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In this paper, a nonlinear fractional order epidemic model for HIV transmission is proposed and analyzed
by including extra compartment namely exposed class to the basic SIR epidemic model. Also, the infected
class of female sex workers is divided into unaware infectives and the aware infectives. The focus is on
the spread of HIV by female sex workers through prostitution, because in the present world sexual trans-
mission is the major cause of the HIV transmission. The exposed class contains those susceptible males
in the population who have sexual contact with the female sex workers and are exposed to the infection
directly or indirectly. The Caputo type fractional derivative is involved and generalized Adams-Bashforth-
Moulton method is employed to numerically solve the proposed model. Model equilibria are determined
and their stability analysis is considered by using fractional Routh-Hurwitz stability criterion and frac-
tional La-Salle invariant principle. Analysis of the model demonstrates that the population is free from
the disease if Ro <1 and disease spreads in the population if Ry > 1. Meanwhile, by using Lyapunov
functional approach, the global dynamics of the endemic equilibrium point is discussed. Furthermore,
for the fractional optimal control problem associated with the control strategies such as condom use for
exposed class, treatment for aware infectives, awareness about disease among unaware infectives and be-
havioral change for susceptibles, we formulated a fractional optimality condition for the proposed model.
The existence of fractional optimal control is analyzed and the Euler-Lagrange necessary conditions for
the optimality of fractional optimal control are obtained. The effectiveness of control strategies is shown
through numerical simulations and it can be seen through simulation, that the control measures effec-
tively increase the quality of life and age limit of the HIV patients. It significantly reduces the number of
HIV/AIDS patients during the whole epidemic.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

develop AIDS mostly lasts from 6 months to 15 year. The virus
destructs CD4+ T-cells ending of loss of cell mediated immunity,

Epidemiology mainly deals with the infectious diseases and
predicts their occurrence, transmission as well as control in a pop-
ulation. It identifies the factors responsible for disease spread, fa-
cilitates treatment quality and health services, provides necessary
measures for prevention, treatment, planning in order to improve
the efficiency and effectiveness of health services [1]. HIV is a
retrovirus which is discovered in 1981 in USA among the gay
community causes an AIDS a severe life intimidating ailment. At
present, there is no vaccine or cure for AIDS, that makes it an in-
curable disease with high mortality rate (there are almost 25 mil-
lion deaths by AIDS per year worldwide), also it spread quickly af-
fecting about 14,000 new case/day. The time duration for HIV to
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thus makes the immune system susceptible to cancers and vari-
ous infectious diseases. The routes of transmission of HIV virus are
unprotected sexual intercourse, through blood by sharing contam-
inated needles or infected blood transfusion, from mother to her
child during pregnancy i.e., vertical transmission [2].
Mathematical models act as a tool which the researchers have
extensively used in the epidemiology of HIV/AIDS to get the un-
derstanding of the major contributing factors in a given epi-
demic. Zafar et al. [3] fractionally studied the HIV/AIDS epidemics
with three solution approaches namely Adams-Bashforth Moulton
method, Grunwald Letnikov approach and Grunwald Letnikov ap-
proach with binomial coefficients. In their study, they have an-
alyzed the model and obtained the necessary conditions for the
existence and stability of both the equilibria. They have shown
that the system is stable if Rg <1 and if Rg > 1, then system
becomes unstable and endemic equilibrium exists which behaves
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as an attractor. Wang et al. [4] studied a delayed fractional or-
der SIR model with saturated incidence and treatment functions.
They have provided the sufficient conditions that guarantee the ex-
istence of equilibria and discussed the global stability results for
both disease-free equilibrium as well as endemic equilibrium by
constructing a suitable Lyapunov functions. Almeida [5] in his pa-
per studied a fractional SEIR epidemic model in presence of treat-
ment. He analysed the model and his main focus was on the frac-
tional differential equations in order to describe the dynamics of
certain epidemics. Further, he proved the local stability for both
equilibria. Carvalho et al. [6] provided a HIV/HCV coinfection frac-
tional order model to understand the impact of HIV viral load on
the coinfection. Their main motive in the model was to provide
good fits to real data from patients suffering from several diseases
such as HIV, HCV, dengue fever and many more. They have numer-
ically suggested that the HIV viral load impacts impressively the
severity of the HCV infection. Also, by their results they showed
that the treatment efficacy is also influential over the natural pro-
gression of HCV on the HIV/HCV coinfection. Recently, Kheiri and
Jafari [7] analysed a multi-patch HIV/AIDS epidemic model with
fractional order derivatives and investigated the effect of human
movement on the spread of HIV/AIDS epidemic among patches.
They derived the basic reproduction number Ry of the model and
studied the local as well as global stability of the equilibria on the
basis of Ry . They have shown that the system is stable if Ry < 1
and it becomes unstable if Rg > 1. They also obtained the suffi-
cient conditions under which the endemic equilibrium is unique
and globally asymptotically stable. Besides this, they formulated
a fractional optimal control problem in which the state and co-
state equations are given in term of the left fractional derivatives.
They incorporated in the model time dependent controls in order
to control the spread of HIV/AIDS epidemics. They also derived the
necessary conditions for the fractional optimal control in their pro-
posed model. The effect of varying the fractional order on the dis-
ease spread is also studied in their model. Researchers have con-
tinuously studied the fractional order models of HIV disease dy-
namics and provided many well-known mathematical techniques
for the solution of these models for the dynamics of HIV epidemics
[8-19]. Besides this, a number of studies on fractional order model-
ing of other infectious diseases can be found in the literature [20-
23]. The fractional order derivative not only find its application on
modeling infectious diseases but in other fields as well like vibra-
tion equation [24] and so on.

The optimal control theory is developing fast and its various
applications are extensively used in many fields of science and
engineering [25]. This theory for linear systems has been highly
improved [26], however, the nonlinear optimal control problem
(OCP) has become a strong topic and should be deeper investi-
gated [27-28]. Jajarmi and Baleanu [29] proposed a new approach
based on the modal series method and eigenvalue decomposition
technique to solve a class of nonlinear optimal control problems.
They have also investigated the convergence analysis of their sug-
gested technique. Jajarmi et al. [30] proposed a new approach for
the optimal control of time-varying delay systems with external
persistent matched disturbances. In their internal model principle,
they converted original time-delay model with disturbance into an
augmented system without any disturbance. Then, they selected
a quadratic performance index for the augmented system to form
an undisturbed time-delay optimal control problem. The necessary
optimality conditions are then derived in terms of a two-point
boundary value problem involving advance and delay arguments.
At the end they finally provided a fast iterative algorithm for the
latter advance-delay boundary value problem. They also investi-
gated the convergence of the new iterative technique.

The purpose of dealing with fractional order systems is the
memory and hereditary properties which are the complex behav-

ioral patterns of biological systems gives us more realistic way to
model HIV/AIDS systems. In the fractional order models, the mem-
ory property allows the integration of more information from the
past which predicts and translates the models more accurately.
Also, the hereditary property describes the genetic profile along
with age and status of the immune system. Because of such prop-
erties fractional order calculus have found wide applications to
model dynamics processes in many well-known fields of science,
engineering, biology, medicine and many other [31-32]. Saeedian
et al. [33] formulated SIR epidemic model with the inclusion of
memory effect and studied its behavior along the memory effect
on the disease spread with the help of fractional derivatives. Rihan
[34] provided a class of fractional order differential models of bio-
logical systems with memory, such as dynamics of tumor-immune
system and dynamics of HIV infection of CD4* T cells.

Communicable diseases have been a cause of global concern
throughout the history of mankind. Its outbreak severely affects
the morbidity and the mortality rates across the globe. It is
therefore important to implement the control measures to pre-
vent and control the disease spread among the populations. Kheiri
and Jafari [35] formulated a fractional optimal control epidemic
model of HIV/AIDS with random testing and contact tracing. In
their model, they have incorporated the control measures of con-
dom use and antiretroviral therapy for the control of spread of
HIV/AIDS in the susceptible population. They have presented a
Forward-Backword sweep numerical method based on Adams-
Bashforth-Moulton method for the solution of their model. Agrawal
[36] formulated a fractional optimal control problem by using the
Reimann-Liouville fractional derivatives and presented a numerical
method for its solution. Bashir et al. [37] presented a fractional op-
timal control for a kinetic model and provided a numerical scheme
for its solution.

Going by the antecedents, we have seen clearly that modeling
of physical and real-life scenarios with the fractional order deriva-
tives is much more accurate when compared with the integer or-
der cases. This assertion has been demonstrated a number of re-
search papers, monographs and books, see for example [38-41].
In view of these achievements, we are motivated in this research
work by modeling the control and analysis of SEI;I;R dynamics of
HIV disease transmission using the Caputo fractional order oper-
ator which is most suited for modeling the biological and physi-
cal facts [42-47]. The choice of using the Caputo derivative is due
to the fact that, if the given function is a constant, then the Ca-
puto derivative of that function gives zero. Primarily, the Caputo
operator computes an ordinary differential equation, followed by a
fractional integral to obtain the desired order of fractional deriva-
tive. More importantly, the Caputo fractional differential equation
(FDO) permits the use of local initial conditions to be included in
the derivation of the model.

In the present paper, we propose and analyze a fractional opti-
mal control problem, in which the state and co-state equations are
given in terms of the Caputo fractional derivatives. This approach
simplifies the use of fractional numerical methods to solve the
state and co-state equations. Fractional optimal control problems
can be regarded as a generalization of classic optimal control prob-
lems for which the dynamics of the control system are described
by fractional differential equations. We incorporate into the model
time dependent controls such as condom use for exposed individ-
uals, treatment for infected female sex workers, awareness about
the disease among unaware infectives and behavioral change for
susceptibles in order to reduce the risk of the spread of HIV/AIDS
disease. Conditions for fractional optimal control of the disease
are derived and the state and co-state equations are character-
ized by Caputo fractional derivatives. The numerical solution of the
proposed fractional optimal control problem is obtained by using
generalized Adams-Bashforth-Moulton method. Furthermore, the
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efficacy of order of fractional derivative, the control strategies and
the value of objective functional is investigated.

