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Abstract

Diagnosing lymphomas and leukemias requires challenging integration of microscopically-visible 

cellular morphology and antibody-identified cell type-specific molecule expression. Here, we 

merge these orthogonal techniques onto a single, high-throughput, highly-multiplexed, single cell 

assay. Using single cell mass cytometry, we simultaneously quantify 12 molecular components 

underlying cell morphological features with a multitude of phenotypes across 71 diverse 

hematologic diagnoses. This method, “single cell morphometric profiling,” reveals robust patterns 

of “morphometric” markers for each microscopically-identifiable cell type, distinct from other cell 

lineages. Individual features have particular diagnostic utilities, such as: VAMP-7 for flow 

cytometric side scatter; lamin B1 and rRNA highlighting progenitor populations comprising acute 

leukemias; and lamin A/C distinguishing mature T-cell lymphomas from normal T-cells. 

Computationally combined with machine learning, they form consistent two-dimensional maps for 

visualizing sample composition and tracing differentiation of normal and leukemic myeloid cells. 

Benchmarking against hematopathologists, we used morphometric machine learning for blast 

enumeration in myeloid leukemias – a classically difficult problem with existing technologies. 

Integrating morphometry with deep surface immunophenotyping yields a versatile platform 

amendable to both traditional cytometry plots and high-dimensional augmentation with new 

diagnostic capabilities, lending itself to automation for routine, systematic hematopathology 

diagnosis.
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INTRODUCTION

Lymphomas and leukemias are the most common type of cancer in children, and account for 

10% of all cancer diagnoses in the United States.1 Advancements in prognostication and 

therapeutics have drastically increased the complexity of the diagnostic classification for 

these and other hematopoietic tumors. However, hematopathologists often make these 

diagnoses based upon light microscopy and immunophenotyping (flow cytometry and/or 

immunohistochemistry). These are heavily-manual, skill-dependent, non-scalable methods, 

whose disparate, jigsaw data must be mentally assembled into a unified diagnosis.

With microscopy, pathologists use visible differences in subcellular structures to identify cell 

types, abnormal cells, and their proportions. Cells with similar or overlapping morphologies 

cannot be distinguished this way, e.g. small B vs. T lymphocytes and acute myeloid vs. acute 

lymphoid leukemias. And with some cell morphologies and diagnoses, significant inter-

observer variability and biases exist even among expert hematopathologists.2–4

In flow cytometry, cells are stained with customized mixtures of fluorescently-labeled 

antibodies against cell type-specific molecules (markers) – mostly cluster of differentiation 

(CD) glycoproteins on the cell surface. Each cell individually flows through a series of lasers 

and detectors to quantify the fluorescence, determine the presence or absence of each 

marker, and thereby identify its cell type by the pattern of markers (immunophenotype). This 

can distinguish B vs. T cells and myeloid vs. lymphoid cells, and works well for normal 

samples with an expected composition of known cell types and normal marker expression on 

all cells. However, it is limited by the antibodies selected for testing, and cannot distinguish 

cells with similar or overlapping immunophenotypes – particularly neoplasms which closely 

mimic their cells of origin. For instance, the cytometric profiles of normal monocytes, 

chronic monocytic leukemias, and acute monocytic leukemias all overlap.5–7 The same can 

be said for normal myelopoiesis, myelodysplastic syndrome (MDS), myeloproliferative 

neoplasms (MPN), and MDS/MPN neoplasms. These situations all currently require manual 

microscopy-based interrogation to resolve.5

To further complicate matters, “cell type-specific” molecules which behave well on healthy 

patient samples are not as specific in tumors, which can abnormally express or lack 

expression of virtually any surface molecule.5,8 Our dataset alone includes a CD20+ NK/T 

cell lymphoma, a CD3− T cell lymphoma, three CD19+ myeloid leukemias, and a CD56+ B 

cell leukemia. Immunotherapies such as the anti-CD20 agent rituximab and chimeric antigen 

receptor T cells (CAR-T) against CD19 further complicate immunophenotype-only 

approaches where the targeted antigen can be down-regulated as a mechanism of therapeutic 

escape.9 Interpretation is also complicated by large antibody panels, where 15-30 antibody 

reagents is fairly typical for characterizing blood cancers. Because diagnostic instruments 

can detect a practical simultaneous maximum of about 10, they must be split across several 

independent tests. If two markers of interest are in different tubes, determining whether both 

are co-expressed can be difficult and is sometimes impossible. To do this, 

hematopathologists often make assumptions based on prior knowledge and experience, 

which is not easily automated.
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Therefore, neither microscopy or clinical cytometry alone is individually sufficient to make 

relatively common diagnoses, and even together require mental integration by a pathologist 

with years of continuous training and practice. However, combining both morphology and 

immunophenotype into a single platform could improve diagnostic capabilities beyond 

either modality alone. The subcellular features that pathologists examine microscopically are 

largely intracellular structures common to many cell types – e.g., chromatin, cytoplasm, and 

vesicles – but vary in amount and composition. Measuring the molecules underlying these 

structures provides us a way to “quantify” morphology, i.e. “morphometry,” and enables a 

cytometry workflow to indirectly “see” the features that pathologists see with microscopes.

But incorporating these morphometric markers into already-complex multi-tube fluorescent 

flow cytometry panels is unwieldy, both in technical performance and in interpretation. And 

thinking long-term, multiple immunotherapy clinical trials demand quantitative estimates of 

target antigen frequency on tumor cells. As development of these therapies accelerates, 

correlating across multiple flow cytometry tubes to both characterize tumor cells and 

quantify their therapeutic targets becomes more and more cumbersome. These increasing 

complexities, as well as the need to customize assays in a disease- and/or sample type-

specific manner, beg for a more scalable, standardized, automatable approach.

Due to the high degree of multiplexing and quantitative dynamic range, approaches like 

mass cytometry/Cytometry by Time of Flight (CyTOF) hold promise to address these 

demands. Mass cytometry uses heavy metal isotope conjugates in the place of fluorophores 

to quantify over 40 antigens simultaneously on a single cell, across millions of cells in a 

single day.10–12 With this, an entire diagnostic panel can be combined into a single test to 

eliminate the need for customization and assay cross-correlation while permitting systematic 

and automatable analysis. Sample multiplexing – processing and running multiple samples 

simultaneously – allows batching, which reduces costs and stabilizes workflow despite 

fluctuations in workload and staffing.13,14 And key to a viable clinical test, it can be 

performed within the expected 24 hour turn-around-time and interpreted by a single 

hematopathologist, rather than taking weeks to months with a team of data scientists.

Here, we identify a set of cellular antigens that can be targeted by antibody probes to serve 

as quantitative surrogates for granularity, granular color, chromatin quality, nuclear shape, 

nucleolar size, cytoplasmic color, and cell size. Using this set of morphometric reagents, 

termed “scatterbodies,” as well as associated technical protocols and improvements, we 

characterize nucleated cells from healthy human bone marrow and contrast them to cells 

from 71 diverse disease bone marrow and blood samples to define normal and neoplastic 

populations by their single cell morphometric features. Samples include 26 acute myeloid 

leukemias (AML) enriched for monocytic differentiation and lack of CD34, five B 

lymphoblastic leukemias (B-ALL), three T lymphoblastic leukemias (TALL), three acute 

leukemias of ambiguous lineage (MPAL), nine mature B cell lymphomas, three myelomas, 

five mature T cell lymphomas, and ten non-acute myeloid neoplasms including 

myelodysplasias and systemic mastocytoses, among others. Individual scatterbodies show 

diagnostically useful characteristics, such as lamin B1 and rRNA enriched in normal and 

leukemic blasts regardless of lineage, and lamin A/C marking mature T cell lymphomas. 

Utilizing scatterbodies in combination, we demonstrate a reproducible dimensionality 
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reduction technique based on linear discriminate analysis (LDA) to construct morphometric 

maps. These visualizations allow us to trace healthy and malignant hematopoietic 

differentiation as continuous rather than discretized processes, forming a basis for targeted 

cell enumeration which leverages decades of experience in cytometric cancer diagnosis and 

integrates seamlessly into current clinical laboratory workflows.

RESULTS

Scatterbodies quantify distinguishing structural features of hematopoietic cells

In order to quantitatively capture the cell morphology routinely assessed by light 

microscopy, we targeted multiple classes of structural components common to blood and 

immune cells (Fig. 1a). We ultimately selected eleven morphometric targets (Fig. 1a, b) as 

reflections of key morphologic features (Fig. 1c) which quantifiably differ between the 

major, diagnostically-relevant hematopoietic cell populations (Fig. 1d) – granulocytes, 

lymphocytes, monocytes, nucleated erythroid precursors, and hematopoietic blast cells. 

