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Abstract

The molecular changes that occur with aging are not well understood1–4. Here, we performed 

longitudinal and deep multiomics profiling of 106 healthy individuals from 29 to 75 years of age 

and examined how different types of ‘omic’ measurements, including transcripts, proteins, 

metabolites, cytokines, microbes and clinical laboratory values, correlate with age. We identified 

both known and new markers that associated with age, as well as distinct molecular patterns of 

aging in insulin-resistant as compared to insulin-sensitive individuals. In a longitudinal setting, we 

identified personal aging markers whose levels changed over a short time frame of 2–3 years. 

Further, we defined different types of aging patterns in different individuals, termed ‘ageotypes’, 

on the basis of the types of molecular pathways that changed over time in a given individual. 

Ageotypes may provide a molecular assessment of personal aging, reflective of personal lifestyle 

and medical history, that may ultimately be useful in monitoring and intervening in the aging 

process.

Aging is a universal process of physiological and molecular changes that are strongly 

associated with susceptibility to disease and ultimately death1–5. Despite its importance and 

extensive analysis in model organisms, a comprehensive view of the molecular changes that 

occur during aging in humans is not known and understanding of the heterogeneity of the 

aging process at an individual level and over short actionable timescales is lacking.

Cross-sectional studies have revealed differences in telomeres and DNA methylation 

associated with age6. The latter has led to a description of a ‘molecular clock’ that is 

associated with chronological and biological age7,8. Acceleration of the clock has been 

associated with human diseases. In addition to epigenetic markers, several clinical markers, 
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such as cholesterol and glycosylated hemoglobin (HbA1c) levels, which are associated with 

metabolic disorders and type 2 diabetes, change with age9,10. However, global monitoring of 

molecular profiles has not been performed, and thus, a comprehensive understanding of the 

changes in different pathways that occur within an individual and the ageotypes that exist in 

humans are not known. Even for individuals with type 2 diabetes and insulin resistance (IR; 

commonly associated with type 2 diabetes), the full pattern of changes that occur with age 

and intervention is not known. Understanding both patterns of aging and how IR is 

associated with age is ultimately important for targeted intervention.

We studied a cohort comprising 106 prediabetic and healthy individuals, extensively 

characterized for many parameters of glucose dysregulation, including fasting glucose, 

HbA1c, oral glucose tolerance tests11 and IR using a steady-state plasma glucose (SSPG) 

test12. The cohort (age range 29–75 years; median 55.74 years) was tracked with quarterly 

visits for up to 4 years, with additional samples acquired during periods of physiological 

stress, such as respiratory viral infections. The participants engaged in a total of 1,092 visits 

and samples were analyzed by seven omics assays (Fig. 1a). For each visit, we performed 

proteomics and metabolomics on plasma samples, transcriptome analysis on material from 

peripheral blood mononuclear cells and targeted cytokine assays using serum. Nasal and gut 

microbiomes were analyzed using 16S rRNA sequencing, providing information at the 

genus level, and exome sequencing was performed once using DNA from peripheral blood 

mononuclear cells. In addition, 51 clinical laboratory tests were acquired on each visit. In 

total, more than 18 million data points were generated (Fig. 1b); the cohort is described by 

Zhou et al.13 and Schüssler-Fiorenza Rose et al.14. For the purpose of this study, we focused 

on healthy quarterly visits (n = 624), searching for biological molecules that are associated 

with age.

To understand aging patterns between and within people, we performed three types of 

analyses: (1) identification of markers and pathways that cross-sectionally associated with 

the age of individuals across the cohort; (2) identification of molecular aging differences 

between participants who were IR and insulin sensitive (IS); and (3) identification of 

personal markers and pathways that changed with age for each individual and how these 

differed between individuals (Fig. 1c).

We first systematically searched for markers that strongly correlated with the median age of 

each participant in the cohort. From the 624 healthy visits, we analyzed the median 

expression of 10,343 genes, 306 plasma proteins, 722 metabolites, 62 cytokines, 6,909 

microbes (at the level of 16S rRNA) and 51 clinical markers and performed Spearman 

correlation tests with the median age of the participant. After correcting for body mass index 

(BMI) and sex, we found 184 molecules from different ‘omes’ that showed different trends 

and levels of association with age (Fig. 2a, Extended Data Fig. 1a and Supplementary Table 

1); some were reported previously, whereas many others had not been reported. For 

example, from the clinical laboratory data, estimated glomerular filtration rate, which is 

known to decrease with age15, correlated negatively with age in our cohort (Spearman, rho = 