The structure of the paper is designed as: in the next Section 2,
some preliminary results required for the formulation of mathe-
matical model is provided. Development of the proposed math-
ematical model and its well-posedness is discussed in Section 3.
In Section 4, we discuss the mathematical analysis of the pro-
posed fractional order SEI1I,R epidemic model along with equilib-
rium points and the stability of equilibrium points. In Section 5,
the fractional optimal control problem is formulated and discussed.
Also, in this Section, the necessary conditions for the optimal-
ity of proposed fractional optimal control problem is provided.
Furthermore, in Section 6, application of the generalized Adams-
Bashforth-Moulton method is performed on the proposed model
and the numerical simulations are done to validate the analytical
studies. In Section 7, numerical results are given to illustrate the
capability of generalized Adams-Bashforth-Moulton method and
the behavior of the obtained solutions is also discussed in this
section. Finally, Section 8 concludes all the major findings of the
present research study.

2. Mathematical preliminaries

Researchers have continuously extended the definitions of frac-
tional order derivatives like the Riemann-Liouville, the Caputo,
Caputo-Fabrizio, Atangana-Baleanu, the Grunwald-Letnikov, the
Weyl, the Marchaud, the Riesz, and the Miller and Ross [48-52].
Recently, many new definitions of fractional derivative [53] have
hugely evolved, going from the derivatives with nonsingular ker-
nel and new Riemann-Liouville fractional derivative without singu-
lar kernel to the two-parameter derivatives with non-singular and
non-local kernel [54-56].

Definition 2.1. A real function ¥ (t), t > 0 is said to be in the space
Cy.m e R, if there exists a real number [ > 5, such that ¥ (t) =
thyr; (t), where y(t) € ([0, o) and it is said to be in the space
Cy, if and only if ¥"'(t) € Gy, n € N.

Definition 2.2. The Riemann-Liouville form of fractional integral
operator RLD;* of order k > 0 for a function ¥ : R* — R is defined
as

oDy (t) = F(lK)z(t—e)’(‘1W(s)d8,t>0, (1)
or

SV () = g Z (t — &)< (e)de, t > 0,
SRV (e) = ¥ (e),

where ¥ > 0 and I'(.) is a well-known Gamma function.

Definition 2.3. The Riemann-Liouville form of fractional derivative
of {(¢t) order k > 0 is defined as

1 d ¢ v(e)
IF'(n—«) (dt) A (t— 8)K7ﬂ+l de,
Ripcyr(ty=40<n—1<k <n,n=[k],neN, (3)

(i) Y(t),k =n,neN.

Definition 2.4. The Caputo fractional derivative of /(t) order
k > 0 is defined as
1 [f@ddn™ye) ,
Fn—k)) (t—gF "t 7
0

O<n-1<k<nn=[k],neN, (4)

<:11t> Y(t), Kk =n,neN.

where the operator ng satisfies the following two basic prop-
erties:

SDERLE Y (t) = ¥ (t) and §HIESDE Y (t)

n-1 )
=Y(t) - Z%(t—a)ﬁ,t > aq.
¥=0 :

SDEY (1) =

The definition 2.3 and definition 2.4 are not equivalent to each
other, and their difference is expressed by

tX*K

n-1
ODFY (O =5 DY (O =3 i OVP . KO = 7

x=0

The Caputo operator SD’{ , has advantages for differential equa-

tions with initial values. In the case of Riemann-Liouville and Ca-

puto derivatives, respectively, the initial values are usually given as
[57]

RLDEYr (0) = by, SDEY (0) = by, v=1,2,3....1

A direct definition of the fractional derivative Df v (t), is based
on finite differences of an equidistant grid in [0, t]. Assume that
the function Df v/ (t), satisfies some smoothness conditions in ev-
ery finite interval (0, t), t < T. Choosing the grid

0=79<T1 <..<Tpp1 =t=m+1u, Ty — Th = u, and using
the classical notation of finite differences,

uK
v=1

n+1
JTAZI/I(t) = 1 (d’(fnﬂ) - chl/f(fnﬂv))

where

K v-1( K
o =-() l(v)

Definition 2.5. The Laplace transform of the Caputo fractional
derivative of yr(t) order k > 0 is defined as

n-1
L[EDE Y ()] =sW(s) = Y ™ (0)s<7 ! (5)
9=0
Definition 2.6. The Laplace transform of the function
t71E o (EMF) is defined as
1 k=K1
K1— K
L[t Ec v, (EAL) ] = RES) (6)

where E , is the two-parameter Mittage-Leffler function with
K,k1 > 0.

Further, the Mittage-Leffler function satisfies the following
equation [58]

EK,K1 (@) = q~Elc,lc+/c1 Q) + ﬁ (7)

3. Model formulation
To describe the transmission dynamics of HIV epidemics, we

have generalized the basic SIR epidemic model by including more
compartments, to one in which population is divided into five
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sub-classes, the susceptible population S(t), the exposed popula-
tion E(t), the infective population that don’t know they are infected
I1(t), the infective population that know they are infected I,(t), by
means of medical screening or otherwise and recovered population
R(t). The proposed model is considered as the generalization of the
original Kermack-Mckendrick model [8], where only three com-
partments were considered, but here the exposed compartment is
included contains those susceptible males in the population who
have sexual intercourse with the female sex workers as a result by
having sexual contact they are exposed to the infection. Further-
more, the infected class is divided into two sub-classes namely in-
fected female sex workers who are unaware about their disease
status and the infected female sex workers who knows their dis-
ease status. Thus, the model takes the following form [3,15,18].

% = A =SEO) (Bl () + Baha(t)) — AS(L)

% =S5O Bl (6) + P22 (1)) — (A + 0)E(t)

dI:jE-t) =0E({) - (p+A+0)L () (8)
% =0 (t) — (A + p)h(t)

% = p(L(t) +L(t)) — (d + A)R(t)

For the understanding of HIV disease dynamics, the total pop-
ulation N(t) is divided into five sub-population compartments
namely susceptible, exposed, infected but unaware, infected but
aware and recovered such that N(t) =S(t) + E(t) + L (t) + L (t) +
R(t) for all t. The following description is associated to the above
classical model: the susceptibles are recruited at a rate A, B is
the per capita rate for susceptibles individuals with unaware in-
fectives, B, is the per capita rate for susceptibles individuals with
aware infectives, A is the natural death rate unrelated to AIDS,
o is the break through into infected class, 6 is the rate of un-
aware infectives to become aware infectives by screening or test-
ing, p is the rate by which types of infectives develop AIDS and
d is the AIDS related death rate. It may further be noted that
N'(t) =S'(t) + E'(t) + I; (t) + I5(t) + R'(t) = 0 reveals constancy of
total population.

We further extend the above ordinary differential model to the
following fractional order system of order «, with o, p > 0 being
the rate that exposed individuals become infectious and recovery
rate, respectively and A > 0 being the infection related death rate.
The purpose of considering the fractional order case is the signifi-
cant uniqueness of these varieties of fractional order systems with
non-local characteristics (memory) and hereditary properties that
have not been seen with the integer-order differential operators
which widely exists in biology. Also, using fractional order differ-
ential equations can help us to reduce the errors arising from the
neglected parameters in modelling real life phenomena. In each
case, we replace the ordinary derivative by a fractional derivative.
Thus, our proposed fractional order model for HIV disease trans-
mission has the form

SDES(t) = A = S(E)(Bil1 () + Bala (1)) — AS()

ODFE(t) =S(t) (Bih (t) + Bala(t)) — (A + 0)E(t)

6DF L (t) = GE(t) — (p + A + O)h (1) 9)
SDEL(t) = OL (t) — (A + p)La(t)

SDSR(t) = p(I1 (t) + L (t)) — (d + A)R(t)

subject to the initial conditions

S(0) = So. E(0) = Eg. [; (0) = 1.0, 1,(0) = L, and R(0) = Ry (10)

where 0 < «x < 1, N@t)=SE)+E@)+L()+L(t)+
R(t), (S(t),E(t),I1(t),(t),R(t)) € .‘h‘i and if « =1, then sys-
tem (9) reduces to an integer order system (8). It is clear that the

variable R(t) does not appear in the first four equations, thus it is
meaningful to consider the reduced system (9) as:

SDES(t) = A = SO (Bili (1) + Bala (£)) — AS(t)
ODFE(t) = S(t) (Bili (t) + Bala(t)) — (A + 0)E(D)
EDEL(t) = 0E(t) — (p + A+ O)I1(t)
DEL(t) = 0h(t) — (A + p)h (1)
subject to the positive initial conditions
5(0)=So, E(0) =Eo,11(0) =1l10 .1(0) =l (12)

Here, it is assumed that the functions S(t), E(t), I;(¢t), I5(t), R(t)
and their Caputo fractional derivatives are continuous at t > 0.
Again, since gD’{N(t) = 0, the population size is constant. To start,
the existence, uniqueness, and non-negativity of the solution of
system (11) are analyzed. The schematic diagram of the proposed
fractional order SEI;I;,R epidemic model (9) is shown in Fig. 1.

4. Analysis of the model

In this section, we first prove the existence and uniqueness of
positive solution, then the basic reproduction number and the ex-
istence conditions for both equilibria (disease-free equilibrium and
endemic equilibrium) are obtained, finally, the conditions for the
stability of both the equilibria are obtained.

4.1. Positivity and boundedness

Let us denote R% = {y(t) e R*: ¥ (t) >0} and let ¥(t)=
[S(t),E(t), I; (t), L (t)]". For the proof of the main theorem about
the non-negativity of the solutions, we recall the following lemma
[3,8,15].