While keeping track of eleven cytometry dimensions can be challenging, the multiplexed 

single cell analysis of these features lends itself to being computationally combined into 

simple, reproducible two-dimensional representations – such as a stable “morphometric 

map” (Fig. 1e).

Selecting a morphometric region from this map (gating) would thus be like a pathologist 

using multiple morphologic features to visually identify a particular cell type – only 

quantitatively and reproducibly. Taking this “gated” region and plotting its contents along 

the standard surface CD molecules would then reveal its immunophenotypic cell type 

composition and any abnormal cell types (Fig. 1f). In this way, we could combine 

morphometry with standard immunophenotypic characterization.

We began by demonstrating differences in the quantities (expression) of morphometric 

targets between the major cell types in normal, healthy, human bone marrow (Fig. 1d). To 

accomplish this, we stained normal marrow samples with a mixture of both our 

morphometric reagents and classic cell type-specific CD antibodies (Supplementary Table 

1). By assuming normal, conventional expression of these latter CD markers, we used them 

to isolate (gate) the major cell types within the samples in silico (Supplementary Fig. 1), and 

then independently evaluated their morphometric antigen expression.

The major hematopoietic populations in healthy bone marrow showed distinctive 

morphometric profiles, reflecting differences in cell morphology. Monocytes and neutrophils 

produce lysosomal/peroxisomal vesicles (granules) (Fig. 1a), microscopically visible as 

grainy cytoplasm and distinguishing them from non-granulocytes (lymphocytes and 

erythroids). Therefore, the antimicrobial enzymes and associated proteins within these 

granules – including serpin B1, lysozyme, MPO, lactoferrin – morphometrically separated 

granulated from non-granulated cells (Fig. 1d). VAMP-7 is a protein in the vesicular 

envelope which helps mediate docking to the cell membrane and release of granule contents 

(Fig. 1a).15 Neutrophils are more granular than monocytes and therefore expressed more 

VAMP-7 (Fig. 1d). As they mature, neutrophils also acquire lactoferrin in secondary 
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granules, which have a paler, pink hue by microscopy than the primary granules of early 

granulocytes.

The remaining targets are present in all cells – not just granulocytes – but in varying 

amounts. Thus, it is natural that their differences are comparatively subtle, especially in 

arcsinh (log-like scale), although still several-fold. A meshwork of lamin A/C and B 

filaments forms the nuclear skeleton, and their quantities determine the mechanical 

properties and thereby the shape of the nucleus (Fig. 1a).16 An almost universal morphologic 

feature of blasts is so-called “fine chromatin,” which correlates with greater lamin B1 (Fig. 

1d). Lamin A/C is greater in cell types with very round nuclei, such as nucleated erythroid 

precursors and plasma cells, consistent with experiments showing that overexpression 

induces nuclear hypolobation.17 The lamins are further characterized below.

5.8s rRNA is a ribosomal component necessary for the translation of mRNA into 

polypeptides and is a direct readout for ribosome copy number, predicted to be higher in 

cells with more endoplasmic reticulum (ER) volume and/or larger nucleoli – where 

ribosomes are assembled (Fig. 1a). Empirically, we found it to be greater in immature cells 

with prominent nucleoli such as blasts and associated with cells showing more abundant 

and/or basophilic cytoplasm (blue color by Wright-Giemsa stain) (Fig. 1d). The β-actin 

cytoskeletal meshwork interacts with granules to help regulate exocytosis – higher in 

granulocytes and monocytes (Fig. 1d). WGA lectin binds the sialic acids of surface 

membrane glycosylations, approximating cell surface area and thereby related to cell size 

(Fig. 1a). Larger cells like granulocytes and blasts have more surface membrane than 

lymphocytes and erythroids and thus bind more WGA (Fig. 1d).18 HP1β associates with 

transcriptionally silent regions of DNA in the nucleus and is associated with neutrophil 

differentiation.19 As lymphocytes and mature nucleated erythroid precursors are quite 

similar morphologically, we decided to separate them with CD45 (Fig. 1d, e). This well-

established strategy takes advantage of one of the many uses for CD45, and avoids 

expending a valuable antibody slot for a more morphometric but single-purpose marker such 

as hemoglobin.

To confirm that our morphometric targets and CD45 could sufficiently capture the 

morphologic diversity of hematopoietic cells, we visualized the healthy samples using 

unsupervised t-Stochastic Neighbor Embedding (t-SNE) (Fig. 1g).20 While unstable (the 

plots are not identical from run to run), t-SNE agnostically separates cells using only the 

parameters fed to it, and displays them in a two dimensional plot. If fed sufficient 
morphometric parameters, then t-SNE would display all the morphologically distinct cell 

populations as separate dot clusters on the plot. If insufficient, then two or more of them 

would be inseparable. Using only our morphometric targets and CD45, t-SNE successfully 

separated the major, morphologically-distinct populations. Importantly, it did not separate B 

and T/NK cells, which are not morphologically distinct. Therefore, morphometric profiling 

quantitatively captured identifying morphologic features sufficient to classify the major cell 

types.
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Single cell morphometric profiles are consistent across clinical patient samples with a 
broad spectrum of neoplasias

After demonstrating our method on normal, healthy human bone marrow samples, we 

sought to evaluate its utility in real-world patient samples containing neoplastic tumor cells. 

Such samples are typically refrigerated for days in anticoagulant with little oxygen – 

conditions which are known to affect light microscopic morphology.5

For this purpose, we initially selected 54 clinical samples spanning a broad range of the 

WHO hematopoietic tumor classification (AML, ALL, MDS, MPN, B and T cell 

lymphoma, myeloma). Almost every sample contained a mixture of malignant and 

background non-neoplastic cells. Some also contained dysplastic cells – differentiated cells 

which show abnormal morphologic features by light microscopy. We specifically enriched 

for tumors abnormally expressing cell type-“specific” CD markers from multiple cell types, 

abnormally lacking CD markers expected for their cell types, posing difficulties making the 

diagnosis by surface immunophenotype alone, and/or sharing immunophenotypic overlap 

with other diagnostic entities (Supplementary Table 2).5 In this way, we tested whether 

single cell morphometry was robust to neoplastic cell types with non-standard behaviors.

As with the healthy bone marrow samples, we had to define these patient sample populations 

using CD antibodies in order to evaluate their morphometric profiles independently 

(Supplementary Fig. 1). But due to all the CD marker abnormalities, we could not assume 

normal CD antigen expression – instead finding work-arounds using multiple isolation 

strategies and prior diagnostic knowledge. This approach could not be used consistently in a 

clinical diagnostic laboratory.

With cell lineages defined, we compared their morphometric profiles, providing primary 

data in the study repository. Normal cells from all 54 initial clinical samples showed 

consistent morphometric profiles (Supplementary Fig. 2) despite expected variation from 

differential storage times at 4° C. Neoplastic and dysplastic cells showed similar 

morphometry as their normal counterpart cell types, with interesting variations. To illustrate 

these points while representing the diversity of tumors and demonstrating the underlying 

morphometric principles, we chose eleven samples for detailed analysis.

Summarized as heat maps, patterns for each of the major cell populations came into focus 

(Fig. 2). Granule markers (VAMP-7, serpin B1, lysozyme, MPO, lactoferrin) distinguished 

monocytes and neutrophils (Fig. 2e, f, orange and blue dotted boxes) from nucleated 

erythroid precursors and lymphocytes (Fig. 2a, b, c, yellow dotted box). CD45 on 

lymphocytes (Fig. 2b, c) acted as a surrogate for lack of hemoglobin compared to erythroids 

(Fig. 2a), with subtler differences in lamin A/C, lamin B1, and β-actin. Lactoferrin 

differentiated neutrophils (Fig. 2f, bottom row of blue dotted box) from monocytes (Fig. 2e, 

bottom row of orange dotted box), with subtler differences in β-actin, VAMP-7, and CD45.

Blasts are progenitors for all the other hematopoietic populations, with normal blasts 

showing a profile intermediate between lymphocytes and myeloid cells (neutrophils and 

monocytes). However, morphometric profiles of malignant blasts further reflect their lineage 
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propensity, i.e. blasts from lymphoid leukemias show a more lymphoid pattern, while those 

from myeloid leukemias show a more myeloid profile (Fig. 2d, starred columns).