−0.6, false discovery rate (FDR) = 5.5 × 10−6). Several growth factors, such as platelet-

derived growth factor (PDGF)-BB (Spearman, rho = 0.36, FDR = 0.017) and vascular 

endothelial growth factor (VEGF)-D (Spearman, rho = 0.26, FDR = 0.128) positively 
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correlated with age. Other isoforms of VEGF and PDGF growth factors have been reported 

to correlate with age16,17. After multiple-hypothesis corrections, we found 87 biological 

molecules and microbial features that correlated with age at FDR < 0.1 and 184 molecules 

and microbes at FDR < 0.2. Among the 184 molecules and microbial features, 160 were 

metabolites and 40% of these were lipids, a class of molecule known to change with age18 

(Extended Data Fig. 1b). Xenobiotics such as hippuric acid, 2-aminophenol sulfate and 

quinic acid (18%) and amino acids (16%) were other groups of metabolites that correlated 

with age.

Several microbes also correlated with age. These included the gut bacteria Clostridium 
cluster IV whose abundance increased with age (Spearman, rho = 0.38, FDR = 0.023), 

consistent with the complex dynamics of different Clostridium bacteria during aging19. The 

genus Blautia was also positively associated with age, consistent with a recent microbiome 

study that showed that Blautia hansenii can be used to predict chronological age20.

We sometimes observed that molecules of similar function had different associations with 

age. For instance, the insulin-related growth factors IGF2R and IGFALS were inversely 

correlated with age (Spearman, rho = −0.33, FDR = 0.0943 and Spearman, rho = 0.31, FDR 

= 0.0943, respectively), whereas two other insulin-signaling-related molecules, IGFLR1 and 

IGFBP7 (Spearman, rho = 0.15 and 0.14, respectively), correlated positively with age. The 

complexity of insulin growth factors and signaling molecules in aging has been reported 

previously21. In addition, the inverse correlations of fetuin-B (Spearman, rho = −0.31, FDR 

= 0.0944) and vitamin K-dependent protein S (PROS1) (Spearman, rho = −0.30, FDR = 

0.121) with age are consistent with previous studies22,23.

To understand the biological pathways associated with age, we analyzed significant 

molecules (Supplementary Table 1) whose level of expression correlated with age at P < 

0.05 (including 563 genes) using Ingenuity Pathway Analysis and found that both reported 

and unreported pathways were associated with age (Fig. 2b and Supplementary Table 2). 

Acute-phase response signaling, high mobility group box 1 (HMGB1) signaling, Toll-like 

receptor signaling and the coagulation pathway increased with age, consistent with reported 

increased levels of inflammation and coagulation pathways with age24. We found that 

different types of molecules contributed to pathway enrichments, underscoring the 

importance of systematic profiling of many omes. Analysis of an independent cohort of 31 

individuals with clinical and proteomics assays (see Methods) validated the positive age 

correlation of HbA1c, apolipoprotein A-IV protein (ApoA4) and PROS1 (Fig. 2c). 

Additionally, 99 transcripts that correlated with age in our study were also identified 

(Supplementary Table 3) in larger cross-sectional studies25.

Because our cohort was well characterized for IR we explored whether individuals who are 

resistant and sensitive to insulin age differently (IR: median age = 57.72 years, n = 35; IS: 

median age = 54.39 years, n = 31). We identified ten molecules that significantly correlated 

with age in the IR group but not in the IS group (Pearson, FDR < 0.2), and one molecule that 

significantly correlated with age in the IS group but not in the IR group (Fig. 2d,e and 

Supplementary Table 4). Of the ten molecules that were significant in the IR and IS groups, 

nine were also significantly (P < 0.05) different between the two groups. These included IgG 
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Fc-binding protein (FCGBP), lumican (LUM; an extracellular matrix protein of human 

articular cartilage responsible for tissue homeostasis) and nonspecific lipid transfer protein 

(SCP2), which significantly associated positively with age in the IR group. The xenobiotic 

2-aminophenol sulfate showed a strong positive correlation in individuals who were IR. The 

phosphoglucomutase 1 gene (PGM1) was one of the genes most frequently observed to have 

different expression in aging in IR and IS (P = 4.75 × 10−5, on the basis of the interaction 

term of the linear model describing different trends in the two groups) and is involved in the 

breakdown and synthesis of glycogen and the regulation of glucose 1-phosphate and glucose 

6-phosphate26. Monocyte counts were positively correlated and platelet counts were 

negatively correlated with age in individuals who were IR. Alkaline phosphatase showed a 

significant positive correlation only in the IS group. These results demonstrate that 

individuals who are IR and IS follow different aging patterns at the molecular level.