Lemma 4.1. (Generalized Mean Value Theorem [3,8,15]). Let
Y (t) € Cla, b] and Caputo fractional derivative SD’{W(t) € C(a, b]
for 0 < k < 1, then we have

V() = Y@+ ﬁSDWe)(t o

with 0 <€ <t,Vt € (a, b].

Remark 4.1. If {(t) € ([0, b] and Caputo fractional deriva-
tive gD’{w(t) € (0,b] for 0 < k¥ < 1. It is clear from the
lemma 4.1 that if SDfl//(t) > 0,Vt € (0, b], then the function (t)
is non-decreasing and if gD‘{l//(t) < 0,Vt € (0, b], then the function
Y (t) is non-increasing for all ¢ € [0, b].This completes the proof.(J

Theorem 4.1. There is a wunique solution ¥ (t)=
[S(t),E(t), I; (t), L (t)]"for the initial value problem given by
(11) along initial conditions (12) on t > 0 in (0, k) and the
solution will remain in Ri. Furthermore, the solutions are all
bounded.

Proof. According to Lin [58] from the Theorem 3.2 [58] and Re-
mark 3.2 [58], we can determine the solution on (0, co) by solving
the model (11) along initial conditions (12) which is not only exis-
tent but also unique. Subsequently, we have to explain the non-
negative domain R4, is positively invariant region. From model
(11), we find

SDES(t)]s—0 = A > 0, SDSE(t)|g=o = S(t)[B1l1(t) + B2l (t)] = O,

EDEL (t)|1,—0 = OE(t) = 0, SD¥L(t)|1,—0 = 0L (t) > 0,

On each hyperplane bounding the non-negative orthant, the
vector field points into Ri. Furthermore, from system (11)

SDEN(t) + AN(t) < A
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p p
Recovered
R(t)

Fig. 1. Schematic diagram of the fractional order HIV epidemic model.

Thus, by Lemma 4.1, in the case of HIV infection, the total
population N(t), i.e., the subpopulations S(t), E(t), I;(t)and I;(t) are
bounded.

By positivity means the population survives and boundedness
refers as a natural restriction to growth as a consequence of lim-
ited resources. This completes the proof of the theorem 4.1. O

Therefore, the biologically feasible region for the system (9) is

v {(S(t),E(t)J] (©). L (t)) }
Clert0<SOHEO +h (O +h(t) <2

4.2. Existence of equilibria and their stability

For the equilibrium points, setting the right-hand side of the
system (11) equal to zero, we obtain equilibrium points as

A =SE) (Bl (£) + B2l (£)) = AS(t) =0
SE) (Bl (t) + B2l (8)) = (A +0)E(t) =0
CEt)—(p+A+0)(t)=0

OL(t) — (A +p)h(t) =0

After simplification, the system (13) gives the disease-free equi-
librium point B0 = (%, 0,0,0) and the endemic equilibrium point
b* = (8%, E*, I}, I;), where

A+P)A+0)A+p+0) p  (P+A+0),

(13)

S TR B o i
~ Ao L 0tp)
S At+o)A+p+0)  Bi(A+p)+ B0

* 9 *

Tl

Thus, the proposed nonlinear fractional order SEI;I;R epidemic
model has at most two equilibria namely disease-free equilibrium
point B0 = (%,O, 0,0) and the endemic equilibrium point b* =
(" E* I;. I5).

In order to study the local stability of the disease-free equilib-
rium, we first compute the basic reproduction number by using

next generation matrix method [61-64]. Let ¢’ = (E, I;, I, S)T. Sys-
tem (11) can be written as

@' =F(p)—V(p)

where
SE) (Bl (t) + Baha (1))
F(g) = 0 V(@)
0
(h+0)E(t)

(P+A+0)(t)—0E(t)
(A4 p)L(t) — 011 (t)
SO (Bl (t) + B2L2 (£)) + AS(t) — A

By the next generation matrix method, the matrices F and V at
the disease-free equilibrium point B? are obtained by

0 0
o [afp(p )]andvz |:8 V(D)
0Ym Ym

where F is non-negative and V is a non-singular M-matrix.

Therefore, the basic reproduction number denoted by Ry which
is considered as the spectral radius of the next generation matrix
I'v-1 at the disease-free equilibrium B? is thus given by

R = AB1O+P)A +0) + b +0))
0 AA+0)A+p)(p+A+6)
It shows that if Ry < 1, then the disease does not spread in the

population and the infection dies. On the other hand, if Rg > 1,
then the disease persists in the whole population.

] 1<p m=<4,

4.3. Local stability of equilibria

Now, we will discuss the local stability analysis of equilibrium
points. For this, we state the results in the form of theorems and
prove them.

Theorem 4.2. The disease-free equilibrium P° of proposed frac-
tional order SEI;I;R epidemic model is locally asymptotically stable
if Rp <1 and unstable if Ry > 1.
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Proof. To prove the above theorem 4.2, the general Jacobian ma-
trix and the matrices corresponding to each equilibrium point will
be obtained. Therefore, the Jacobian matrix is given by

—(Bili+B2lr) — A 0 —B1S —B,S
Q- Bili+ 2L —(A+0) B1S Ba2S
- 0 o —(p+Ar+6) 0
0 0 0 —(A+p)
Now at the disease-free equilibrium P?,
—A 0 —A%.& —A%,Bz
SZ(—DO) _| 0 —-(A+0) 2B )
0 o —(p+Ar+6) 0
0 0 0 —-(A+p0)

Therefore, by the Routh-Hurwitz stability conditions for frac-
tional order systems [65], the necessary and sufficient condition

T
2
for various fractional order models. Therefore, the disease-free
equilibrium of system (11) is asymptotically stable if all of the
eigenvalues, y;,i=1,2,3, 4, of Q(B°) satisfy the condition (14).
Hence, a sufficient condition for the local asymptotic stability
of the equilibrium points is that the eigenvalues y;,i=1,2,3,4,
of the Jacobian matrix Q(-B°) satisfy the condition |arg(y;)| > KZ.
This confirms that fractional order differential equations are, at
least, as stable as their integer order counterpart. By solving the
characteristic equation, the eigenvalues can be obtained as

det (Q(P°) —yI) =0

larg (eig(£2))| = |arg(yy)| > & (14)

The simplification allows us to get the following algebraic equa-
tion

C+V)A+p+7) (VP + 1 +8)y +8618,-83) =0

where 8; = (A+0), 8, = (p+A+0) and 83 = A2 ;.
If Rg <1, then §3 > 0 and also

AAF+O)YA+p)(p+A+0) > A(B1(A+p) (A +0) + B0 (A +0))
This implies,
Ao
A+0)(p+A+0)> Tﬁl
Therefore, the roots of the characteristic equation are

Vi=—A, Va=—(A+p),

_ —(81 +82) + \/(81 +82)2 —4(8182 — 53)
V34 = ) ,

because §; +38, > 0 and §;5, > 83, all of the eigenvalues y; for
i=1,2,3,4, satisfy the condition given by (14). Therefore, all the
eigenvalues have negative real parts if Ry < 1. This completes the
proof of the theorem 4.2. O

In the next theorem 4.3, we discuss the local asymptotic stabil-
ity of the endemic equilibrium of the system given by (11).

Theorem 4.3. The endemic equilibrium D* is locally asymptotically
stable whenever Ry > 1 and unstable otherwise.

Proof. The Jacobian matrix of the system (11) evaluated at en-
demic equilibrium P* is given as

ﬁ1g+,32g - 0 —/3,315* —gzs*
o~ _ i+l —~(A+0) 15 HS*
(P = 0 o —(p+A+0) 0

0 0 0 —(tp)

The characteristic equation of the linearized system is in the
form

Cr)=-(+p+y) P(r)=0
with P(y) = y3 +9y% + 9,y + 3, where
U= @Br+o+p+0 -l - Bab5), (15)

02 = (M +ro = ili(A+0) = ili(p+ A2 +0) = Bals (A +0)
—Bls(p+A+0)—Ap— op—-00), (16)

93 = (Bili(A+0)(p+ 1 +6) - BioL;S*
+BlA+0)(p+Ar+6)
— B1Brol3S  — A(A+0)(p+A+60)+ BiAaS"), (17)

Now, the discriminant of the polynomial R(y)=7y3+%y%+
Y,y + U3 is described by [3,12,15]

D(P) = 181,03 + (9192)* — 40397 — 403 — 27092 (18)

and using the construction of results by Ahmed et al. [19,66], fol-
lowing fractional Routh-Hurwitz conditions associated with are ob-
served. We have the following result.

Corollary 4.1. The positive equilibrium point B* of the system
(11) is asymptotically stable for R > 1, if one of the following con-
ditions holds for polynomial P(y) and coefficients 94, 3,, 93 which
are given by (15),(16),(17) respectively.

i If D(P) > 0, then the necessary and sufficient condition for the
equilibrium point to be locally asymptotically stable is 3; > O,
93 > 0, 9]92 > 93,
ii If D(P) < 0,9y > 0,9, >0, 93 > 0, then the equilibrium point
is locally asymptotically stable if ¥ < %
iii If D(P) < 0,9 <0, 9 <0 and x> 32, then all roots of the
Eq. (18) satisfy the condition |arg(y;)| <« %,i=1,2,3,4.

4.4. Global stability of equilibria

The global existence of the solution of the fractional differential
equation always becomes a most important concern, which is carry
out in the following section.

Theorem 4.4. [12,58], Assume that the function ®: R, x R* —
R4satisfies the following conditions in the global space:

1) The function ®(t, ¥(t)) is Lebesgue measurable with respect to
ton R.
2) The function ®(t, ¥(t)) is continuous with respect to ¥ (t) on
R4,
3) The function 3‘1’(371‘//;(0) is continuous with respect to ¥ (t) on
R4,
O, Y (t)) <oq+ay¥(t), for all most every teR and all
P(t) e R4
Here 0, are two positive constants and v (t) =
[S(t), E(t), I; (t), L (t)]". Then, the initial value problem

{SDW(t) = Ot Y (t)).k € (0.1]
¥ (to) = Vo,

has a unique solution.