In order to verify these patterns quantitatively, we performed Pearson correlation of 

morphometric profiles between cell populations across patients, and hierarchically clustered 

the resulting matrix (Fig. 2h). Morphometric profiles for the same cell type (but from 

different patients) were highly correlated with each other and grouped together. This was 

even true of the malignant blasts, despite including lymphoid, myeloid, and ambiguous 

lineage leukemias widely varying in their expression of surface CD markers (Fig. 3d). As 

expected, B and T/NK cells largely grouped together owing to both similar morphology and 

morphometry. A lone exception – T cells from the TCL sample – demonstrated a 

diagnostically useful property, discussed below. In the larger data set, mature B and T cell 

lymphomas were morphometrically similar to non-neoplastic B and T cells (Supplementary 

Fig. 2). These overall findings reinforce that morphometric profiling consistently identifies 

cell types, even in disease samples, and in the absence of cell type-specific markers.

Individual morphometric features have unique diagnostic capabilities

After assessing the overall morphometric patterns of the major cell types, we examined the 

special, diagnostically-useful characteristics of individual morphometric targets.

We found lamin A/C to be useful for identifying mature T cell lymphomas. 

Hematopathologists currently lack a simple method to visually or cytometrically identify 

these clonal T cell populations, contrasting with the relative ease of detecting B cell 

lymphomas by κ/λ cytometry.21,22 Intrigued that normal/reactive peripheral blood, bone 

marrow, and lymph node T cells express a spectrum of lamin A/C (Supplementary Fig. 3), 

we surmised that neoplastic populations might show more homogeneous lamin A/C. Thus, 

their morphometry would reflect their clonal origin.

Strikingly, all five of our mature T cell lymphomas expressed uniform and brighter lamin 

A/C (Fig. 3a, b, Supplementary Fig. 3). These samples not only had significantly higher 

median expression of lamin A/C in their neoplastic T cells as compared to T-ALL blasts and 

normal T cells, but also significantly lower coefficients of variation (CV), reflecting tighter 

distributions that one might expect in clonal populations – suggesting lamin A/C can act as a 

proteomic marker of T cell clonal expansion.

This feature is useful for diagnosing mature T cell lymphomas, which can be overlooked or 

difficult to distinguish from normal T cells in clinical flow cytometry. It also appears useful 

for distinguishing T prolymphocytic leukemia (T-PLL) from T lymphoblastic leukemia (T-

ALL) in a way that standard clinical flow cytometry cannot (Supplementary Fig. 3, clinical 
vignette).

Lamin A/C is also significantly more abundant in nucleated erythroid precursors, normal 

and neoplastic plasma cells, and normal and neoplastic mast cells than all other 

hematopoietic populations (Fig. 3c, Fig. 2a, g, Supplementary Fig. 2). This facilitates 

alternative gating strategies for these populations. In particular, nucleated erythroid cells are 

critical to evaluating myelodysplasia microscopically, but are not routinely evaluated in 
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clinical cytometry. CD45 vs. lamin A/C separates these cells into two populations, away 

from other marrow cells – one less mature, dim CD45+ CD71+ variably CD235+ brightly 

lamin A/C+, and one more mature, CD45− CD71+ CD235+ moderately lamin A/C+ 

(Supplementary Fig. 2). As a morphometric anchor for tracing erythroid maturation, lamin 

A/C may show utility for identifying or confirming dyserythropoiesis in myelodysplastic 

syndromes (Supplementary Fig. 4).

In addition to practical cytometric T cell clonality, another exigency in diagnostic cytometry 

is a consistent identifier for neoplastic blasts – the malignant cells in acute leukemias. 

Clinically, the main blast cell indicators are CD34 and CD117.5 However, neither is 

universally expressed, and both can be expressed on mast cells, as well as early erythroid 

and platelet precursors.

In fact, for the eleven clinical samples in Fig. 3, identifying blasts by surface markers 

required six different strategies because no cell type-specific markers were consistent (Fig. 

3d). Thus, we sought to find a marker correlating with the morphologically “fine” nuclear 

chromatin most blasts possess.5 Among the 39 samples with blast populations >20 cells, 

normal and neoplastic blasts consistently expressed high levels of lamin B1 (Fig. 2d, green 

dotted box, Fig. 3e, Supplementary Fig. 2). The median expression of lamin B1 in these 

blasts was significantly higher than that of every other hematopoietic population. 

Remarkably, this was consistent not only with typical CD34+ myeloid blasts (normal, MDS-

EB2 in Fig. 2d), but also in a more differentiated CD34− T lymphoblastic leukemia (T-ALL 

in Fig. 2d) and classically difficult acute myeloid leukemias such as CD34− CD117− acute 

myelomonocytic leukemia (AMML in Fig. 2d). Given the immunophenotypic and lineage 

diversity of the leukemias shown here, this single cell morphometric strategy with lamin B1 

quantification represents the most consistent blast identifier to date.

We also found blasts to be strong expressers of rRNA, although less than plasma cells and 

not as consistently as for lamin B1 (Supplementary Fig. 2). Interestingly, loss of rRNA 

correlated with maturation of neutrophils, erythroid cells, and lymphocytes. Moreover, this 

relationship appeared relatively linear, operating as a single antigen “pseudo-time” axis able 

to track cell development along multiple lineages. For example, in combination with 

VAMP-7 (described below), we were able to visualize the evolution of blasts into myeloid 

and lymphoid cells in a healthy bone marrow sample (Fig. 2f).

Clinically, lamin B1 and rRNA appear useful for identifying blast populations independently 

of surface antigens (Supplementary Fig. 8). This is particularly relevant in post-CAR-T 

specimens lacking canonical markers (Supplementary Fig. 5, clinical vignette).

Overall, the above findings thus exemplify how our morphometric targets – general 

structural proteins not specific to any cell type – can address specific diagnostic difficulties 

and provide insights across multiple cell lineages.

VAMP-7 is a surrogate for side scatter in classifying unknown hematopoietic malignancies

Of the individual morphometric targets, perhaps the most diagnostically impactful was 

VAMP-7, owing to its strong resemblance to light-based side scatter (SSC). Current 
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fluorescence-based diagnostic flow cytometry is built upon decades of experience defining 

the major cell populations by their characteristic locations on a scatterplot of CD45 vs. SSC 

(Supplementary Fig. 6).23–25 By selecting these regions (gating) and assessing cell surface 

lineage marker expression on daughter plots, diagnosticians determine whether each gate 

contains abnormal cells. However, high content single cell proteomic methods like mass 

cytometry and CITE-seq cannot measure light-based SSC, hindering their use as general-

purpose diagnostic tools.26,27

SSC is largely derived from light orthogonally reflecting off of intracellular granules, of 

which VAMP-7 is a functional component. Across our initial set of 54 clinical samples, we 

found VAMP-7 vs. CD45 plots to be strikingly similar to SSC vs. CD45 plots 

(Supplementary Fig. 7). Therefore, we queried whether it could be a valid alternative to a 

non-fluorescence cytometry diagnostic workflow (Fig. 3g).

To accomplish this, we directly compared clinical flow cytometry data from Stanford’s 

hematopathology service – gated in the standard way using SSC vs. CD45 – to mass 

cytometry data – generated from the same clinical specimen and gated by VAMP-7 vs. 

CD45 (Supplementary Fig. 8). For our eleven selected samples, we processed the data 

similarly – treating them as “unknown” diagnoses and prospectively gating the major 

hematopoietic populations without prior knowledge. From each gate, we produced hundreds 

of dot plots for independent side-by-side comparisons by four board-certified 

hematopathologists (study authors AT, JO, MJ, RO). Aside from slight differences in 

antibody clones and different storage times between flow and mass cytometry analysis, we 

found the plots to be diagnostically equivalent – that is, both analyses captured the same 

(sub)populations, showed the same immunophenotypic characteristics, and resulted in the 

same disease diagnoses.

To validate this more quantitatively, we further evaluated the percentage of cells in each gate 

positive for all comparable markers, resulting in a total of 483 points of comparison between 

the parent gating strategies (Fig. 3h). The results from flow and morphometric mass 

cytometry were highly correlated (R2=0.84, p<10−190).

Thus, VAMP-7 can be adopted in mass cytometry panels as a surrogate for SSC. Moreover, 

it illuminates a clear path for clinical validation, laboratory data processing workflow, 

pathologist interpretation, and adoption of the CyTOF as a clinical laboratory instrument.

