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Exploiting collateral sensitivity controls 
growth of mixed culture of sensitive 
and resistant cells and decreases selection 
for resistant cells in a cell line model
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Abstract 

Background:  CDK4/6 inhibitors such as ribociclib are becoming widely used targeted therapies in hormone-recep-
tor-positive (HR+) human epidermal growth factor receptor 2-negative (HER2−) breast cancer. However, cancers can 
advance due to drug resistance, a problem in which tumor heterogeneity and evolution are key features.

Methods:  Ribociclib-resistant HR+/HER2− CAMA-1 breast cancer cells were generated through long-term ribociclib 
treatment. Characterization of sensitive and resistant cells were performed using RNA sequencing and whole exome 
sequencing. Lentiviral labeling with different fluorescent proteins enabled us to track the proliferation of sensitive and 
resistant cells under different treatments in a heterogeneous, 3D spheroid coculture system using imaging micros-
copy and flow cytometry.

Results:  Transcriptional profiling of sensitive and resistant cells revealed the downregulation of the G2/M checkpoint 
in the resistant cells. Exploiting this acquired vulnerability; resistant cells exhibited collateral sensitivity for the Wee-1 
inhibitor, adavosertib (AZD1775). The combination of ribociclib and adavosertib achieved additional antiproliferative 
effect exclusively in the cocultures compared to monocultures, while decreasing the selection for resistant cells.

Conclusions:  Our results suggest that optimal antiproliferative effects in heterogeneous cancers can be achieved 
via an integrative therapeutic approach targeting sensitive and resistant cancer cell populations within a tumor, 
respectively.
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Background
In the past few years, several new therapies have con-
tributed to the treatment of various human cancers. In 
addition to the classical complex surgical, radio- and 
chemotherapy, the emergence of novel targeted [1, 2] and 

immunotherapies [3] resulted in longer progression-free 
and overall survival [3, 4]. In hormone-receptor-positive 
(HR+), human epidermal growth factor receptor 2-neg-
ative (HER2−) breast cancer CDK4/6 inhibitors and 
mammalian target of rapamycin (mTOR) inhibitors are 
the most widely used targeted therapies, adding signifi-
cant benefit to baseline endocrine therapy [4, 5].

A subset of patients receiving targeted therapies 
observe disease progression [6, 7]. Recent progress 
indicates that tumor heterogeneity and subclonal evolu-
tion can be key features contributing to drug resistance 
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[8–11]. Following clonal expansion, acquired mutations 
in cancer cells give rise to different subclones, popula-
tions of distinct geno- and phenotypic characteristics 
and provide a basis for adaptive evolution of the tumor 
mass [8, 10]. In the case of selective pressure, resistant 
subclones can exhibit a relative proliferative advantage 
compared to sensitive cells, resulting in resistant cells 
becoming the predominant subclones, eventually over-
taking the entirety of the tumor mass [8]. These resist-
ant subclones can be therapy-induced (i.e. they have 
not been present as a population before the start of 
therapy); however, a growing body of evidence confirms 
that in several cases pre-existing resistant subclones are 
being selected for during the course of treatment [8, 10, 
12–14].

Most current standard-of-care therapy regimens are 
altered only when chemoresistance renders the tumor 
mass unresponsive to the drug, resulting in progression 
or relapse [15–17]. Previously effective treatments lose 
their ability to control the tumor burden and because 
cross-resistance renders several secondary drug classes 
ineffective, efficacious second-line treatments can be 
difficult to find [17, 18]. Some of these resistance traits 
include rewiring key pro-proliferative pathways which 
can create acquired and targetable sensitivities [19].

Therapeutic approaches could benefit from taking into 
account evolutionary processes in cancer to develop new 
tools to postpone or overcome drug resistance. Adaptive 
therapy aims to exploit the changing proliferative advan-
tage between resistant and sensitive cells. This approach 
succeeds when resistant cells are more fit compared to 
sensitive cells when drug pressure is on, while when no 
treatment is present sensitive cells are more fit [20–22]. 
Another approach in treating both sensitive and resist-
ant cells without providing relative proliferative benefit 
to either cell type is the application of collateral sensi-
tivity. Collateral sensitivity is the acquired vulnerability 
of a resistant cell against a second drug, which was not 
applied previously when resistance for the preced-
ing drugs was generated [23, 24]. Exploiting collateral 
sensitivity aims to control the tumor burden through 
a combination of drugs by targeting sensitive cells with 
the standard-of-care primary drug while targeting the 
acquired sensitivities of resistant cells with a secondary 
drug [17, 23, 24]. Recent clinical trials targeting frequent 
resistance mechanisms up-front revealed a clear advan-
tage over only blocking the primary target in EGFR-
mutant non-small-cell lung cancer and BRAF-mutant 
melanoma [25, 26]. In addition to cancer treatments, col-
lateral sensitivities of antibiotic-resistant bacteria are also 
highly sought after to propose novel, more effective anti-
bacterial treatment regimens in an era of emerging anti-
biotic resistance [27].