(19)

Theorem 4.5. The system (11) has a unique solution and the solu-
tion remains in R%.

Proof. From the Theorem 4.4, we obtain the unique solution on
(0, o) by solving the system (11). Firstly, Lin [58] discussed the
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proof of theorem and shows that the solution is not only exist but
also unique. In Theorem 4.1, we already proved that the solution
of model (11) will remain in R%.

Lemma 4.2. ([52,67]) Let ¥ (t) € R™ be a continuous and derivable
function. Then, for any time instant t > 0,

X VO (1 \ene
th <W(t)_‘/f - ¥*In e )— (1_ w(t)>th V() (20)

and

2SDEUR (@) = Y OSDEY (1) 1)

where k¥ € (0, 1).

Note that for k¥ = 1, the inequalities in (20) and (21) becomes
equalities.

Now, we provide the global stability results of the equilib-
ria in the following theorems by considering the Lyapunov direct
method.

Theorem 4.6. The disease-free equilibrium B° = (%, 0,0,0) of
proposed model (11) is globally asymptotically stable in W, if R <
1 and unstable when Ry > 1.

Proof. To prove this, we define a Lyapunov function ¢4(t) given
by

¢1(f)=%%(5—50)2+5

This function is defined, continuous and positive definite for all
t > 0. It can be verified that the equality holds if and only if S(t) =
So, E(t) =11 (t) = I, (t) = 0. Now, we have

1
0DF1(6) = 75-0DF (S = So)° +GDFE(D)

1
=56 So)§DES(t) + §DFE(t)

= Slo(s —So)[A — (B1L1(t) + Bala (£))S(t) — AS(t)]
F(Bih (O + Pk (6)S() = (A +0E(D) (22)

Using the disease-free steady state condition of model (11), Sg =
£, we have from the equation (22) as

DGy (1) < —Sio(s— 502 = (Bl (6) + Baba(6)) (S — S0)S(1)
LB (O + B (0)SO) - (+0)ED)

A 2 (Bl (©) + Bal2 (£)) (S — So)S(t)
__%(S_SO) - So

+(Bih (6) + Bal2 (£))S(t) — (A + 0)E(L)

(Bl (D) + Baba (1) (S — So)?

So
— (Bl (t) + B2l (t)) (S — So) + (B1li (t) + B2L2(1))S(t)
— (A+0)E()

A 2
= *%(5*50)

__(+hh (fs)o+ Bala(t)) (S = So)>

— (Bl () + B2 ())S(8) + (Bil1 (t) + Bak2(£))So

+(Bih () + B2l (£))S(E) — (A +0)E(L)

__ G+ pih (t5)0+ Bala(t)) (S—So)’

+(B1li (t) + B2l (£))So — (A + 0)E(£)

_ O Bili (ts)0+ BaL (1)) (S—So)?

OLt) \A (A+o)A+p+0)

+<,3111(f)+ﬂ2 (k+p)))»_ p Li(t)
_ G+ B (fs)o+ Bala(t)) S—So)?

oA (Bl (O)(A+p)+B00 (L)

+A< ) )—(k+o—)(k+p+0)l1(t)
__ G+ B (ts)o+ Bala(t)) (S—So)?

4O A(/31(k+0)()\+p)+ﬁ29(k+o))71,(t)

(A+0) AA+0) O+ p)(A+p+0) !

This further implies,

CDF by (£) < — (A + Bily (2)4' B2l (t))

(Ro— 1L (t) <0

(S—S0)°

Lo
(A+0)
Therefore,
6Dfpi(t) <0

It follows that if Ry <1, then we have {Df¢;(t)]41) <0. In
addition, we know that (C)D’t(qb] (®)]a1y =0, if and only if S(t) = Sp
and I (t) = 0.Substituting [;(t) =0 into (11), one can directly ob-
tain E(t) =0. Using I1(t) = E(t) =0 again in (11), then L(t) =
0. Therefore, the maximum invariant set for {(S,E,I;,I;) € Q0:
ED<1(t)|(11) =0} is the singleton set -D. According to the
LaSalle’s invariance principle [61-64], we know that all solutions
in Q0 converge to -DO.Therefore, the disease-free steady state of
model (11) is globally asymptotically stable when Ry < 1. This
completes the proof of the theorem 4.6. O

Theorem 4.7. The endemic equilibrium b* = (S*, E*, I}, ;) of pro-
posed model (11) is globally asymptotically stable in W, when
Ro > 1.

Proof. To prove this, we define a Lyapunov function ¢,(t) given

by
] £3 * s * * E
ba(t) = X(sfs _s 1n§)+®(575 —E 1n§)
1 I
— (L -F-Imi
+(p+k+9)<1 10 17)
where ® = %o~ _ 0 when Ro > 1.

(A+o)
This function is defined, continuous and positive definite for all

t > 0. It can be verified that the equality holds if and only if S(t) =
S*, E(t) = E*, I =17 . Now, we have from Lemma 4.2

1 s
CDE by (£) = SDE [X (s _s—sIn §)

* * E 1 * * I1
+®(E7E _E 1nE*)+M<1111111n[T)}

1 S*
i) = 1 (1- 5 )5DES
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® Er Cnk 1 IT Cnk
+o(1 - f)ODtE(t) + M(l - oo

B %<1 N %)[A = (Bih (1) + Baba (£))S(t) — AS(D)]

+0(1- 2Bl 0 + BbO)SO - G+ OEW |

1
(p—l—?\+9)( )[UE(f)—(P+)~+9)I1(t)] (23)
Using the endemic conditions,

— (B1lf + BaI5)S* = AS*
(B1l} + B25)S* = (A + 0)E*
=P +Ar+0)f

oL = (. + )l
in equation (23), we get

(h-1)°

L

(S-S (E-E*)?
s E

GDE@a(t) < — (Ro—1)—

This implies,
6D a(t) <0

It follows that if Ry > 1, then we have {D¥ ¢, (t)|(11) < 0. There-
fore, ¢,(t) is bounded and non-increasing. Further, the limit of
¢,(t) exits as t — oo.In addition, we know that §D¥ ¢, (t)| (1) =
0, if and only if S(t) =S*, E(t) =E* L;(t)=1; and L(t)=15.
Therefore, the maximum invariant set for {(§*,E* I{,I}) e Q*:
SD'{¢2(f)|(n)=0} is the singleton set {P*}. According to the
LaSalle’s invariance principle [61-64], we know that all solutions
in Q* converge to Db*.Therefore, the endemic equilibrium of pro-
posed model (11) is globally asymptotically stable when Rq > 1.
This completes the proof of the theorem 4.7. O

5. Fractional optimal problem

In this section, we extend the basic model (8) by including
some particular control measures aimed at controlling the spread
of the HIV infection and formulate the fractional optimal control
problem by proposing the control objectives. The aim of the con-
trol measures is to reduce the infection in the population and
thus there is the need to formulate the optimal control problem
to achieve this goal. The first control function v;(t) represents the
behavioral change for susceptibles which reduced the number of
exposed by a factor (1 —vy(t)). The control v(t) is proposition of
the susceptible individuals who change their sexual habits per unit
of time. The second control function v,(t) is the use of condoms
to the exposed individuals who are going to have sexual interac-
tion with the female sex workers. The third control function vs(t)
represent the enhancement of the strength of treatment for the
infected individuals. The fourth control function v,(t) is the aware-
ness source among the unaware infectives about their disease sta-
tus. Under these control measures the proposed model (8) is mod-
ified as

SDES(t) = A — (1= v2)S(t) (Bil (t) + Baha () — (A + v1)S(t)
SDEE(t) = (1 —12)S() (Bal1 (£) + Boha (1)) — (A + 0)E(1)
CDEL(t) =0E(t) — (0 + A+ 0 + vl (b)

ODFL(t) = OL (t) — (A + p +V3)Iy(t)

oDER(t) = p(i (t) + k(1)) — (d + )R(E) + v1S(t)
All formulas and models should be left aligned

(24)

with the non-negative initial conditions

5(0) =So, E(0) =Eo, [1(0) =11,0,(0) =10 and R(0) =Rg

(25)

The control is completely effective when wv;(t)=1 and
the control is not effective when v;(t) =0, for i=1,2,3,4
i.e.,,0 < vi(t) < 1. Our focus is to minimize the number of exposed
individuals under the cost of applying control measures which can
be done by consider the following fractional optimal control prob-
lem to minimize the objective functional given by

y (U1, V2, V3, Ug)
=2(@E+ﬁv%<t)+ P2+ 2o+ vﬁ(t))

(26)

subjected to the state system given in (24) along non-negative ini-
tial conditions (25). In Eq. (26), Q represent the positive weight
constant of the exposed population, while -pq, -p;, -p3, and -p4
are positive weight constants for behavioral change, personal pro-
tection, treatment strategy and awareness source respectively. The
terms -pv2. 1p,v2, 1 psv2 and }p,4v3 describe the costs associ-
ated with the corresponding interventions. It is supposed that the
costs are proportional to the square of the corresponding control
function. Our objective of the fractional optimal control problem is
to find out the optimal control functions v;, v;, vi,v; such that

Yy, vs, 5. vy ) =min {Y(Vq, V2, V3, Vs), (1, V2, V3, V) €V},
(27)

subjected to the state system given in (24), where the control set
is defined as

V = {(v1,v2, 13, v4)|v;(t) is Lebesgue measuerable on [0, 1],
i=1,2,3,4). (28)

The Lagrangian £ and Hamiltonian # for the fractional optimal
problem (24)-(28) are respectively given by [35,68-69]

E + ﬁv% + P22 Pagay Paga 9

L(E,v1,V2,V3,V4) = 2 2 2

and

H = L(E, v1, V2, U3, Vg) + AsSDES(E) + AeSDEE(L)
+A1,6DE 11 (6) + AGDE b (t) + ArgDER(E)

This further implies,

H=QE + v + B2 + B3 + B0
+As[A = (1 = v2)S(O) (Bil1 (t) + Pala (£)) — (A + v1)S(0)]
+Ae[(1 = v2)SE)(Brhi (8) + Paba (1)) — (A +0)E(D)] (30)
+AL[OE() — (0 + A+ 0 + vg)li(1)]
+)»12[911 (t) — ()x + 0+ Ug)lz(t)]
FArlp (1 (t) + L(£)) — (d + M)R() + v15(b)]
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where Ag, Ag, Ap, A, and A are the adjoint variables. We have to prove the necessary conditions for the optimality of the fractional
system (24). For the optimal control v(t), that minimizes the performance index

Y(v ) = JL(t, 7w, v)dt (31)
0

subjected to the dynamical constraints

EDE () = w(t, 7w, v) (32)

with initial conditions

7(0) =mo (33)

where 7 (t) and v(t) are the state and control variables, respectively, £ and w are differentiable functions, and 0 < ¥ < 1. We have the
following theorem.