Multiparameter morphometric maps for optimal population identification

While VAMP-7 was sufficient to recapitulate SSC for laboratory diagnostics, we 

hypothesized that new two-dimensional visualizations could be generated to integrate 

multiple dimensions of cell morphometry – similarly to how a pathologist examines multiple 

morphologic features on every cell. Among other possibilities, this could result in better 

separation of normal and dysplastic hematopoietic populations. To function as a 

morphometric map for clinical diagnostics, this visualization needed to be reproducible, 

interpretable, and capable of integrating new data.
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To these ends, we used supervised dimensionality reduction by linear discriminant analysis 

(LDA) to generate morphometric maps (MM) (Fig. 4a, see methods for details). Originally 

intended as a classifier, LDA is a machine learning approach that uses defined training data 

to find optimal linear combinations of parameters (i.e. morphometric targets) to separate 

classes (i.e. hematopoietic cell populations). If subsequent data is scaled in a consistent 

manner, these linear combinations can then be used to identify the class of new data. 

However, our purpose was visualization rather than simple classification, so we used these 

linear combinations for reducing the data to two dimensions that optimally separate the 

major hematopoietic populations.

We began by identifying the major cell populations from a healthy bone marrow sample – 

erythroids, lymphocytes, monocytes, blasts, and neutrophils – based on cell type-specific CD 

antigens. Using the morphometric data for the individual cells in those populations, the cells 

were plotted on two-dimensional graphs whose axes were built from linear combinations of 

morphometric targets. We trained the algorithm to maximally separate the major cell types 

on these “morphometric maps.” We implemented a hybrid of forward and reverse stepwise 

subset selection to find the optimal combination of single cell features for capturing each 

cell’s morphometric profile with the minimum number of required markers (Fig. 4b).28 The 

algorithm selected six markers – lactoferrin, lamin A/C, lamin B1, lysozyme, VAMP-7, and 

CD45 – for generating map axes. While the axes were trained on a healthy control, 

subsequent visualizations of new data (e.g. unknown/disease samples) could thus be 

achieved with simple matrix multiplication, making the method reproducible, 

computationally efficient, and without the need for user-defined parameters to plot new data.

As a baseline, we compared the populations from our morphometric map (MM) to those by 

SSC vs. CD45 and VAMP-7 vs. CD45, using the same strategy of evaluating percentage of 

gated cells positive for surface markers as in Fig. 3f. We found LD gating was highly 

correlated with both SSC- and VAMP-7-based gating (R2 = 0.86; 0.96, p<10−200, 

Supplementary Fig. 9) – demonstrating that MM gating was a viable alternative.

We then asked if there were any advantages to MM axes over SSC or VAMP-7 vs. CD45. 

An important use case for this technique is separating abnormal blast cells away from 

contaminating monocytic and granulocytic cells – in order to obtain an accurate surface CD 

marker profile and sensitively detect abnormalities thereof. To test the ability of this 

morphometric map (MM) to accomplish this, we compared the purity of blast cell 

identification using MM axes with those by CD45 vs. SSC and CD45 vs. VAMP-7. Using 

our eleven representative disease samples, we naively gated (without the knowledge of cell 

type-specific markers) neoplastic blasts using CD45 vs. SSC, CD45 vs. VAMP-7, or MM 

axes. In an uncomplicated AML sample with a distinct leukemic population, all three 

methods performed well, with purities >94% as revealed by the expression of the stem cell 

factor receptor CD117 in selected cells (Fig. 4c). However, in the MDS-EB2 sample with 

11% blasts, SSC gating performed poorly (27.3% purity), VAMP-7 gating performed 

moderately (54.4% purity), and MM gating achieved the highest purity (78.7%) based on the 

expression of the expression hematopoietic stem cell antigen CD34 (Fig. 4d).
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Applying this metric to blasts, lymphocytes, monocytes, and neutrophils across our eleven 

representative samples, we found that MM gating performed the same or better compared to 

SSC and VAMP-7 in all four populations – showing higher and more consistent purity, 

particularly in the blast and monocyte gates (Fig. 4e, Supplementary Fig. 8). These results 

confirm that we can not only recapitulate, but also improve upon traditional light scatter-

based morphological assessments by combining information from multiple single cell 

structural features into new morphometric axes with a supervised dimensionality reduction 

approach.

A myeloid morphometric map for contrasting normal granulopoiesis and myelodysplasia

Another important use case for the morphometric LDA approach is agnostically visualizing 

continuous and branching processes, particularly bone marrow myelopoiesis in 

myelodysplastic syndromes (MDS). Differentiation of blasts into neutrophils and monocytes 

is a gradual spectrum of differentiation. However, because traditional “gating” defines 

distinct cell populations with discrete cutoffs, it is ill-equipped for such continuous 

processes. In MDS, such abnormal differentiation can result in neutrophils and monocytes 

blending with one another in terms of both visual morphology and immunophenotype. 

Therefore, dividing them into separate gates creates artificial classifications whereas 

visualizing them together may achieve a more global view of the process and sensitive 

detection of dysplasia. Current visualizations of myeloid (dys)maturation are meandering 

and difficult to discern in many clinical samples (Supplementary Fig. 10).8,29,30

Using the same approach as we employed to generate a global morphometric map for major 

hematopoietic populations (Fig. 4a, b), we created a new set of myeloid differentiation (MD) 

axes to visualize maturation and differentiation of myeloid cells (Fig. 5a). As input to the 

algorithm, we fed single cell structural expression values of monocytes, blasts, and mature 

neutrophils from a healthy control sample. By optimally separating these populations, we 

hypothesized that we could spread the progression of differentiating cells across a new plot, 

facilitating easy visualization of the various stages of differentiation. The algorithm selected 

seven markers to generate the new axes: lactoferrin, lamin A/C, lamin B1, lysozyme, serpin 

B1, VAMP-7, and CD45. Strikingly, six of the seven markers were also used to generate the 

morphometric map in Fig. 4, though the differential contributions of each marker resulted in 

a starkly different separation and visualizations. Myeloid cells, identified using only 

VAMP-7 vs. CD45, were then visualized on the new axes and colored by their population of 

origin (Fig. 5a).

We then asked if these new axes would be useful for visualizing cells undergoing 

differentiation. We assessed the localization of the five states of neutrophil differentiation 

(blast → promyelocyte → myelocyte → metamyelocyte → neutrophil) on the MD axes 

based on the expression of canonical markers (CD34, CD13, CD15, and CD16), and found 

that each state localized to a unique position on the MD axes (Fig. 5b), facilitating manual 

identification directly in a single MD morphopmetric plot. This visualization of 

morphometric progression provides a simple way to visualize granulopoiesis without the use 

of canonical surface markers, recapitulating the morphologic progression that can be seen 

visually via microscopy by trained hematopathologists.
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Using this MD-based gating, we evaluated the expression of surface markers and 

scatterbodies on each of these differentiation states in a healthy control sample (Fig. 5c). As 

has been previously described, each population had distinctive surface profiles, with 

coordinated increases in expression of CD15 and CD16 and loss and subsequent gain of 

CD13 as cells progress through the maturation process.23 Likewise, coordinated patterns in 

scatterbody expression can be seen as cells mature, including increased expression of 

granule-associated proteins (lysozyme, lactoferrin, and VAMP-7) and decreased expression 

of lamin B1 and rRNA content.

We applied our new axes to representative myeloid neoplasms to assess the dysregulation of 

their maturation processes (Supplementary Fig. 11). Plotting them on MD axes and coloring 

by canonical surface markers revealed that the axes placed populations with similar surface 

immunophenotypes in similar relative locations on the map (Supplementary Fig. 11a). Thus, 

they reflected the same underlying states of differentiation as surface markers, but 

independently and more intuitively – in two dimensions, without requiring extensive 

knowledge of cell populations and their surface marker combinations. Furthermore, 

morphometric maps appeared to better-reflect the morphologic distribution of cells than SSC 

vs. CD45 (Supplementary Fig. 11b–f).

Data-driven combinations of single cell structural features can thus be used to create 

morphometric maps which serve as quantitative and reproducible frameworks for assessing 

hematopoietic cell distributions. Robust to dysplastic cell types, these frameworks place 

surface immunophenotypes within a morphologic context and capture morphologic features 

and patterns typically requiring visual identification by expert observers.

A morphometric map to quantify blasts in myeloid leukemias with maturation

We next used our morphometric machine learning approach to perform blast enumeration in 

maturing myeloid leukemias – a recurring and classically difficult problem in both 

diagnostic cytometry and microscopy. Blast “counts” – the percentage of nucleated bone 

marrow cells which are blasts or blast equivalents – are required to diagnose and guide 

therapy for most myeloid neoplasms.5 The “gold” standard is light microscopy, which can 

suffer from inter-observer variability and biases.3,4 This is especially problematic when there 

is a gradual spectrum of maturation from blasts to mature cells such as neutrophils and 

monocytes – forcing pathologists to apply a subjective cutoff. Flow cytometry can 

approximate the count when blasts express sensitive and specific surface markers such as 

CD34 and CD117. However, the difficult cases with spectra of maturation often have 

complete or partial lack of CD34 and CD117 – forcing ad hoc strategies for enumeration 

(Fig. 5h, Supplementary Figs. 8, 11).