The frequent sampling of individuals over a potentially actionable time frame (Fig. 3a), 

which we arbitrarily defined as less than 2 years, enabled us to study how individuals change 

with time at a personal level. We focused on 43 individuals who had at least five healthy 

visits spanning at least 700 d, which was sufficient for identifying analytes that changed with 

time (see Supplementary Table 5). Molecules and microbes that significantly associated with 

age were identified by rank-based linear regression analysis using Spearman correlation of 

both host and microbial analytes (Supplementary Tables 5 and 6 for analysis by alternative 

linear mixed-effects models). Within the 1,200-d window, the number of molecules 

associated with age was independent of the number of sampling days (Extended Data Fig. 2 

and Supplementary Table 7). For example, individual ZOZOW1T had 56 visits over 2,349 d 

and had 775 molecules significantly associated with aging within the 1,200-d period (P < 

0.05; Fig. 3b), whereas individual ZN3TBJM had 9 visits over 1,141 d and had 2,438 

molecules associated with aging within the 1,200-d period (Fig. 3c).

Pathway analysis of personal aging molecules in different individuals revealed distinct aging 

pathways for each individual. For example, individual ZOZOW1T had significant 

enrichments in LXR/RXR activation, acute-phase response signaling, and complement and 

coagulation cascade pathways (Fig. 3b and Supplementary Table 8), whereas individual 

ZN3TBJM had cardiac hypertrophy signaling as one of the top enriched pathways identified 

on the basis of molecules correlating with aging (Fig. 3c and Supplementary Table 9). 

Furthermore, different individuals had distinct trends in their gut microbial changes over 

time. For example, individual ZOZOW1T had 56 significant changes across taxonomy levels 

in gut microbes, whereas individual ZN3TBJM had only 6 significant changes during this 

time, 5 of which were not observed in ZOZOW1T (Supplementary Table 5).

To understand how molecules that correlated with age in a population compared to their 

trends in individuals, we specifically examined clinical laboratory markers that might also 

provide clinically useful insights (Fig. 3d). For the six clinical markers significantly 

associated with age at the cross-sectional population level, we observed that these markers 

did not always associate with aging at an individual level, and often showed associations that 

were significantly reversed from the population trend. For example, HbA1C correlated 

positively with aging across the cohort but was only positively correlated in 18 individuals (4 

significantly, P < 0.05) and was negatively correlated with aging at the individual level in 24 
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individuals (4 significantly, P < 0.05). Creatinine also had a positive correlation with aging 

at the population level, but interestingly had a negative correlation in more than 70% of the 

individuals we studied. Thus, although molecules can show a significant trend at a 

population level, at a personal level these trends can be the opposite.

To examine whether variation in aging associations at the personal level could be a result of 

the individual’s lifestyle, we systematically examined lifestyle and medication changes for 

people with those records available. Twenty-eight participants logged dietary habits using 25 

food categories at each visit (see Methods). Correlation analysis of the food category 

changes (duration in days in the study) with the age association of clinical markers showed 

that there was no significant correlation between food intake and time for the food 

categories, with one exception (Supplementary Table 10), indicating that dietary intakes are 

generally stable and dietary alteration is not responsible for the longitudinal changes in the 

clinical markers observed in our cohort. However, one participant had an increase in soft 

drink intake and decreased blood urea nitrogen (BUN) with increased monocyte levels and 

red blood cell distribution width (RDW).

We also examined physical activity, medication and BMI changes for the participants. 

Thirty-one participants filled out the International Physical Activity Questionnaire (IPAQ) 

with each visit. Changes to medications (diabetic medications and statins) were tracked for 

all 43 participants through self-reporting and electronic health records. Two of the 31 

participants significantly reduced physical activity over time (one with low effect). One 

individual started metformin and another added a third diabetic medication to their regimen; 

two individuals started taking statins and one person stopped taking statins. Two of 43 

participants lost weight. Thus, the vast majority of participants (96.4%, 93.5% and 88.4%) 

reported no significant change in diet, activity or medications, respectively. Taking these 

data together with the food data for the vast majority of participants, it is unlikely that the 

changes we observed were due to lifestyle or medications.

To determine whether lifestyle could affect age-associated clinical markers directly, we 

examined whether participants who deviated from the population trend had an alteration in 

lifestyle, BMI or medication. We found that there were four participants who had a 

significantly negative correlation of HbA1c with age, indicative of an improvement in 

glucose metabolism during the study. Two of these had undergone diet restriction and the 

other two had lost weight, as reflected by their lifestyle surveys (Fig. 3d). Moreover, there 

were 12 participants with significantly decreased associations with age for BUN or 

creatinine, suggesting an improvement in kidney function over time, as both of these clinical 

markers typically increase with age. We found that eight of those individuals were 

consistently taking statins throughout the entire study, whereas four were not; the fraction of 

individuals who were on statins and had decreased creatinine was significantly different (P = 

0.043) from the fraction of individuals whose creatinine increased with age. Interestingly, 

one person who lost weight during the study improved in all six clinical markers. These data 

suggest that, at least in some cases, obvious interventions can improve clinical markers, 

whereas for other cases, the source of their improvement remains unlcear.