Theorem 5.1. If (;r, v) is a minimizer of (31) under the dynamic constraint (32) and the boundary condition (33), then there exists a
function A such that the triplet (m, v, 1) satisfies

d
SDET(6) = (€7 (0. V(0. 2(0)
SDEA(E) = — 02 6 1), ). 2 0)

oH
0= 5 (6,70 (6), v(D), (D))
AT)=0

for the Hamiltonian H(t, 7w, v, A) = £(t, 7, v) + AT o(t, 7, v).

Proof. For the proof of theorem 5.1, readers are suggested to see [7,35-36], where the authors have given the proof in detail. This com-
pletes the proof of the theorem 5.1. O

Theorem 5.2. Let §*, E*,I;, I; and R* be optimal state solutions with associated optimal control variables v, v;, vi, v for the optimal
control problems (24) and (26). Then there exist adjoint variables Ag, Ap, Ar, A, and Ag satisfying

Ms = (ks = Ap)[(1 = v2)(Bih + Bal2)] + (As — Ar)V1 + Ahs
A/E = —Q-i—)xg()\.-{—()’) —)\110'

M= 0s =) [(1=v2) BiS]+ (A, —=Ar) p+ (A, —Ap,)0 +AA; + A1, Vs (35)
M = (ks = Ap)[(1 = 12) BaS] + (A, — AR) P + Ady, + A3
W= dp(d =)

with transversality conditions or boundary conditions
As(t) =0,A(t) =0, A,(t) =0, AL(r) =0 and Ag(t) =0

Furthermore, the control functions vj, v5, v; and v} are given by

0, s = msa))

v; =min| 1, max(

P1
v5 = min 1, max (0, A=A (Bih© + fah(t )S(r>>>
o P2 . (36)
V3 = min <1, max <0, Ala(t) )
P3

v, = min (1, max (O, M )
P4

Proof. The adjoint system (35) i.e., Ag, AL, )”;1‘ k;z and A} are obtained from the Hamiltonian # as

d)»s _ oOH d)»E oH d)“ll oH d)hlz 0H d)\,R oH

Tdt T 9S’ dt  9E’ dt 3L, dt 9L’ dt  OR’

with zero final time conditions (transversality) conditions
As(t) =0,A(t) =0, A,(t) =0,AL(r)=0and Ag(t) =0
and the characterization of the fractional optimal control given by (36) is obtained by solving the equations

oH oH 0H oH
+— =0, +—=0,-—=0,and -— =0
81}1 81/2 81)3 an 81}4
on the interior of the control set and using the property of the control space V.
This completes the proof of the theorem 5.2. O
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6. Numerical scheme for the solution

In this section numerical solution for the proposed fractional order SEI;I;R epidemic model (9) is presented. Because no analytical
solution to the nonlinear fractional system (9) is available, we use the technique so-called generalized Adams-Bashforth-Moulton method
[3,35,37] to obtain the numerical solution of the system (9). In this algorithm, we derive the predictor-corrector scheme for obtaining the
numerical solution of the nonlinear FDEs. To provide the estimated solution by means of this algorithm, consider the subsequent nonlinear
fractional differential equation [3,35,37]

oDEY () =f(t. (), 0=<t=<T (37)
with the following initial conditions
YD) =9, j=01,2,..,[c] -1, (38)

Now, with operating by the fractional integral operator on the equation (37), we can obtain on the solution ¥(t) by solving the follow-
ing equation:

K11 j
v Yo, 1ot e
VO = 32 G+ g f - D ey e (39)

this equation (39) is equivalent to the Volterra integral equation.
Diethelm et al. [70-72] used the predictor-corrector scheme based on the Adams-Bashfort-Moulton algorithm to integrate (39). Setting
h= % tp=nhand n=0,1,2,..,N e Z*, the equation (39) can be discretized as follows:

vy, ; oy
Yh(tnpr) = ]2(; jTt"+1 + mf(tnﬂs Yy (tn+1)) + NCES)) q_zoaq,nﬂf(tq’ Vh(tq)) (40)
where
! —(n—k)(n+1)°, ifg=0,
Ggni1 = (M—q+2) + (n—q) -2 —q+ 1), ifo<g<n. (41)
1, ifgq=n+1
and the predicted value wfl’(tnﬂ) is determined by
[k]-1 1/,1‘ , 1 0
wﬁ(tnﬂ) = Z T!Oté_ﬂ + m qu.nﬂf(tq’ Iph(tq))
j=0 q=0
with
bt = = ((1+1- ) — (- q)"). (42)
K

The error estimate is
max |V (tg) — Yn(tg)| = o(hP),
q=0,1,2,....m
in which p=min(2,1 +«).
6.1. Application of Adams-Bashforth-Moulton method to the proposed model

In this subsection, we solve numerically the nonlinear fractional SEI;I;R epidemic model using the proposed method. In view of the
generalized Adams-Bashforth-Moulton method, the numerical scheme for the proposed model (9) is given in the following form [73-77]

hK
"t T 12)
o &
+F(K+2)q

Sh(tns1) =S fs(tnrr Sh(tuen), EY (), 1D (bt ), B (6t ), RY (6 )

Ag.n1Fs(tg. S(te). En(tg). i n(tg). b n(tg). R (tg)).
0

_
'k +2)
h* .

+ NCES))] q;o ag.ns1fe (tg Sn(te), En(te), 1 n(tq), Lon(te). Ru(te)).

Ep(tns1) = Eo + fe(tni, S (tnin), EE (tnsn), 1Y (tni), 13 (tn0), RE (t011))

hx
Il,h (tn+l) = 11,0 + mfh (tn+l ’ Sﬁ (tn+l)’ E}f (tn+1 )’ If,h (tn+l)v Ig.h (t”‘*'l)’ Rlli (t"‘*'l >)
h* .
* T 7D 2 Gt fi (fa Su ). En o). hun). L) Ra(t).
q=0
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h¥
12,!1 (tn+1) = 12,0 + mflz (tn+ls Sﬁ (tn+1 )v Eff (tn+1 )v lf,h (tn+1 )v l;h (tn+l )v Rﬁ (tn+1 ))
h* -
+ NCES))] > " agnii fiy (t. Sn(te). Enlte). lin(te), Lon(te). Ru(tg)),
q=0

h«
Rn(tat1) = Ro + mﬁ? (tn+1 ) S;I: (tnt1), Eﬁ (tnt1), If,h(tnﬂ)’ Ig,h(t”“ ). Rﬁ (t’”l))
h¥ .

+ NTE)) 2 Ag.n1fr(tq- Sh(te), En(te). lrn(te), Lon(te), Ru(ty)),

where

1

Sh(tng1) = So + N3] > b1 fs(ta. Su(t). En(tg). n(te). n(ty). Ru(ty)).
q=0

1 n
Ep(tnin) = Bo s 2 bania fe(ta: Su(C0). En(ta). hun(ta). b (to). R (1)),
q=0
l n
I} (ta1) = hio + ) D bani1 fi, (g Sulte)s En(te), T n(tq), bon(tg), Ru(te)),
q=0
1 n
I;h (trt1) = ho + m Z bq,n-HfIz (tth sh(tq)7 Ey (tq)7 Il,h(tq)7 Iz,h(tq)a Ry (tq))?
q=0

RP (tas1) =Ro + ﬁ > banifr(ta: Sute), En(ty), hun(ty), bn(te), Ru(ty))-
q=0

Further, the quantities

Fs(tq Su(te). En(te). I n(tg). b (tq). Ru(te)). fe(tg. Sulte). En(te). I h(tq). Lo n(tg). Ru(ty)).

Fi (ta Sh(ta)- En(ta). Ty (tq). Lo n(ta). Ru(tg)). fi (ta- Sh(ta). En(ta). Ty n(tg). Lo (tg). Ri(ty)).
and fr(tq, S(tq), En(tq), It n(tq), I, n(tq), Ry(tq)), are computed from the following functions,
fs(tq: Sulte) En(tq). hun(tg), lon (tq), Ru(tg)) = A = SE)(Bili () + Bala (£)) — AS(t)
fie (tq: Sn(tq). En(tq). I n(tq). un(tq), Ru(tq)) = S()(Bili (t) + BoLa(£)) — (A + 0)E(E)
fir (tg: Sn(tq), En(tq). I n(tq). lun(tq). Ru(tg)) = 0E(t) — (o + A + O)i (¢)
fir (tg: Sn(tq), En(tq). T n(tq), lan(tq). Ru(tg)) = O (£) — (A + p)ha(t)
fr(tq: Sn(tq), En(tg): Tt n(tq), an(tq), Ru(tq)) = p (L (£) + L (£)) — (d + MR(¢)
In addition, the quantities

fS(tn-H > Sﬁ (tn+1 )7 E;: (tn+1 )7 If,h (tn+1 )7 I;,h (tn+1 )7 Rﬁ(tnﬂ ))7

~ T — —

fe (tn+l H 5,’: (tnt1), E;: (tnt1), If,h (tnt1), Igh(tnﬂ ) R]l: (a1 ))v
fh (tn+1 ’ Sﬁ (tns1), Eﬁ (tns1), If,h (tns1), Ig,h (tn+1), Rﬁ(tn+l ))v
f’z (tn+1 , SE (tnt1), Eﬁ(tnﬂ ) If‘h (tnt1). Igﬁ (tns1), RII; (e )),

fr (tn+l ’ 55 (tn+1), E}f (tn+1), I{{h (tns1), 15‘,, (tn+1), Rﬁ (tn ))»

are computed from equations (43)-(47) respectively, at the points t,,;,n=1,2,3,...,m.