We therefore sought a morphometric method to reproducibly and systematically enumerate 

blasts in myeloid leukemias. We prospectively stained a new set of three normal marrows, 

13 AMLs, and one MDS, chosen to enrich for CD34− and/or CD117− cases and to span a 

wide range of blast counts. To improve consistency between samples, we implemented a 

barcoded internal control to normalize for scatterbody staining variability (see methods and 

supplementary text). Using the same approach described above (Fig. 5a), we trained new 

blast differentiation (BD) axes to optimally separate monocytes, neutrophils, and blasts in 
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the three healthy bone marrow samples, using only scatterbodies as input. As myeloid 

neoplasms had highly variable expression of MPO, lysozyme, and serpin B1, these markers 

were excluded from the analysis (Supplementary Fig. 2).

Plotting myeloid cells on rRNA vs. BD2 resulted in a morphometric map (Figure 5d) 

placing blasts at the upper left, maturing to neutrophils towards the lower right, and to 

monocytes towards the right. Importantly, normal monocytes (Figure 5d, Normal 2 and 3, 

green arrows) showed similar or lower rRNA levels than background maturing granulocytes. 

However, examination of our monocytic leukemias and unpublished immunohistochemical 

data revealed that leukemic blasts – both monocytic and non-monocytic – generally showed 

brighter rRNA than non-leukemic monocytes (Figure 5d, AML samples, MJ, unpublished 

data, Figure 1d, 3f). Furthermore, typical leukemic blasts were shifted towards the upper left 

of normal blasts (Figure 5d, AML 9) while monocytic blasts were shifted towards the upper 

right (Figure 5d, AML 7). Many cases show expansions in both types (Figure 5d, AML 

MRC 5, Supplementary Fig. 12).

To reduce blast enumeration to practice in a format requiring little a priori knowledge, we 

devised a strategy of using lactoferrin+ granulocytes (myelocytes, metamyelocytes, 

neutrophils) to set the maturity cut-off for blast identification within the rRNA vs. BD2 plot 

(Figure 5e). This allowed approximation of the blast region independent of CD34, CD117, 

or monocytic differentiation/maturation (Further discussion, Supplementary Figs. 12, 13).

Quantifying the myeloid events within this gate yielded blast counts across patient samples 

substantially closer to light microscopy than flow cytometry, slope 0.97 versus 0.58 and 

Pearson correlation 0.90 versus 0.72 (Figure 5f–h). Difficulty quantifying blasts by flow 

cytometry often occurs when leukemic blasts mature towards, immunophenotypically 

mimic, and intermix with other cell populations – thus making them difficult to identify. In 

the AML 9 sample, the CD34− CD117− blasts were phenotypically difficult to separate from 

background granulocytes (Figure 5h). In the AML 7 sample, the leukemic blasts had 

phenotypes similar to monocytes. And the AML MRC 5 sample featured both issues 

simultaneously. Our morphometric map for blast quantification was able to mitigate both 

sources of misidentification.

This example further demonstrates how supervised machine learning can be used to tailor a 

new combination of our multi-purpose morphometric markers to a specific diagnostic 

problem, improving our diagnostic capabilities beyond standard immunophenotyping and 

light microscopy alone.

DISCUSSION

Multiplexed single cell morphometric profiling is a quantitative, reproducible, high-

throughput method demonstrated here by mass cytometry, which enables the measurement 

of molecules and structures correlating with key cellular features used by pathologists for 

classification and diagnosis in hematopathology. As fundamental components of cellular 

function, the structural targets identified here behave consistently across the major healthy 
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and dysfunctional hematopoietic populations, unlike cell surface antigens that are 

notoriously inconsistent in many neoplasms.5

Individually, our morphometric targets have unique and valuable cell identification utilities 

in diagnostically relevant settings. VAMP-7 diagnostically substitutes for light-based side 

scatter (Fig 3e, f), providing a path to validating clinical mass cytometry with diagnostic 

flow cytometry. Lamin B1 marks both benign and malignant blasts regardless of lineage 

(Fig. 3d). Lamin A/C helps identify clonal mature T cell populations (Fig. 3a, b), while 

providing new ways to gate erythroid precursors, mast cells, and plasma cells (Fig 3c).

In combination, they can be used to build morphometric maps for multiparameter cell 

identification, similarly to a pathologist examining multiple morphologic features to identify 

normal and abnormal cells (Fig. 4, 5). Morphometric maps also provide a cell surface 

antigen-independent framework for tracing benign and malignant myeloid differentiation 

(Fig. 5). To build these maps, we developed a dimensionality reduction technique employing 

linear discriminant analysis (LDA), a machine learning approach for supervised 

classification. Lacking any stochastic step, this method produces visualizations which can be 

applied reproducibly and consistently across samples, in contrast to non-linear 

dimensionality reduction methods like t-SNE and UMAP, which create new maps with each 

run (Supplementary Fig. 14) and would challenge standardized clinical workflows.20,31 

Furthermore, our approach incorporates the flexibility to build purpose-specific maps driven 

by the biology of the disease tissue of interest, generating tailored axes for both general 

immune monitoring (Fig. 4) and characterization of myelodysplasia (Fig. 5) here from a 

single analysis panel and run. Overlaying these maps with standard surface 

immunophenotyping markers, we can combine both morphology and cytometry into a single 

platform with capabilities beyond either platform separately. They can provide a more 

standardized approach to visualizing continuous and branching processes such as 

myelopoiesis. And patient-specific maps might improve our ability to distinctly separate and 

thus detect minimal residual disease.

Diagnostically, our single cell morphometric approach overcomes many of the challenges 

translating next generation single cell technologies, like mass cytometry, to clinical 

diagnostics – particularly the lack of light-based side scatter.26 Unlike other analytical 

pipelines, morphometric gating integrates seamlessly into current general-purpose diagnostic 

workflows. As it functions independently of lineage-specific surface markers, it is robust to 

edge cases of neoplasms with bizarre or ambiguous surface immunophenotypes. This was 

put into practice here by the independent analysis performed by Stanford hematopathologists 

comparing mass cytometry and flow cytometry plots (Supplementary Fig. 8) with little prior 

experience with mass cytometry data. Furthermore, with the development of 

immunotherapies which target canonical markers (e.g., CD19 for CAR-T cells), surface 

markers are increasingly unreliable for diagnosis. Thus, there is an ever-increasing need for 

robust and independent identifiers of neoplastic cell types.

The high degree of multiplexing in mass cytometry has inherent advantages in the clinical 

laboratory: 1. Antibodies do not need to be repeated across multiple tubes (e.g. CD45 in 

every clinical flow cytometry tube). 2. A single broad immunophenotyping tube can 
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diagnose most samples, without requiring a pathologist to select or design a panel. 3. T 

raditional low-plex clinical flow cytometry requires cross-correlation of cell populations 

across multiple tubes, often using assumptions and experience. At times, this may be 

impossible and require running additional tubes with clinically-unvalidated and regulatorily-

noncompliant combinations of fluorescent antibodies. As every probe in our mass cytometry 

panel is measured on every event, any combination and/or strategy of (sub)gating, back-

gating, and plotting can be done directly in silico. 4. While flow cytometry can acquire raw 

data (cells per second) faster than mass cytometry, splitting a panel across multiple tubes and 

thoroughly washing the fluidics between these tubes (to prevent tube-to-tube cross-

contamination) can be slower than running the panel as a single sample.

The main operational disadvantage of a mass cytometry-based platform is the time-

consuming intracellular staining protocol. Other practical costs include those associated with 

instrument itself, nebulizers, argon gas, establishing robust operating procedures, 

technologist training, and clinical validation. Independent validation is important to ensure 

reproducibility between laboratories. And rather than focus on any specific disease, this 

study aimed to demonstrate the versatility and consistency of our method across a wide 

range of hematopoietic diseases and difficult cases. Thus, morphometric profiles need to be 

explored in greater depth for each disease entity to reveal further insights.

In the short term, these costs can be offset by using recently-developed single cell barcoding 

methods to process samples in batch.13,14 After barcoding each sample with a unique 

combination of heavy metals, samples are mixed together before staining and acquisition. 