Ahadi et al. Page 5

Nat Med. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, as an independent examination of age, we used the published phenotypic age 

formula to assess whether a reported aging metric changes with time at a personal level27,28. 

Although overall phenotypic age increased with age as expected (slope = 1.07), consistent 

with the results presented above, the individual phenotypic age slopes differed among the 

different participants, with 15 participants even showing negative values (Fig. 3e). These 

results using an independent metric further suggest that individuals are aging at different 

rates as well as potentially through different biological mechanisms.

These results indicate that individuals can have distinct aging patterns, or ageotypes. To 

systematically analyze the individual aging patterns, we further analyzed the 608 molecules 

that significantly correlated with age in at least six individuals (see Supplementary Tables 6 

and 11 for aging trend by alternative linear mixed-effects models). Pathway-enrichment 

analyses revealed 107 canonical pathways and 147 toxicity pathways (Supplementary Table 

12). Grouping pathways that had similar terms (see Methods) revealed four major 

overlapping pathways—immunity, metabolic, liver dysregulation and kidney dysregulation

—associated with aging (Fig. 4a, Supplementary Table 13 and Methods). For each term, we 

estimated the magnitude of its aging association and the cumulative probability of its 

association to evaluate the association pattern and significance with aging (in days), 

respectively (Supplementary Tables 14–17). Under immunity pathways, we observed an 

increase in immunity-related molecules with age in a number of individuals (e.g., ZN3TBJM 

and ZWCZHHY; Fig. 4b, upper left). The molecules that increased with age included 

CCL27 (ref. 29), ORAI1 (ref. 30), IFITM1 (ref. 31) and ITPR2 (ref. 32), which were 

previously shown to increase with aging or aging-related diseases. However, there were a 

number of individuals (such as, ZWLGEWL and ZY39SN0), who showed decreased 

expression of these molecules with age. Notably, individuals showed distinct and sometimes 

opposite patterns of expression in molecules and pathways (Fig. 4b).

We systematically grouped people into ageotypes, and found that different individuals had 

distinct ageotypes (Fig. 4c and Supplementary Table 18). For instance, individual 

ZNED4XZ had relatively strong aging magnitudes in kidney dysfunction pathways, but 

displayed minor changes in other pathways. ZM7JY3G displayed strong patterns in 

metabolic pathways and kidney dysfunction, but not in immune or liver dysregulation. Many 

individuals displayed strong liver, kidney, metabolic and immune ageotypes, indicating that 

they were aging in all four pathways. We did not observe any association between ageotypes 

and BMI, chronological age or IR and IS status (Extended Data Figs. 3–5 and 

Supplementary Table 18).

Human aging is due to a combination of factors from genetics to environmental factors, such 

as an individual’s lifestyle and exposure, and as such is very heterogeneous33. Our study 

investigates aging at the individual level by frequent sampling and deep molecular profiling 

over a time period that is potentially actionable. In contrast to other studies, which have 

focused on epigenomics and telomeres, we found many more different types of molecules, 

such as transcripts, proteins and metabolites as well as the microbiome, that were associated 

with age, including 87 significant molecules (Spearman, FDR < 0.1) and 84 significant 

pathways (P < 0.05). Immune and inflammation pathways were found to be among the 

major pathways that change with aging.
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We have studied aging patterns of individuals who are IR and IS using multiomics data and 

identified several molecules that correlate differently in these individuals. Many of these 

reside in the inflammation and related immune pathways in individuals with IR, suggesting 

that individuals with IR may experience increased inflammation with age more rapidly than 

individuals with IS.

This rich multiomic dataset on multiple visits of 43 individuals provided the opportunity to 

study personal aging markers and patterns. Longitudinal profiling for up to 4 years and with 

five or more samples per individual provided the required statistical power to help find the 

markers and pathways that correlate with aging. The general trends of the personal aging 

markers followed those of the cross-sectional markers; however, detailed analyses of the 

clinical markers revealed personal differences, with some individuals displaying negative 

trends of aging markers. Some of these differences were likely due to interventions in the 

personal life of the individuals, such as lifestyle changes (such as, weight loss), suggesting 

that these markers are actionable and that lifestyle changes can be used to alter an 

individual’s aging pattern. In other cases, the source of the improvement in aging markers 

(such as, the four cases where creatinine was decreased) is not clear.