For the fractional optimal control problem (24) discussed in section 5, similar procedure is followed for the numerical results. There-

fore

h* .
7Ty (tn1) = 7o + Tk+2) |:(U7T (tn+1s ”}f(tnﬂ)’ Vh (tn+1)) + Zaq,n+1wn (tq. Th (L), Uh(tq)):|
q=0
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Table 1

Parameters and variables with their values for fractional order SEI;[;R epidemic model

[3,5,15,18,59-60].

Parameters and functions = Meaning Values
S(t) Susceptible individuals at time ¢t Variable
E(t) Exposed individuals at time t Variable
I (t) Unaware infected individuals at time t  Variable
L (t) Aware infected individuals at time t Variable
R(t) Recovered individuals at time t Variable
A Recruitment rate 0.32

B1 Unaware infection rate 0.00009
Ba Aware infection rate 0.000027
A Natural death rate 0.2

o Infected class rate 0.01

6 Awareness rate 0.015

P Recovery rate 0.5

d AlIDs related death rate 0.1

So Initially susceptible individuals 200

Eo Initially exposed individuals 0.01

Lo Initially unaware infected individuals 0.02
Lo Initially aware infected individuals 0.01

Ro Initially recovered individuals 0.0

where

K

h n
”hp(tnﬂ) =T+ m qu.nﬂa)ﬂ (tq, g, Vg)
q=0

with w =S, E, 1, I, R and the control v.
Similarly, for the adjoint system we have

h¥ oH
Ap(ta1) = Tk+2) |:37T (fn+l s Wh(tnt1), Vn(tns), )»ﬁ(tm—l ))

. IH
+ Zaq,n+1 E(tqs 7Tn(tg), Vh(tg), An(tg))
q=0

where
p [ an
)Lh (ta1) = INCI) X:Obq.nﬂ I (tq. 7Tq, Vg, Ag).
q:

The coefficients ag 41, bg a1 are given by equations (41) and
(42) respectively.

7. Numerical results and discussion

In order to justify our theoretical findings, we introduced in
this section some numerical experiments obtained for different in-
stances of fractional power « for the HIV epidemic model without
control (9) and with control (24) along with adjoint variable sys-
tems and the control strategies. We present the numerical results
for the model (9) when all control measures are absent and also to
examine the role of fractional order « on the HIV disease spread.
Then, we simulate the fractional optimal control of the model and
investigate the effect of the controls introduced in the model on
the spread of epidemics. We use the generalized Adams-Bashforth-
Moulton method for the simulation of both the systems and use
the values of parameters described in Table 1.

7.1. Numerical simulation without control measures

In this subsection, we present numerical results for fractional
system (9) and allow the values of x to varies from k = 0.75 to
k=1 as seen in the Fig. 2. It is clear from the Fig. 2 that fractional
order has significant effect on dynamic behavior of all the com-
ponents. We observe that when the derivative order « is reduced
from 1, the memory effect of the system increases, and there-
fore the infection grows slowly and the number of HIV-infected
population and AIDS people increases for a long time. Also, undi-
agnosed HIV-infected population in some societies refuse to per-

form HIV test for reasons such as stigma and fear of identifica-
tion due to lack of knowledge about the disease. This results in
a delay in identification of HIV-infected individuals, an increase
in the undiagnosed HIV-infected population, fast progress of AIDS
and an increase in people diagnosed with AIDS. On the other
hand, the experience or knowledge of individuals about the dis-
ease causes susceptible and exposed individuals to take different
precautions, such as behavioral change, vaccination, treatment and
condom use, against infection transmission. This leads to a slow
growth of infection among the population. Therefore, from the nu-
merical results in Fig. 2, we conclude that the derivative order «
(0.75 < k < 1) can play the role of precautionary measures against
infection transmission, treatment of infection and delay in accept-
ing HIV test.

Existence of attractors for some fractional order x for differ-
ent population groups are given in Fig. 3. Thus, the results from
Fig. 3 shows that there is tendency of each population class to ex-
ist and enter into permanence with time. Numerical results for the
difference of integer-order and fractional order are given in Figs. 4-
5. It is clearly visible from Figs. 4-5 that the differential equations
with fractional order derivative have rich dynamics and describe
biological systems better than traditional integer-order models.

From the above discussion and numerical results in Figs. 2-5,
we conclude that the derivative order x can play the role of expe-
rience or knowledge of individuals about the past of the disease.
Therefore, the numerical results confirm that differential equations
with fractional order derivative have rich dynamics and describe
biological systems better than traditional integer order models. As
a result, our numerical results are more logical than the results of
other articles on the modeling of the HIV/AIDS epidemic and other
models with integer-order derivative due to the presence of the
fractional derivative order « (0.75 < k < 1).

Now, we investigate the effect of the control measures intro-
duced in the model on the spread of the epidemic. We consider
the following strategies and examine the corresponding numerical
results.

7.2. Numerical simulation with control measures

In this subsection, we present the numerical results for the
model (24) when all control measures are present. The results are
obtained in different ways by applying control strategies in the fol-
lowing five ways.
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Strategy-1. Using behavioral change control and condom use
control (vi # 0, v, # 0) and (v3 = v4 = 0).

In the first control strategy, we set the control measures

v3 =0, vy =0 and active the control measures v; = 0.5, v, =0.5

namely the behavioral change for susceptible individuals and con-
dom use for the exposed individuals which is shown in Fig. 6, for
different values of fractional order x. Analysis of control strategy-
1 predicts that susceptible and exposed individuals greatly de-
crease after implementing control measure vy, v,. In Fig. 6, we ob-
serve that this control strategy results in a significant decrease
in the number of undiagnosed HIV-infected population and AIDS
people for a long time compared with the case without control.
Fig. 6 shows that, by applying the strategy-1, the value of Ry will
be less than 1 for more time when « is reduced from 1. This means
that by decreasing « from 1, we can control the spread of disease
over a longer period of time. Therefore, the presence of the frac-
tional derivative order « in the model increases the use of condom
control and behavioural control in the population.

The control vq is proportion of the susceptible individuals who
change their sexual habits per unit time. The class R, the removed
class, represents the number of people who have greatly changed
their sexual habits such that they cannot easily be infected through
sexual contact. People in the class R take on safe habits and keep
these habits in the rest of their lives. The importance of class R is
that it emphasizes the need for prevention for a disease like HIV
that has no treatment. Therefore, increasing the members of this
class plays an important role in controlling the spread of disease.

Strategy-2. Using only condom use control
vy #0 and v =v3 =v4 =0).

In the second control strategy, we set the control measures v, =
0, v3 =0, v4 =0 and active the control measure v, = 0.5 namely
the condom use for the exposed individuals which is shown in
Fig. 7, for different values of fractional order «. Analysis of con-
trol strategy-2 predicts that exposed individuals greatly decrease
after implementing control measure v,. The results in Fig. 7, fur-
ther show that condom use is the main control measure which can
be helpful in controlling the disease more properly. This is because
the control is applied to exposed class which is the main source
from which the virus can transmit and spread due to the fact that
this class is easily available for virus during their sexual contact
with infected female sex workers.

Strategy-3. Using only
(v3 #0 and v; = v, =v4 =0).

In the third control strategy, we set the control measures v; =
0, 1, =0, v4 =0 and active the control measure v3 = 0.7 namely
the efficiency of treatment given to the aware infected individu-
als which is shown in Fig. 8, for different values of fractional or-
der x. Analysis of control strategy-3 predicts that infected individ-
uals greatly decreases after implementing control measure v3. This
is due to the fact that treatment of diagnosed HIV-infected pop-
ulation results in an increase in the level of CD4" T-cells of this
class. Therefore, this strategy prolongs the lifespan of HIV-infected
patients and delays the onset of AIDS. Fig. 8 shows that differ-
ential equations with fractional order derivative have rich dynam-
ics and describe biological systems better than traditional integer-
order models.

Strategy-4. Using treatment control and awareness control
(vi =v, =0and v; #0,v4 #0).

In the fourth control strategy, we set the control measures
v1 =0, v, =0 and active the control measures v3 = 0.5, v4 = 0.5
namely the efficiency of treatment given to the aware infected in-
dividuals and the awareness source for unaware infected individu-
als which is shown in Fig. 9, for different values of fractional order
k. Analysis of control strategy-4 predicts that infected individuals
greatly decreases after implementing control measures v3 and vy.
In Fig. 9, we observe that this control strategy results in a signif-

treatment control

icant decrease in the number of aware infected HIV people and
unware infected people compared with the case without control.

Strategy-5. Using all controls (v; # 0, v, # 0, v3 # 0, v4 # 0).

In last control strategy, we activate all the control measures
11 =05, 1,=05, v,=05 and v4 = 0.8 namely the behavioral
change for susceptible individuals, condom use for exposed indi-
viduals, efficiency of treatment given to the aware infected indi-
viduals and the awareness source for unaware infected individuals
which is shown in Fig. 10, for different values of fractional order
k. Analysis of control strategy-5 predicts that susceptible individ-
uals and exposed individuals decreases with the control measures
vy and v, while infected individuals greatly decrease after imple-
menting control measures v3 and vg.