Each cell is then traced back to its originating sample by its barcode. The staining can even 

be automated by robotics.32 A key to this is that all samples are stained with a single-tube 

universal panel. It reduces labor costs compared to clinical flow cytometry, where each panel 

is customized to the patient’s disease, sample cellularity, and clinical situation, and 

processing is performed one sample at a time, one tube at a time. Using a commercial inter-

laboratory control to normalize scatterbodies also enables comparisons across days and 

standardization of combinatorial morphometric maps between laboratories.

In the long term, scatterbodies have exciting diagnostic and therapeutic potential. The 

haphazard surface immunophenotypes of myeloid neoplasms make it difficult to trace back 

to their cellular origins. Placing them onto a coherent underlying framework – using our 

novel combinatorial myeloid axes – we can potentially detect small dyspoietic populations 

and identify the earliest progenitors which are resistant to standard therapies. This opens 

new avenues for targeting these stem populations, as well as for closing off routes of 

therapeutic escape or clonal evolution. Additionally, these reagents may be useful for 

distinguishing and comparing cell types in other tissues and species.

Unlike laser-based measurements, our single cell morphometric profiling should be 

compatible with any antibody-based single cell technology, including CITE-seq or solid 

phase, slide-based immunohistochemistry, e.g. multiplexed ion beam imaging (MIBI) or 

imaging mass cytometry.27,33–35 In particular, these solid phase approaches could eventually 

be validated against clinical flow, as we did with mass cytometry here. Ultimately, this could 

facilitate both automated processing as well as morphometric profiling despite the lack of an 
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adequate liquid sample – either due to a “dry tap” as with marrow fibrosis, or due to the lack 

of suitable preservation and transportation infrastructure as with low-resource settings.

Beyond the assay advantages of next-generation cytometry platforms, the potential for 

automating analysis with morphometrically-driven classifiers and standardized analysis 

creates an opportunity to democratize advanced hematopathology across medical centers and 

offers further economies in clinical operations. For instance, building a classifier to 

automatically identify major cell subsets would reduce time spent by highly-paid clinical 

laboratory scientists (CLS)/technologists in rote tasks such as manual gating. As mentioned 

in the introduction, the mental tube-to-tube cross-correlation required in low-plex clinical 

flow cytometry is overcome by increased multiplexing. Without the requirement of this 

mental component, a computer can generate much of the pathology report once the disease 

cell populations are identified. And as part of routine diagnosis, these populations could be 

automatically stored into a database without disruption to workflow. Furthermore, by 

combining each case with final diagnosis, genetic aberration(s), clinical outcome, and 

relapse (therapy-resistant) cell population data, machine learning-based classifiers could 

automatically predict diagnoses and prognoses for future samples, as well as identify unique 

clusters suggesting new diagnostic entities.

For the 70 years following Dr. Paul Ehrlich’s development of blood cell staining, the 

complete blood count (CBC) was performed manually by clinical laboratory technologists, 

painstakingly counting cells one-by-one using light microscopes. In the 70 years since 

Wallace Coulter invented the Coulter counter, it has reached the point where 80% of CBCs 

at our institution are performed and resulted by automated hematology analyzers without 

human intervention, and only 1% require a pathologist. As the complexities of classifying 

and treating human blood cancers increase, the heavily-manual process of diagnosing human 

blood cancers from light microscopy and flow cytometry cries for the development of more 

automated testing platforms. Single cell morphometry is a viable and cost-effective path to 

achieving this goal, leveraging some of the latest technologies and techniques in highly-

multiplexed instrumentation and data analysis.

METHODS

Antibodies.

A summary of all mass cytometry antibodies, reporter isotopes, and concentrations can be 

found in Supplementary Table 1. Some primary conjugated antibodies are directly available 

from Fluidigm. β-actin, β2 microglobulin, and CD298 were conjugated with monoisotopic 

cisplatin as previously described.36 Otherwise, antibodies were labeled using MaxPAR 

antibody conjugation kits (Fluidigm Sciences) and titrated on human whole blood or bone 

marrow or Ficoll-purified PBMCs per the below staining protocol.

Polymer-free palladium wheat germ agglutinin (PFP WGA).

WGA has previously been characterized as a cell membrane binder and marker for cell size.
18 We efficiently and inexpensively conjugate it with natural abundance palladium.14 100 

mM ethylenediamine palladium chloride (DCED-palladium, Sigma-Aldrich 574902) in 
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DMSO was “activated” by incubating for 3 days at 37° C prior to storage at −20° C. 500 μg 

WGA (Sigma-Aldrich L9640) was washed with Fluidigm R buffer in a 10 kDa microfilter 

and reduced with 300 μL 4 mM TCEP for 30 minutes at 37° C. After washing with Fluidigm 

C buffer, it was reacted for 60 minutes at 37° C with 200 μL of 1.5 mM activated DCED 

palladium freshly diluted in Fluidigm C buffer, followed by washing with Fluidigm W buffer 

per standard protocol and diluted to 0.5-1 mg/mL with antibody stabilization buffer and 

sodium azide.

Glutaraldehyde staining protocol.

Standard paraformaldehyde (PFA) fixation is insufficient for many antibodies to withstand 

methanol permeabilization, which renders them diagnostically unacceptable (Supplementary 

Fig. 15). To overcome this problem, we fixed with glutaraldehyde (GA) and validated 

properly against diagnostic flow cytometry. Unless otherwise indicated, all centrifugations 

were performed at 4° C and other steps below at room temperature. Whole blood and bone 

marrow were treated with RBC lysis buffer (BioLegend 420301), spun for 5 minutes at 300 

x g, and 1-2 x 106 leukocytes washed with wash solution (low barium PBS, 0.5% BSA, 

0.02% sodium azide, 20 U/mL heparin, 25 U/mL Sigma-Aldrich E8263 benzonase). Cells 

were resuspended in wash solution, incubated with 5 μL Fc blocker (BioLegend 422302) for 

10 minutes, brought to 100 μL with surface antibodies, and incubated for 30 minutes, 

followed by viability staining with 1 nM monoisotopic Pt 194 cisplatin (Fluidigm 201194) 

in low barium PBS (lbPBS) for precisely 5 minutes. After washing with 3 mL wash solution, 

cells were fixed in 1 mL 0.8% GA (pH ~7.24) in lbPBS on ice. After spinning for 5 minutes 

at 500 x g, the supernatant was removed, and cells washed with 3 mL CSM (lbPBS, 0.5% 

BSA, 0.02% sodium azide) and permeabilized with 1 mL cold methanol (Sigma Aldrich 

34860) for 10 minutes on ice. 2 mL CSM was added to wash, and cells washed again with 3 

mL CSM. After resuspending in CSM, 1 μL 20 U/μL heparin37 and 5 μL Fc blocker were 

added, incubating for 20 minutes before bringing to 100 μL with intracellular antibodies and 

incubating for 30 minutes. Cells were then washed with 3 mL CSM, resuspended in 1 mL 

0.8% GA in lbPBS with 0.03 μL iridium intercalator (Fluidigm 201192B) and 5 μg PFP 

WGA, and incubated at 4° C overnight.

Barium-based doublet and debris/antibody aggregate removal.

We collected barium 138 signal during acquisition and selected singlets from barium vs. 

DNA rather than event length vs. DNA, after removing diluted events at the leading edges of 

sample pushes (supplementary text). Here we use a novel and cost-free method for gating 

singlets and removing nonspecific debris/antibody aggregate reactivity. Events at the leading 

edges of sample pushes were removed by gating on barium 138 vs. time, and singlets gated 

by barium vs. DNA, followed by gating on viable cells (Supplementary Fig. 16). Given that 

doublets are perhaps best reduced by barcoding and limiting event rate to <300/s, 

postacquisition they are visualized and removed by barium vs. DNA better than by the 

current standard, event length vs. DNA. Barium vs. DNA also resolves a large degree of 

nonspecific debris/aggregate reactivity.
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Samples.

Healthy bone marrow samples were ordered from AllCells and delivered and processed the 

same day. Seventy-one patient samples were collected for diagnosis in EDTA or heparin 

tubes (marrow, peripheral blood) or RPMI (solid tissue) and stored at 4° C. Research 

aliquots were obtained <3 days after collection as post-diagnostic excess material under 

IRB-30899 and IRB-40765, stained and run only once, deidentified, and relabeled with 

codes as described in the supplement.

Microscopic images.

