced. 

. Conclusion 

In the current study, we have introduced a nonlinear SEI 1 I 2 R

ractional order epidemic model for the transmission dynamics of

IV epidemics. The non-negative solution of the model is provided

y using the generalized mean value theorem. We obtained the

asic reproductive number R 0 , which perform as a threshold pa-

ameter in the disease status. The existence of equilibria and their

symptotical stability results using fractional Routh-Hurwitz sta-

ility criterion is discussed. We established and investigated the

tability analysis of the fractional order model with respect to the

alues of R 0 . The disease-free equilibrium is locally asymptotically

table if R 0 ≤ 1 . For R 0 > 1 , using Theorem 4.3 and Corollary 4.1 ,

e investigated the local stability of the positive endemic equi-

ibrium state Đ∗. Meanwhile, global asymptotic stability of the

isease-free and endemic equilibrium point is investigated by con-

tructing a suitable Lyapunov functions. Additionally, we investi-

ated the optimal control problem by the application of the opti-

al control theory. We used the Pontryagin’s Minimum Principle

o provide the necessary conditions needed for the existence of

he optimal solution to the optimal control problem. Furthermore,

eneralized Adams-Bashforth-Moulton method is applied to obtain

 numerical solution of the proposed fractional order SEI 1 I 2 R epi-

emic model (9) and the fractional optimal problem (24) . The re-
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[  
ults obtained shown that the Adams-Bashforth-Moulton method

s an accurate and effective technique for obtaining the numeri-

al solution of the proposed nonlinear fractional order SEI 1 I 2 R epi-

emic model. Lastly, the theoretical results are verified by numer-

cal simulations to measure the efficacy and impact of controls

n the transmission of the HIV/AIDS disease. From the numeri-

al simulation, the size of the exposed population is significantly

educed under the controlled conditions. This proposes that if all

our control measures v 1 (behavioral change for susceptibles), v 2 
condom use by the exposed individuals), v 3 (strength of treatment

or the infected individuals), v 4 (awareness source among the un-

ware infectives) are employed for the same period of time and

ontinue for a considerable period of time, the spread of HIV dis-

ase through prostitution could be restricted. In this manner, the

ractional order optimal control method can progress the value of

he necessary control measures. This recommends that personal

recautional measures, periodic monitoring by medical profession-

ls and researchers should be done to control the transmission of

he HIV disease dynamics. 

The recently emerged virus namely novel coronavirus (COVID-

9) which has originated from Wuhan the capital city of Hubei

rovidence of mainland China in December 2019 is a major threat

o mankind at present in the whole world. Application of fractional

rder derivatives to model the new outbreak of coronavirus and

ther trending diseases are left for future research. 
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