By adding the behavioral change control v; or condom use con-
trol v, to the ART treatment control v3, we see from Figs. 6-9, that
the strategies 1-4 result in a decrease in the HIV infected popu-
lation and AIDS people compared with the case without control.
With implementing all the control efforts, we observe that the
strategy-5 results in a significant decrease in the HIV-infected pop-
ulation and AIDS people compared with the case without control.
With comparison of the strategies, we see that the strategy-5 is
better than the other strategies in control and reduction of the
spread of HIV/AIDS epidemic. Therefore, by applying the strategy-5,
we can increase the life time and the quality of life for those liv-
ing with HIV and decrease significantly the number of HIV-infected
population and AIDS people.

On the other hand, in human societies, the process of evolution
and control of the epidemic is associated with memory. When a
disease spreads in a society, the experience or knowledge of indi-
viduals about the past of the disease helps susceptible individu-
als to take different precautions, such as behavioural change, treat-
ment, awareness and condom use against infection transmission.
Also, the experience or knowledge can lead to the screening mea-
sures of entry and exit between different groups.

It is noticeable from Fig. 10 that due to the memory property
of fractional derivatives, the derivative order « affects the values of
the controls. We see that the maximum levels of the controls are
reduced when « limits to 1. On the other hand, the memory effect
characterized by fractional derivative is reduced when « limits to
1. Therefore, by reducing the memory effect, the maximum levels
of the controls are reduced.

8. Conclusion

In the current study, we have introduced a nonlinear SEI;I;R
fractional order epidemic model for the transmission dynamics of
HIV epidemics. The non-negative solution of the model is provided
by using the generalized mean value theorem. We obtained the
basic reproductive number Ry, which perform as a threshold pa-
rameter in the disease status. The existence of equilibria and their
asymptotical stability results using fractional Routh-Hurwitz sta-
bility criterion is discussed. We established and investigated the
stability analysis of the fractional order model with respect to the
values of Rg. The disease-free equilibrium is locally asymptotically
stable if Ry < 1. For R > 1, using Theorem 4.3 and Corollary 4.1,
we investigated the local stability of the positive endemic equi-
librium state B*. Meanwhile, global asymptotic stability of the
disease-free and endemic equilibrium point is investigated by con-
structing a suitable Lyapunov functions. Additionally, we investi-
gated the optimal control problem by the application of the opti-
mal control theory. We used the Pontryagin’s Minimum Principle
to provide the necessary conditions needed for the existence of
the optimal solution to the optimal control problem. Furthermore,
generalized Adams-Bashforth-Moulton method is applied to obtain
a numerical solution of the proposed fractional order SEI;I;R epi-
demic model (9) and the fractional optimal problem (24). The re-
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sults obtained shown that the Adams-Bashforth-Moulton method
is an accurate and effective technique for obtaining the numeri-
cal solution of the proposed nonlinear fractional order SEI;I;R epi-
demic model. Lastly, the theoretical results are verified by numer-
ical simulations to measure the efficacy and impact of controls
on the transmission of the HIV/AIDS disease. From the numeri-
cal simulation, the size of the exposed population is significantly
reduced under the controlled conditions. This proposes that if all
four control measures v; (behavioral change for susceptibles), v,
(condom use by the exposed individuals), v3 (strength of treatment
for the infected individuals), v4 (awareness source among the un-
aware infectives) are employed for the same period of time and
continue for a considerable period of time, the spread of HIV dis-
ease through prostitution could be restricted. In this manner, the
fractional order optimal control method can progress the value of
the necessary control measures. This recommends that personal
precautional measures, periodic monitoring by medical profession-
als and researchers should be done to control the transmission of
the HIV disease dynamics.

The recently emerged virus namely novel coronavirus (COVID-
19) which has originated from Wuhan the capital city of Hubei
providence of mainland China in December 2019 is a major threat
to mankind at present in the whole world. Application of fractional
order derivatives to model the new outbreak of coronavirus and
other trending diseases are left for future research.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Parvaiz Ahmad Naik: Conceptualization, Formal analysis,
Methodology, Writing - original draft. Jian Zu: Writing - review
& editing, Funding acquisition, Supervision. Kolade M. Owolabi:
Software, Validation, Project administration.

Acknowledgments

The first author is very grateful to Xi’an Jiaotong University for
the Assistant Professor position provided to him. Also, the authors
would like to thank the reviewers and editors of this paper for
their careful attention to detail and constructive feedback that im-
proved the presentation of the paper greatly. The study was sup-
ported by grants from the China Postdoctoral Science Foundation
(grant nos. 2019M663653 and 2014M560755), the National Nat-
ural Science Foundation of China (grant nos. 11971375, 11571272,
11201368 and 11631012), the National Science and Technology ma-
jor project of China (grant no. 2018ZX10721202) and grant from
the Natural Science Foundation of Shaanxi Province (grant no.
2019]M-273). The funding body did not play any roles in the de-
sign of the study and in writing the manuscript.

References

[1] Dubey P, Dubey US, Dubey B. Modeling the role of acquired immune response
and antiretroviral therapy in the dynamics of HIV infection. Math Comput
Simul 2018;144:120-37.

[2] Dubey B, Dubey P, Dubey US. Dynamics of an SIR model with nonlinear inci-
dence and treatment rate. Appl Appl Math: Int ] 2015;10(2):718-37.

[3] Zafar ZAU, Rehan K, Mushtaq M. HIV/AIDS epidemic fractional-order model. ]
Differ Equ Appl 2017;23(1):1-19.

[4] Wang X, Wang Z, Huang X, Li Y. Dynamic Analysis of a delayed fractional-order
SIR model with saturated incidence and treatment functions. Int ] Bifurc Chaos
2018;28(14):1-14.

[5] Almeida R. Analysis of a fractional SEIR model with treatment. Appl Math Lett
2018;84(2):56-62.

[6] Carvalho ARM, Pinto CAM, Baleanu D. HIV/HCV coinfection model: a frac-
tional-order perspective for the effect of the HIV viral load. Adv Differ Equ
2018;1(2):1-22.

[7] Kheiri H, Jafari M. Stability analysis of a fractional order model for
the HIV/AIDS epidemic in a patchy environment. Appl Comput Math
2019;346:323-39.

[8] Kermack WO, McKendrick AG. Contributions to the mathematical theory of
epidemics. Ill-further studies of the problem of endemicity.. P R Soc A Math
Phy 1933;141(843):94-122.

[9] Ding Y, Ye H. A fractional-order differential equation model of HIV infection of
CD4* T-cells. Math Comput Model 2009;50:386-92.

[10] Gkdogan A, Yildirim A, Merdan M. Solving a fractional order model of HIV
infection of CD4* T cells. Math Comput Model 2011;54:2132-8.

[11] Arafa AAM, Rida SZ, Khalil M. A fractional-order model of HIV infection with
drug therapy effect. ] Egyp Math Soc 2014;22:538-43.

[12] Khader MM. The modeling dynamics of HIV and CD4* T-cells during pri-
mary infection in fractional order: numerical simulation. Mediterr ] Math
2018;15:1-17.

[13] Agila A, Baleanu D, Eid R, Irfanoglu B. Applications of the extended fractional
Euler-Lagrange equations model to freely oscillating dynamical systems. Rom ]
Phys 2016;61(3-4):350-9.

[14] Gupta PK. Local and global stability of fractional order HIV/AIDS dynamics
model. Commun Comput Infor Sci 2018;834:141-8.

[15] Ozalp N, Demirci E. A fractional order SEIR model with vertical transmission.
Math Comput Model 2011;54:1-6.

[16] Javidi M, Nyamoradi N. Numerical behavior of a fractional order HIV/AIDS epi-
demic model. World ] Model Simul 2013;9(2):139-49.

[17] Fatmawati Shaiful EM, Utoyo MI. A fractional-order model for HIV dynamics in
a two-sex population. Int ] Math Math Sci 2018 Article ID 6801475:1-11.

[18] Farman M, Umer M, Ahmad SA, Ahmad MO. Analysis and numerical solu-
tion of SEIR epidemic model of measles with non-integer time fractional
derivatives by using laplace adomian decomposition method. Ain Shams Eng
] 2018;9(4):3391-7.

[19] Ahmed E, El-Sayed AMA, El Saka HAA. Equilibrium points, stability and nu-
merical solutions off fractional-order predator-prey and rabies models. ] Math
Anal Appl 2007;325:542-53.

[20] Baleanu D, Jajarmi A, Sajjadi SS, Mozyrska D. A new fractional model and opti-
mal control of a tumor-immune surveillance with non-singular derivative op-
erator. Chaos 2019;29(8):083127.

[21] Jajarmi A, Arshad S, Baleanu D. A new fractional modelling and control strat-
egy for the outbreak of dengue fever. Physica A 2019;535:122524.

[22] Jajarmi A, Ghanbari B, Baleanu D. A new and efficient numerical method
for the fractional modelling and optimal control of diabetes and tuberculosis
co-existence. Chaos 2019;29(9):093111.

[23] Kumar D, Singh ], Qurashi MA, Baleanu D. A new fractional SIRS-SI malaria
disease model with application of vaccines, anti-malarial drugs, and spraying.
Adv Differ Equ 2019:278.

[24] Kumar D, Singh J, Baleanu D. On the analysis of vibration equation involv-
ing a fractional derivative with Mittag-Leffler law. Math Method Appl Sci
2019;43(1):443-57.

[25] Geering HP. Optimal Control with Engineering Applications. Berlin, Germany:
Springer-Verlag; 2007.

[26] Jia W, He X, Guo L. The optimal homotopy analysis method for solving linear
optimal control problems. Appl Math Model 2017;45:865-80.

[27] Lin H, Wei Q, Liu D. Online identifier-actor-critic algorithm for optimal control
of nonlinear systems. Optim Control Appl Meth 2017;38(3):317-35.