Here, distinct pathways associated with age in each individual have been revealed. For 

example, in individual ZOZOW1T, the coagulation pathway was the pathway most strongly 

correlated with age. However, for individual ZN3TBJM, the cardiac hypertrophy pathway 

was the pathway most correlated with aging, suggesting alterations in heart function. These 

differences may be due to individual genetics, personal life habits, medical history or life 

stresses. We monitored lifestyle (diet and physical activity) and medication for most 

participants and did not observe obvious changes for most (with the exceptions noted), 

indicating that differences are either intrinsic or due to more subtle lifestyle changes.

In addition to individual ageotypes, we defined four main pathways enriched with aging 

using the longitudinal data from 43 individuals. Our analysis shows that some individuals 

fall strongly into one or more of these aging pathways, suggesting that they have distinct 

ageotypes. Improvements in lifestyle can presumably affect one or more ageotypes. Indeed, 

individuals ZL9BTWF and ZK112BX lost weight during the course of our study and 

improved in multiple clinical markers associated with multiple pathways. It is possible that 

improvements in ageotype can be targeted at the individual pathway level (such as, immune 

function or metabolic pathways) using selective interventions (such as, drugs) or in 

aggregate using broad lifestyle changes. The availability of personal timedependent aging 

markers potentially enables aging to be acted upon at an individual level.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591019-0719-5.
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Methods

The data supporting the findings of this study are available within the paper and its 

Supplementary Information files. The study design, participant recruitment, sample 

preparation, multiomics assay descriptions and data processing methods are documented by 

Zhou et al.13 and Schüssler-Fiorenza Rose et al.14. This section describes analyses specific 

to this study.

Validation cohort.

To validate the proteomics and standard clinical tests of the cross-sectional aging study, a 

cohort of 31 healthy individuals (14 females and 17 males) between the ages of 21 and 75 

years (median age of 37 years) was recruited under research study protocol 34563, approved 

by the Stanford University Institutional Review Board. All participants provided group 

consent. Participants were recruited through announcements at a scientific conference. This 

study complies with all relevant ethical regulations and informed written consent was 

obtained from all participants. Supplementary Table 19 lists information on each individual, 

such as sex, age, ethnicity, fasting glucose, HbA1c and some of the clinical lipid results. 

Briefly, plasma and serum were prepared from blood collected from fasted individuals. The 

plasma samples were profiled using SWATH-MS15 and clinical test results were collected 

from the serum. Molecules associated with age were identified as described in the next 

section.

Cross-sectional correlations with aging.

For molecular associations with aging, the median value of each measurement at all healthy 

baselines per participant was tested for association with median age values. For aging 

association, Spearman correlation was calculated with the cor.test() function in the R stats 

package (v.3.5.0).

Individuals in our cohort were classified by an SSPG test into IR and IS groups, in which 35 

individuals with SSPG values higher than 150 mg dl−1 were considered as being IR and 31 

with an SSPG lower than 150 mg dl−1 were designated as being IS12.

To compare correlations specific to IR and IS subgroups, the median values from 35 

participants who were IR and 31 participants who were IS were used, treating BMI as a 

confounding factor, using the pcor.test() function in the R ppcor package (v.1.1). The IR and 

IS difference in the aging association was further tested in rank-based linear regression 

models with an interaction term as implemented in rfit(Exp ~ days × IR/IS) in the Rfit 

package (v.0.23.0), where Exp represents the normalized value per molecule.

Pathway-enrichment analysis.

Pathway-enrichment analysis was performed using Qiagen Ingenuity Pathway Analysis 

(IPA). For cross-sectional studies, significant molecules (P < 0.05, before multiple-

hypothesis correction) were used for analysis to consider contributions from all omics data 

types. Fisher’s exact test in the IPA software was used for calculating the FDR and a cutoff 

of FDR < 0.05 was set for pathways. IPA and interpretation were based on the 
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comprehensive and manually curated content of the Ingenuity Knowledge Base, which 

organizes biological interactions and functional annotations created from primary literature 

and public and third-party databases (Qiagen; https://www.qiagenbioinformatics.com/

products/ingenuitypathway-analysis).

Linear regression analysis for personal aging trends.

Longitudinal measurements from each ome were linearly transformed before normalizing to 

a standard distribution N ~ (0,1) across all healthy visits. For each individual, a delta change 

at each visit was calculated by subtracting measurements from the initial baseline value. 

Accordingly, the day since onset was calculated as the number of days from the first baseline 

measurement. For each individual, a rank-based (nonparametric) linear regression was 

implemented to correlate the change in value versus the day since onset for each analyte. 