Bone marrow aspirates were freshly smeared on glass slides, air dried, and stained on an 

automated stainer for 3 minutes in methanol, 3:00 Wright’s-Giemsa stain (Beckman Coulter 

Tru-Color Wright’s-Giemsa stain 7547178), 2:30 stain-buffer combination (50 mL Wright’s-

Giemsa stain diluted with 90 mL phosphate buffer, pH 6.4), 0:30 deionized water, 3:00 

drying, 1:00 methanol, 1:30 Wright-Giemsa stain, 1:00 stain-buffer combination, 0:30 

deionized water, 3:00 drying. Digital images were taken with a 100x oil objective and 

Olympus DP22 camera, white balanced and cropped in Adobe Photoshop, and scaled 

identically.

Data acquisition and processing.

Clinical flow cytometry was performed in a CLIA-certified CAP-accredited diagnostic 

laboratory according to laboratory standard operating procedures on BD FACS Canto II 

instruments. Acquisition was performed on BD FACSDiva 8.01 and data processed in FCS 

Express 4.08.0016. Mass cytometry was performed on a DVS Sciences CyTOF 2 running 

DVS Sciences Instrument Control Software 6.0.626. Mass cytometry FCS files were bead 

normalized as described38, concatenated if necessary, and uploaded to CytoBank 

(cytobank.org) for gating (Supplementary Fig. 16). Counts were asinh-transformed with a 

cofactor of 5. Samples from figures 1–4 – two healthy controls and eleven patient samples 

(B-ALL 4Cr9, MDS-RS 1Ar0, MDS-EB2 1Ar1, AML APL 1An7, AML 4Cn5, AMML 

1An6, MPAL 3Cn3, T-ALL 3An1, TCL 1An7, SM-CMML 1Ar0, PCM 2Ar) – underwent 

normalization of scatterbody channels to control for technical variation (Supplementary Fig. 

17). For each scatterbody, a specific cell population was identified that was present in all 

samples, had unimodal expression of the scatterbody, and had stronger expression of the 

scatterbody than other hematopoietic cell populations (Fig. 1d). The peak of the distribution 

for the population was identified in all samples using a Gaussian kernel density estimate. For 

each sample, a coefficient, βn, was identified to solve the equation: x‒R = βnx‒n where x‒R is 

the peak of the distribution of the reference sample (Healthy 1) and x‒n is the peak of the 

distribution of the sample undergoing normalization. The scatterbody expression value of 

every event in sample n was multiplied by βn, resulting in an alignment of peaks. All 

markers in these samples were subsequently scaled to the 99.5th percentile for comparability 

between markers.

For comparison to diagnostic flow cytometry, mass cytometry data was gated and plotted 

similarly. For our eleven main samples and two healthy donor marrows, four backgates were 

used to set the blast, lymphocyte, and monocyte gates on our mass cytometry VAMP-7 vs. 
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CD45 plot and LD axes. Granulocytes were also gated. From those gates, thousands of 

daughter plots were generated to mirror our main clinical lymphoma and leukemia panels. 

As clinical flow cytometry is not typically run or gated so comprehensively, only ~900 had 

direct counterparts in the diagnostic flow plots. These were used for statistical analysis and 

evaluated side-by-side with the diagnostic flow plots by five board-certified 

hematopathologists.

Generation of LD axes.

Combinatorial morphometric map axes were generated using supervised linear 

dimensionality reduction with linear discriminant analysis (LDA).28 LDA creates linear 

combinations of predictors (i.e. scatterbodies) to maximize separation between classes (i.e. 

gated hematopoietic cell populations). LD axes in figure 4 were built to separate blasts, 

monocytes, erythroids, neutrophils, and monocytes (as defined by surface marker gating in 

the Healthy 2 sample) to facilitate morphometric gating of these populations. LD axes in 

figure 5 were built to separate blasts, monocytes, and mature neutrophils (CD15+ CD16++ 

neutrophils) to facilitate visualization of myeloid differentiation. These linear combinations 

can be visualized as new axes, in a similar fashion to principal component analysis (PCA). 

The ideal subset of scatterbodies used to generate these new axes was selected using a 

hybrid of forward and reverse stepwise selection, as an exhaustive search of every possible 

subset would be computationally intensive. This implementation scores each subset by 

calculating the Euclidean distance between every pair of population means in the two new 

axes and assigning the minimum distance as that subset’s score. This scoring method 

therefore rewards axes that maximize separation between the two nearest population means, 

ensuring the new axes can be used to cleanly visualize and gate all five populations. This 

approach was chosen over a cross-validation/classification approach as the ultimate goal of 

the algorithm was visualization of neoplastic samples, not classification. After exploring the 

subset space, the ideal combination was selected by identifying the elbow point of the 

“number of markers” vs. “highest score” plot. The coefficients (Supplementary Table 3) 
used to generate the new axes in the training data were then applied to all cells in all samples 

with simple matrix multiplication, facilitating plotting of all samples on the same two axes.

Comparison of blast enumeration by microscopy, flow cytometry, and morphometry.

Three normal marrows were used to train BD axes, with blasts neither quantified nor 

assessed by flow cytometry due to absence of suspicion for acute leukemia or myeloid 

neoplasia. Thirteen AML samples and one MDS sample were prospectively chosen to enrich 

for CD34− and/or CD117− cases and to span a wide range of blast counts. Clinical samples 

shown in figure 5 are REACTIVE-2A, REACTIVE-3A, AML-9Ar, AML-7An, and AML-

MRC-5Ar. Samples were live cell barcoded with Pt 195 per Hartmann et al. and washed 

twice with wash solution.14 A standard control (Streck CD-CHEX PLUS) was barcoded 

with Pt 196 and washed twice with CSM. Sample and control were mixed together and 

stained as described above, except surface staining was done for 1 hour and all incubations 

done on ice until permeabilization. Scatterbodies in both the controls and samples were 

asinh transformed. Control samples were normalized to their 98th percentile of expression of 

each scatterbody, and then the same coefficient was applied to normalize each control’s 

complementary sample. Samples were gated for non-erythroid cells on lamin A/C vs. CD45 
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and myeloid cells on VAMP-7 vs. CD45 (Supplementary Fig. 12) prior to blast gating 

(Figure 5d–f). Four board-certified attending hematopathologists (SFP, MJ, JO, AT) 

performed separate 200-cell light microscopic differentials on cases with >5% blasts, 

enumerating: 1. Blasts/blast equivalents (mb); 2. non-blast myeloid cells (mm), e.g., 

neutrophils, eosinophils; and 3. non-myeloid cells (mn), primarily erythroid precursors and 

lymphocytes – where mb + mm + mn = 100%. To eliminate potential effects from differential 

lysis/sampling of non-myeloid cells, flow and mass cytometry blast counts were scaled. The 

flow cytometry blast gate was set using the laboratory’s standard operating procedure (first 

attempting to backgate on CD34 vs. CD38 and CD117 vs. CD15, and then by the 

technologist’s best judgment if unsuccessful, Figure 5h, Supplementary Fig. 8), reporting 

events in the blast gate (fb) and lymphocyte gate (fl) as a percentage of CD45+ events, where 

CD45+ events do not include erythroid precursors. Scaling fb to be comparable to mb thus 

follows the formula fb · (100 – mn)/(100 – fl). Morphometric blasts (sb) were quantified as a 

percentage of myeloid cells (which do not include erythroid precursors or lymphocytes) and 

thus scaled as sb · (1 – mn/100).

Statistical Analyses.

In Figs. 3b, c, and e, individual data points are represented by black dots, central black lines 

depict the median, upper and lower hinges depict the interquartile range (IQR), and whiskers 

depict range of data within hinges +/− 1.5 IQR. Sample sizes are as follows: mature TCL (N 

= 5), T-ALLs (N = 3), and normal/reactive T cells (N = 45); neutrophils (N = 53), monocytes 

(N = 44), T/NK cells (N = 54), B cells (N = 51), erythroids (N = 31), plasma cells (N = 13), 

mast cells (N = 4), blasts (N = 39). In Fig. 4e, individual data points are represented by black 

dots, central black lines depict the mean, upper and lower hinges depict the interquartile 

range (IQR), and whiskers depict range of data within hinges +/− 1.5*IQR. For comparisons 

of median expression values and coefficients of variation (CVs) of specific populations in 

Fig. 3, the Wilcoxon signed rank test or Wilcoxon rank sum test (for distributions with <10 

observations) was performed with P-values adjusted by the Bonferroni method for multiple 

hypothesis correction as necessary. The tests compared the distribution of patient sample 

medians (or CVs) between specific cell populations. In Fig. 3b, the medians and CVs of 

Lamin A/C expression in neoplastic T cells of five patient samples with mature T cell 

neoplasms were compared with blasts of three patient samples with T-ALLs and T cells of 

all patient samples with normal T cells. In Fig. 3c, comparisons of median Lamin A/C 

expression were made between all pairwise combinations of plasma cells, mast cells, or 

erythroids against neutrophils, blasts, T and NK cells, monocytes, or B cells in all patient 

samples (15 tests total). In Fig. 3e, median Lamin B1 expression values in blasts from all 

patient samples that contained blasts were compared to median Lamin B1 expression values 

of every other hematopoietic population from the same samples.