[28] Almobaied M, Eksin I, Guzelkaya M. Inverse optimal controller based on ex-
tended Kalman filter for discrete-time nonlinear systems. Optim Control Appl
Meth 2017: 1-16.

[29] Jajarmi A, Baleanu D. Optimal control of nonlinear dynamical systems based on
a new parallel eigenvalue decomposition approach. Optim Control Appl Meth
2018;39(2):1071-83.

[30] Jajarmi A, Hajipour M, Baleanu D. A new approach for the optimal control of
time-varying delay systems with external persistent matched disturbances. ]
Vib Control 2018;24(19):4505-12.

[31] Podlubny I. Fractional Differential Equations. San Diego, CA, USA: Academic
Press; 1999.

[32] Petras I. Fractional-order Nonlinear Systems: Modeling, Analysis and Simula-
tion. Springer; 2011.

[33] Saeedian M, Khalighi M, Tafreshi NA, Jafari GR, Ausloos M. Memory effects on
epidemic evolution: The susceptible-infected-recovered epidemic model. Phys
Rev E 2017;95(2):022409.

[34] Rihan FA. Numerical modeling of fractional-order biological systems. Abst Appl
Anal 2013;816803:1-11.

[35] Kheiri H, Jafari M. Fractional optimal control of an HIV/AIDS epidemic model
with random testing and contact tracing. J Appl Math Comput 2019;60
387-311.

[36] Agrawal OP. A general formulation and solution scheme for fractional optimal
control problems. Nonlinear Dynam 2004;38(1):323-37.

[37] Bashir FA, Elaiw AM, Kesh D, Roy PK. Optimal control of a fractional-order en-
zyme kinetic model. Control Cybern 2015;44:1-18.

[38] Oldham KB, Spanier J. Fractional Calculus: Theory and Applications, Differen-
tiation and Integration to Arbitrary Order. New York, London: Academic Press,
Inc.; 1974.

[39] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals, Derivatives -Theory and
Applications. Yverdon: Gordon and Breach Science Publishers; 1993.


http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0031
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0033
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0033
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0037
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0038
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0038

24 PA. Naik, J. Zu and K.M. Owolabi/Chaos, Solitons and Fractals 138 (2020) 109826

[40] Owolabi KM. Mathematical modelling and analysis of love dynamics: A frac-
tional approach. Physica A 2019;525:849-65.

[41] Owolabi KM, Atangana A. Numerical Methods for Fractional Differentiation.
Springer Series in Computational Mathematics 2019;54.

[42] Owolabi KM, Atangana A. On the formulation of Adams-Bashforth scheme
with Atangana- Baleanu-Caputo fractional derivative to model chaotic prob-
lems. Chaos 2019;29:023111.

[43] Owolabi KM. Numerical analysis and pattern formation process for space-
fractional super diffusive system. Discret Contin Dyn Syst Ser S 209; 12: 543-
66.

[44] Owolabi KM. Computational study of noninteger order system of predation.
Chaos 2019;29:013120.

[45] Owolabi KM. Behavioural study of symbiosis dynamics via the Ca-
puto and Atangana-Baleanu fractional derivatives. Chaos, Solitons Fractals
2019;122:89-101.

[46] Owolabi KM, Atangana A. Mathematical analysis and computational exper-
iments for an epidemic system with nonlocal and nonsingular derivative.
Chaos, Solitons Fractals 2019;126:41-9.

[47] Owolabi KM. Numerical simulation of fractional-order reaction-diffusion equa-
tions with the Riesz and Caputo derivatives. Neural Comput Appl 2019. https:
//doi.org/10.1007/s00521-019-04350-2.

[48] Caputo M, Fabrizio M. A new definition of fractional derivative without singu-
lar kernel. Prog Fract Differ Appl 2015;1(2):73-85.

[49] Jha BK, Joshi H, Dave DD. Portraying the effect of calcium-binding proteins on
cytosolic calcium concentration distribution fractionally in nerve cells. Inter-
discip Sci Comput Life Sci 2018;10(4):674-85.

[50] Losada ], Nieto JJ. Properties of a new fractional derivative without singular
kernel. Prog Fract Differ Appl 2015;1(2):87-92.

[51] Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional
Differential Equations. John Wiley and Sons, Inc.; 1993.

[52] Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA. Lyapunov func-
tions for fractional order systems. Commun Nonlinear Sci Numer Simulat
2014;19(9):2951-7.

[53] Khalil R, Horan MA, Yousef A, Sababheh M. A new definition of fractional
derivative. ] Comput Appl Math 2014;264:65-70.

[54] Goufo EFD, Atangana A. Analytical and numerical schemes for a derivative with
filtering property and no singular kernel with applications to diffusion. Eur
Phys ] Plus 2016;131:269.

[55] Yavuz M. Characterizations of two different fractional operators without sin-
gular kernel. Math Model Nat Phenom 2019;14(3):302.

[56] Yavuz M, Ozdemir N. Comparing the new fractional derivative operators in-
volving exponential and Mittag-Leffler kernel. Dis Cont Dynam Sys- Series S
2020;13(3) 995-906.

[57] Parra GG, Arenas AJ, Charpentier BMC. A fractional order epidemic model for
the simulation of out breaks of influenza A (HIN1). Math Method Appl Sci
2014;37:3391-7.

[58] Lin W. Global existence theory and chaos control of fractional differential
equations. ] Math Anal Appl 2007;332:709-26.

[59] Naik PA, Zu ], Ghoreishi M. Estimating the approximate analytical solution of
HIV viral dynamic model by using homotopy analysis method. Chaos Solitons
Fractals 2020;131:109500.

[60] Naik PA, Zu ], Owolabi KM. Modeling the mechanics of viral kinetics under
immune control during primary infection of HIV-1 with treatment in fractional
order. Physica A 2020;545:123816. doi:10.1016/j.physa.2019.123816.

[61] Driessche VP, Watmough ]. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Math Biosci
2002;180(2):29-48.

[62] LaSalle JP. The stability of dynamical systems. In: CBMS-NSF Regional Confer-
ence Series in Applied Mathematics SIAM; 1976. p. 25.

[63] Shuai Z, Driessche VP. Global stability of infectious disease models using Lya-
punov functions. SIAM ] Appl Math 2013;73(4):1513-32.

[64] Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-
generation matrices for compartmental epidemic models. ] Roy Soc Inter
2010;7(47):873-85.

[65] Matignon D. Stability results for fractional differential equations with applica-
tions to control processing, computational engineering in systems and applica-
tion. In: Multiconference, IMACS, IEEE-SMC, 2. Lille, France: IEEE Xplore; 1996.
p. 963-8.

[66] Ahmed E, El-Sayed AMA, El-Saka HAA. On some Routh-Hurwitz conditions for
fractional order differential equations and their applications in Lorenz, Rssler,
Chua and Chen systems. Phys Lett A 2006;358:1-4.

[67] Vargas-De-Ledon C. Volterra-type Lyapunov functions for fractional-order epi-
demic systems. Commun Nonlinear Sci Numer Simul 2015;24(3):75-85.

[68] Jan R, Xiao Y. Effect of partial immunity on transmission dynamics of dengue
disease with optimal control. Math Method Appl Sci 2019;42(6):1967-83.

[69] Lukes DL. Differential Equations: Classical to Controlled, Mathematics in Sci-
ence and Engineering. New York: Academic Press; 1982. p. 162.

[70] Diethelm K. An algorithm for the numerical solution of differential equations
of fractional order. Electron T Numer Anal 1997;5:1-6.

[71] Diethelm K, Ford NJ. Analysis of fractional differential equations. J Anal Appl
2002;265:229-48.

[72] Diethelm K, Ford NJ, Freed AD. A predictor-corrector approach for the
numerical solution of fractional differential equations. Nonlinear Dynam
2002;29:3-22.

[73] Owolabi KM, Hammouch Z. Spatiotemporal patterns in the Belousov-Zhabotin-
skii reaction systems with Atangana-Baleanu fractional order derivative. Phys-
ica A 2019;523:1072-90.

[74] Yavuz M, Bonyah E. New approaches to the fractional dynamics of schistoso-
miasis disease model. Physica A 2019;525:373-93.

[75] Dassios I, Baleanu D. Optimal solutions for singular linear systems of Caputo
fractional differential equations. Math Method Appl Sci 2018:1-13. https://doi.
org/10.1002/mma.5410.

[76] Owolabi KM, Atangana A. On the formulation of Adams-Bashforth scheme
with Atangana-Baleanu-Caputo fractional derivative to model chaotic prob-
lems. Chaos 2019;29(2):1-12.

[77] Shiri B, Baleanu D. Numerical solution of some fractional dynamical systems
in medicine involving non-singular kernel with vector order. Results Nonlinear
Anal 2019;2(4):160-8.


http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0040
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0040
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0040
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0041
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0041
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0041
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0042
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0042
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0043
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0043
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0044
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0044
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0044
https://doi.org/10.1007/s00521-019-04350-2
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0046
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0046
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0046
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0047
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0047
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0047
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0047
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0048
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0048
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0048
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0049
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0049
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0049
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0050
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0050
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0050
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0050
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0051
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0051
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0051
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0051
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0051
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0052
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0052
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0052
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0053
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0053
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0054
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0054
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0054
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0055
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0055
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0055
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0055
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0056
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0056
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0057
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0057
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0057
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0057
https://doi.org/10.1016/j.physa.2019.123816
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0059
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0059
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0059
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0060
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0060
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0061
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0061
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0061
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0062
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0062
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0062
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0062
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0063
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0063
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0064
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0064
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0064
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0064
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0065
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0065
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0066
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0066
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0066
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0067
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0067
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0068
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0068
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0069
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0069
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0069
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0070
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0070
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0070
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0070
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0071
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0071
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0071
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0072
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0072
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0072
https://doi.org/10.1002/mma.5410
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0074
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0074
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0074
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0075
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0075
http://refhub.elsevier.com/S0960-0779(20)30226-5/sbref0075