The correlation coefficient rho and P values of Spearman correlation were calculated using 

the rcorr() function in the R Hmisc package (v.4.1–1). The slope and Wald statistic score of 

the regression line were calculated using the rfit() function in the R rfit package (v.0.23.0). A 

Wald score was used to test the general linear hypothesis as follows:

H0:Mβ = 0versus HA:Mβ ≠ 0

where β is the regression coefficient and M is the data matrix.

For dietary eating habits, a validated short dietary assessment34 was used to collect 

participants’ food frequency changes on the same day as the visit. We collected more than 

300 fully completed instruments for 28 individuals during the study. The frequency 

responses to 25 food categories were converted to numeric values before downstream 

analysis. The 25 food categories included were: (1) slices of bread or rolls, (2) biscuits, (3) 

cakes, scones, sweet pies or pastries, (4) breakfast cereal, (5) fresh fruit, (6) cooked green 

vegetables, (7) cooked root vegetables, (8) raw vegetables or salad, (9) chips, (10) potatoes, 

pasta or rice, (11) meat, (12) meat products, (13) poultry, (14) white fish, (15) oil-rich fish, 

(16) cheese, (17) beans or pulses, (18) sweets or chocolates, (19) ice cream, (20) crisps or 

savory snacks, (21) fruit juice, (22) soft or fizzy drinks, (23) cakes, scones or sweet pies, 

(24) pastries and (25) biscuits. The frequencies of 6+ times per day, 4–5 times per day, 2–3 

times per day, once per day, 5–6 times per week, 2–4 times per week, once per week, 1–3 

times per month and less than once per month were converted to 0–8, respectively. The 

associations of these eating habits with aging (in days) during the study followed the 

Spearman correlation analysis as above. In this case, a positive rho indicated a decrease in 

the frequency of food intake, whereas a negative rho indicated an increase in the frequency 

of food intake.

To score changes in medications, we specifically examined statins and other cholesterol-

lowering medications (including atorvastatin, fluvastatin, Niaspan, cholestyramine, 

fenofibrate and gemfibrozil), as well as metformin and other glucose-control medications 

(including insulin, acarbose, albiglutide, alogliptin, dapagliflozin, glimepiride, linagliptin, 

metformin and sitagliptin). We manually scanned each participant’s electronic health record 

that aligned with the study window (from the enrollment date of each participant to the last 
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visit analyzed) and examined medication prescription start and end dates to assess changes 

in medication over the course of the study.

In a second method, we used linear mixed-effects models to account for the dependence 

within participants. To avoid bias caused by different time windows measured for each 

individual, we focused on changes that occurred within the first 1,200 d. Results are 

summarized in Supplementary Table 6. We used rmcor, a method that is close to a null 

multilevel model of varying intercept and a common slope for each individual, and 

specifically tests for a common association between variables (expression or abundance of 

an analyte and number of days since onset) within each participant. rmcorr calculates an 

effect size to appropriately represent the degree to which each participant’s data is reflected 

by the common slope of the best-fit parallel lines. The rmcorr method takes a meta-analytic 

approach and calculates rrm (error degrees of freedom (d.f.)), P value (determined by the F 
ratio: F(measure d.f. (1), error d.f.)) and a 95% confidence interval (CI) of effect sizes. 

When the relationship between variables (expression or abundance of an analyte and number 

of days since onset) varies widely across participants, the rmcorr effect size will be near zero 

with the CI also near zero. When there is no strong heterogeneity across participants and 

parallel lines provide a good fit, the rmcorr effect size will be large, with a tight CI. To 

calculate the intraclass correlation coefficient, we first linearly transformed each analyte 

(when applicable) and standardized the total variation to 1, before applying the lmer() 

function from the lme4 R package, with the formula as lmer(Exp ~ 1 + days + A1C + SSPG 

+ FPG + (1|SubjectID), data = dataset, REML = FALSE), in which Exp was linearly 

transformed and standardized values of each analyte were obtained. FPG was the fasting 

plasma glucose as one of the clinical lab tests, and restricted maximum likelihood (REML) 

was one method implemented in the lmer function. We thereby calculated the intraclass 

correlation coefficient as the proportion of total variation explained by subject structure in 

the cohort by Vrandom subject/(Vrandom subject + Vrandom residual), where V was the 

variance from the corresponding component extracted by VarCorr().

Physical activity was assessed using the IPAQ short form, a validated measure of physical 

activity35. The IPAQ was scored per protocol using an automated scoring Excel worksheet to 

obtain the estimated total metabolic equivalent of task minutes per week of exercise. Proc 

reg in SAS 9.4 was used to regress the estimated metabolic equivalent of task minutes per 

week on time for each individual to determine whether there had been a significant change 

in physical activity.