Data availability.

Processed, deidentified clinical flow cytometry and Cytobank mass cytometry plots are 

provided as supplementary files. Deidentified clinical flow cytometry and mass cytometry 

data will be deposited on flowrepository.org with paper publication for all samples analyzed 

in the paper.
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Code availability.

All code used for analyses was written in the R programming language (r-project.org). Code 

to reproduce all main figures is available at github.com/davidrglass

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Scatterbodies capture morphologic differences of major hematopoietic cell populations 
in healthy human bone marrow
A) Diagram of scatterbody targets within a cutaway of a cell (left) and a granule within the 

cell (right). Note the presence of rRNA in both the nucleolus and ER. B) Summary table of 

scatterbodies. C-F) Summary of project design. C) Diagnostically important morphologic 

characteristics of major cell populations were morphometrically captured by scatterbodies. 

Cell sizes are from Carr et. al.39 D) Histograms of cell frequency distribution vs. scatterbody 

expression are compared for the major hematopoietic cell populations in a healthy human 

bone marrow. E) Reproducible axes built from combinations of scatterbodies form a stable 

morphometric “map,” whereby each population falls into a specific region on the map. 

Selecting a region from this combinatorial map (shaded ovals) is therefore similar to using 

multiple light microscopic features to identify cells (labels colored as in C, with adjacent 

images). F) Plotting cells from selected regions onto biaxial plots of standard surface 

molecules reveals immunophenotypic cell type composition and any abnormal cell types. G) 

t-SNE plot of the cell populations, generated using only scatterbodies and CD45, colored by 

cell identity as in C.
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Figure 2: Morphometric profiles are consistent across clinical patient samples
Scatterbody profiles of major populations (A-G, labels colored as in Fig. 1c) from the 11 

main clinical samples and two healthy marrow donors. Clinical samples contain mixtures of 

normal and neoplastic populations, where triangles (▼) denote malignant populations as 

diagnosed by WHO criteria,5 and plus symbols (+) denote morphologically dysplastic 

(malformed) populations as determined by light microscopy. Not all samples contained 

significant numbers of all populations, and populations with fewer than 20 events (cells) are 

not shown. Each column represents the median values of scatterbodies of a single population 
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from a single sample, scaled by row. Lamin A/C and lysozyme were scaled to a maximum of 

500 counts due to plasma cell lamin A/C obscuring other populations and a lysozyme outlier 

>6-fold greater than all other populations. H) Pearson correlation of scatterbody profiles for 

hand-gated cell populations across all eleven representative samples and two healthy 

controls. Each scatterbody profile is defined as the vector of median expression values for all 

scatterbodies. The heatmap was hierarchically clustered and labels were colored by 

hematopoietic cell population.
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Figure 3: Individual morphometric features have unique diagnostic capabilities
A) Lamin A/C expression on CD2+ cells in healthy marrow (left), a sample with T 

lymphoblastic leukemia (T-ALL, middle), and a mature T cell leukemia (TCL, right), with 

normal CD3+ T cells shaded pink, T-ALL green, and TCL blue. B) Median lamin A/C 

expression (asinh scale) and lamin A/C coefficients of variation (CV) in mature T cell 

lymphomas/leukemias (TCL), T-ALLs, and normal/reactive T cells across the initial set of 

56 samples (two normal bone marrow samples + 54 clinical samples). Differences in 

distribution were evaluated between mature TCLs and each of T-ALLs and normal/reactive 

T cells. C) Median lamin A/C expression (asinh scale) in hematopoietic populations across 

the initial set of 56 samples. Differences in distribution were evaluated between plasma 
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cells, mast cells, and erythroids, and each of the other five populations. D) Surface marker 

expression in blast populations is highly inconsistent. Triangles (▶) denote malignant 

populations. Each row represents the median values of surface markers, scaled from 0 to the 

maximum in the column, except CD16, CD10, CD19, CD20, CD23, and CD15 were scaled 

from 0 to 10 because maxima were below 10 counts (within the noise floor). Notably, the B-

ALL sample is CD19− by both CyTOF and diagnostic flow cytometry after anti-CD19 CAR-

T therapy. E) Median lamin B1 expression (asinh scale) in hematopoietic populations across 

the initial set of 56 samples. Differences in distribution were evaluated between blasts and 

each of the other hematopoietic populations across the initial set of 56 samples. Statistical 

significance was evaluated by the Wilcoxon signed rank test or Wilcoxon rank sum test (for 

distributions with <10 observations). Multiple hypothesis correction was performed using 

the Bonferroni method, * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001. F) 

rRNA decreases as cells differentiate from blasts (green) to VAMP-7+ granulated cells – 

monocytes (orange) and neutrophils (blue) – or VAMP-7 non-granulated cells – erythroids 

(brown) and lymphocytes (T cells in red and B cells in purple). G) VAMP-7 is functionally 

equivalent to SSC, enabling direct translation of mass cytometry data into general-purpose 

diagnostic hematopathology workflow. Parent plots of two samples (AML, MPAL) show 

ungated events by clinical flow cytometry SSC vs. CD45 (left column) and mass cytometry 

VAMP-7 vs. CD45 (second column). The blast gates (red events) and lymphocyte gates 

(green events) were defined on these plots with the aid of backgating. Events from the parent 

blast gates visualized on daughter plots for flow (third column) and mass cytometry (right 

column). Quadrants were set to quantify the number of events positive and negative for each 

marker. Fluors used in clinical flow cytometry plots were CD45 PerCP-Cy5.5, CD34 APC, 

CD56 PE, CD117 PE, and HLA-DR APC. H) Percent of events positive for each marker in 

every daughter plot across eleven samples (483 total data points) generated by parent gating 

using mass (x-axis) or flow (y-axis) cytometry. Correlation was evaluated by the Pearson 

method.
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Figure 4: Morphometric maps recapitulate and improve upon SSC vs. CD45 gating
A) Workflow for generation of morphometric axes. Scatterbody values for single cells from 

each population were plotted onto combinatorial axes, which were improved by training on 

separating populations. Sample data were then plotted on the final combinatorial axes. B) 

The number of markers used to generate different morphometric axes vs. the minimum 

Euclidean distance between all population means for the highest-scoring marker 

combination. Red dot signifies the elbow point. C and D) Parent plots of the AML (C, top 

row) and MDS-EB2 (D, top row) patient samples with tight gates drawn on putative blast 

populations using CD45 vs. SSC (left columns), CD45 vs. VAMP-7 (middle columns), and 

MM axes (right columns). Daughter plots (bottom rows) depict and quantify the purity of 

the parent gates. E) Quantification of gate purity for the major hematopoietic populations 

from the 11 exemplative samples, using CD45 vs. SSC (salmon), CD45 vs. VAMP-7 

(green), or MM axes (blue).
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Figure 5: Myeloid morphometric maps for visualizing myelopoiesis and quantifying blasts in 
myeloid leukemias
A) Workflow for generation of myeloid differentiation (MD) axes. B) Myeloid cells 

visualized on the myeloid differentiation (MD) axes. Gates (colors) are drawn for the five 

continuous phenotypes described for neutrophil differentiation, backgated by surface 

markers. Images depict the corresponding cell morphologies. C) Histograms of surface 

marker and scatterbody expression for the five gates drawn in B. D) Myeloid cells from two 

normal marrows and three representative myeloid leukemias, colored by density on a plot of 

rRNA vs. blast differentiation (BD2). E) Back-gating lactoferrin+ myeloid cells onto rRNA 
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vs. BD2 enables approximation of the blast region – with lower BD2 and/or higher rRNA 

than lactoferrin+ granulocytes. F) The percentage of myeloid cells within this region (blue 

outline) is sb, scaled as described in the methods to yield the morphometric blast count (pink 

numbers). G) Morphologic blast counts by light microscopy ± one standard deviation. H) 

Flow cytometry blast counts (teal numbers) scaled from the percentage of CD45+ events 

within the blast gate (teal regions) on the SSC vs. CD45 plots. I) Blast counts by 

morphometry and flow cytometry plotted against those by light microscopy. MSE: mean 

squared error. r: Pearson correlation.
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