Phenotypic age was calculated using the equation provided by Liu et al.27,28 that uses 

chronological age and nine biomarkers, including albumin, creatinine, glucose, log (C-

reactive protein), lymphocyte percent, mean cell volume, RDW, ALKP and white blood cell 

count. Proc reg in SAS 9.4 was used to regress phenotypic age on age to determine 

individual slopes. Proc mixed was used to determine the overall sample slope for the model 

using a linear mixed model that regressed phenotypic age on age and allowed for intercept 

and age as random effects grouped by participant. We used the maximum-likelihood method 

of estimation, the between–within degrees of freedom method and an unstructured 

covariance matrix.
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Personal aging pathways, major grouping and ageotypes.

For pathway enrichment for ageotype analysis, 608 molecules (Supplementary Table 11) 

that were significant in at least six individuals (P < 0.05, before multiple-hypothesis 

correction) were counted to balance the individual versus group components of the pattern. 

Pathway-enrichment analysis was performed using Qiagen IPA as above and 107 canonical 

pathways and 147 toxicity pathways were found to be significantly enriched (P < 0.05; 

Supplementary Table 12). To group those pathways into superfamilies of pathways, we 

merged two pathways in a pairwise fashion into one if the two had identical molecules for 

more than 60% of the pathway of the smaller size. Supplementary Table 13 lists the largest 

four superfamilies and the components of pathways merged. We defined ageotype patterns 

on the basis of the four superfamilies of pathways. We calculated the magnitude of the 

ageotype as the sum of regression coefficients in the linear regression models in which the 

molecules were associated with aging (in days) from each superfamily. If data were missing, 

individual molecules were excluded and had no effect on this summed slope. Low 

magnitudes meant a relatively low (or reserved) magnitude of increased changes over time 

compared to the highest changes that we observed in the cohort. Furthermore, average Wald 

scores were calculated as the mean of Wald statistics across all molecules from each 

superfamily, to test the probability of β, the regression coefficient of any molecule in that 

superfamily, being different from zero.

Summary of statistics.

The statistical method for each analysis is described in each of the above sections. To 

summarize, for aging associations, the correlation coefficient and P value were calculated by 

Spearman correlation and trends of normalized molecular expression to the days since onset 

were calculated by rank-based linear regression. Multiple-hypothesis testing was performed 

to count the dimensions of molecules being tested. Additionally, the Wald score was used to 

test the probability of the regression coefficient being different from zero. Also see the 

Nature Research Reporting Summary for details of statistics and analysis.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

Raw data included in this study are hosted on the NIH Human Microbiome 2 project site 

(https://portal.hmpdacc.org) with no restrictions on their use. Exome sequencing data are 

also available at dbGaP under study accession phs001719. v1.p1. Both raw and processed 

data are also hosted on the Stanford iPOP site (http://med.stanford.edu/ipop.html). For 

additional information regarding the study, please contact the corresponding author.

Extended Data
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Extended Data Fig. 1 |. Significant analytes associated with aging in the cross-section cohort (n = 
106).
Left: number of significant multi-omics molecules correlating with age based on p-value 

threshold (before multiple hypothesis correction). right: The categories and their 

corresponding percentage (frequency) of metabolites significantly associated with the age. 

Significance is based on the Spearman rank tests.
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Extended Data Fig. 2 |. Scatter plot of number of significant molecules with the age in 
longitudinal data of 43 individuals.
(Intentionally blank).
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Extended Data Fig. 3 |. Scatter plot showing associations of the magnitude (cumulative trend 
values of contributing molecules) of each ageotpes with BMi based on 43 individuals.
Associations are not significant. Significance is calculated in the linear regression model.
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Extended Data Fig. 4 |. Scatter plot showing associations of the magnitude (cumulative trend 
values of contributing molecules) of each ageotpes with Age based on 43 individuals.
Associations are not significant. Significance is calculated in the linear regression model.
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Extended Data Fig. 5 |. Scatter plot showing associations of the magnitude (cumulative trend 
values of contributing molecules) of each ageotpes with insulin-resistant/sensitive status based on 
43 individuals.
Associations are not significant. Significance is calculated in the linear regression model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. integrative Personal Omics Profiling (iPOP) cohort sampling and data collection for 
aging analyses.
a, Study design. A total of 106 participants were profiled by multiomic assays at their 

quarterly healthy visits over the course of up to 48 months. The numbers in green boxes 

indicate the number of months since enrollment for the quarterly visits. b, Graphical 

illustration of sample collection, multiomic assays and data generation for participants, 

including 35 participants who were Ir, 31 participants who were IS and 40 participants with 

an unclassified insulin status. Data from a total of 624 healthy visits were analyzed. Omic 

assays included proteomics using sequential window acquisition of all theoretical fragment 

ion spectra mass spectrometry (SWATH-MS), metabolomics using untargeted liquid 

chromatography mass spectrometry (LC–MS) and transcriptomics and microbial profiling 

using next-generation sequencing. c, Plot of the collection dates for all participants (left), 

participant characteristics (middle) and participant age (right). red, Ir; green, IS; dark gray, 

unknown insulin status; blue, the participant was included in the longitudinal study and was 

analyzed for personal aging trends (ageotyped); light gray, the participant was not included 

in the longitudinal cohort owing to insufficient sampling for ageotyping analysis.
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Fig. 2 |. Aging molecules and pathways revealed from cross-sectional analyses.
a, Spearman rho coefficients significantly associated with age for the indicated categories of 

data. red indicates positive associations and blue indicates negative associations. b, The 

number of molecules from each of the indicated categories of data (measurement types) 

belonging to the indicated pathways is shown. The top pathways are shown that were 

significantly enriched in molecules associated with age. ILK, integrin-linked kinase; 

rhoGDI, rho GDP-dissociation inhibitor; nrF2, nF-E2 p45-related factor 2; AMPK, AMP-

activated protein kinase. c, Scatter-plots showing the correlation trend of molecules 
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(expression level as y axis) with age (x axis) in two independent cohorts (iPOP, n = 106; 

validation, n = 31). Individuals from each cohort are shown as dots and the linear regression 

coefficient is noted as the red trend line with a gray confidence interval. d, Examples of 

associations that are different between participants who were Ir (n = 35) and IS (n = 31). The 

x axis shows the age of participants and the y axis shows the normalized values of the 

measurements (median normalization). Individuals are shown as dots and the linear 

regression coefficient is noted as the trend line with a gray confidence interval. P values 

indicate a significant difference between the trends associated with age for the Ir and IS 

groups. e, Heat maps of measurements in participants who were Ir (top) and IS (bottom). 

Only measurements that were significantly associated with age in the Ir group are presented. 

In each group, participants are ordered by their age, from left to right. red indicates 

increased expression and blue indicates decreased expression. MOnO, monocyte count; PLT, 

platelet count; ALKP, alkaline phosphatase.
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Fig. 3 |. Personal aging markers show personalized aging patterns that are distinct from those of 
cross-sectional aging markers.
a, Graphical illustration of the personal aging trend analysis based on longitudinal 

measurements of analytes in the same individual. b,c, Longitudinal analysis of aging in 

participants ZOZOW1T (b) and Zn3TBJM (c). Top, representative scatter plots showing 

longitudinal levels of analytes significantly associated with days elapsed since study onset. 

Longitudinal measurements of an analyte in one individual are shown as dots and the rank-

based linear regression coefficient is noted as the trend line with a gray confidence interval. 
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A2M, α−2-macroglobulin; SErPInF2, serpin family F member 2; MEF2A, myocyte 

enhancer factor 2A; MAP3K6, mitogen-activated protein kinase 6 (all measurements from 

transcriptomic rnA-seq). Bottom, examples of enriched pathways identified from aging-

associated analytes. Darker shades represent increased levels over the course of the study. d, 

Spearman rho coefficients comparing personal associations and cross-sectional associations 

(n = 106) for six clinical laboratory analytes. Participants analyzed for their personal aging 

trends are displayed along the x axis in the same order for each panel. For each clinical 

analyte, the Spearman rho coefficient obtained from cross-sectional association is marked 

with an asterisk. Color coding (pink, blue and green) for groups was based on clustering 

analysis using coefficients of the six clinical laboratory values. Individuals with changes in 

diet, exercise and weight management are indicated graphically in the A1C panel. Cr, 

creatinine; MOnOAB, absolute count of monocytes. e, Phenotypic age regression on the 

chronological age of individuals (n = 43). The gray trend line is the overall regression line 

for the cohort. The colored lines are the fitted regression lines for each individual.
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Fig. 4 |. Personal ageotypes defined from four major groups of pathways.
a, Venn diagram showing the number of analytes (C, cytokines; CL, clinical laboratory 

values; M, metabolites; P, proteins; T, transcripts) in each of the four ageotypes and the 

overlaps among them. b, Heat maps showing the levels of aging markers in the four major 

ageotypes for each individual: red, immunity ageotype; blue, metabolic ageotype; purple, 

liver dysfunction ageotype; green, kidney dysfunction ageotype. The darkness of shading 

reflects the magnitude of the aging trend, with red denoting a positive correlation and blue 

denoting a negative correlation. The magnitude (MAG) of the aging association and the 

Wald score are indicated above the heatmaps (see Methods for details). c, Overall patterns of 

the four ageotypes for 43 participants in the cohort, ordered by the magnitude of their 

immunity ageotype. The color-coding scheme is the same as described for b.
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