Here, we developed a coculture system to study the 
effects of collateral sensitivity on the growth of spheroids 
containing cells sensitive and resistant to CDK4/6 inhibi-
tors. Transcriptional profiling of sensitive and resistant 
cells revealed druggable acquired vulnerabilities of the 
resistant cells. By labeling the sensitive and resistant cells 
with different fluorescent proteins we were able to track 
their proliferation under drug pressure, mimicking the 
population dynamics of sensitive and resistant subclones. 
Our results show that coculture spheroids of sensitive 
and resistant cells under the selective pressure of riboci-
clib selects for the ribociclib-resistant cells. Comparing 
the transcriptional differences of sensitive and resistant 
cells revealed the downregulation of G2/M checkpoint 
in resistant cells, upon which collateral sensitivity against 
the Wee-1 inhibitor adavosertib (AZD1775) was con-
firmed in the resistant cells. The combination of riboci-
clib and adavosertib outperformed the antiproliferative 
effect  of mono-treatments in the cocultures but not in 
the monocultures, while also decreasing the selection for 
resistant cells. Our results promote a phenotype-driven 
optimization of evolutionary antiproliferative therapy as 
a model for further assessment in the pre-clinical and 
clinical setting.

Methods
Cell lines and reagents
The estrogen-receptor-positive (ER+), HER2- CAMA-1 
breast cancer cell line was maintained in DMEM+ 10% 
FBS+ 1% antibiotic–antimycotic solution. CAMA-1 cell 
line was authenticated by the ATCC cell line authen-
tication service. Cells were continuously treated with 
ribociclib (Selleck Chemicals, Cat. No: S7440) at 1  µM 
concentration for 1  month followed by 250  nM for 
4  months to develop resistance. Ribociclib-resistant 
CAMA-1 cells (CAMA-1_ribociclib_resistant) were fur-
ther maintained in complete culture medium supple-
mented with 250 nM ribociclib. Resistance and collateral 
sensitivity against adavosertib (Selleck Chemicals, Cat. 
No.: S1525) were detected by the alteration of the dose–
response curve measured using CellTiterGlo Chemolu-
minescent Kit (Promega Corporation, Cat. No.: G7573). 
Cell lines were confirmed to be mycoplasma-negative 
using the Mycoalert PLUS Mycoplasma detection kit 
(Lonza, Cat. No.: LT07-703).

Sequencing and bioinformatic analysis
Parental sensitive CAMA-1 and CAMA-1_ribociclib_
resistant cell lines were plated 500,000 cells/well in a 
6-well plate in triplicates. 24  h after plating 1  µM ribo-
ciclib or vehicle (dimethyl sulfoxide, DMSO) treatment 
were applied for 12 h, after which cells were trypsinized, 
washed and the pellet was frozen at − 80C for subsequent 
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RNA isolation. RNA was isolated using the RNeasy Plus 
Mini Kit (Qiagen, Cat. No.: 74136) following the manu-
facturer’s protocol.

RNA-seq libraries were prepared using Illumina 
TruSeq Stranded Total RNA library Prep Ribo-zero 
Gold following manufacturer’s protocol. Libraries were 
sequenced with biological triplicates on an Illumina 
NovaSeq6000 instrument with 2 × 150 paired-end reads 
resulting in an average of 25 million reads per sample. 
Samples were aligned to the human reference genome 
(hg19) using the STAR (v2.7.0) aligner [28]. Transcripts 
were quantified by RSEM (v1.3.1) followed by differen-
tial expression analysis using DESeq2 (v1.26) and GSEA 
pathways analysis using TPM normalized values and 
the R packages GSVA (v1.30.0) [29–31]. Genes with at 
least a twofold change in expression with FDR < 0.05 
were considered statistically significant. Signature scores 
were generated using the Molecular Signatures Database 
(v6) Hallmark signature sets. Pathway enrichments with 
global p-value < 0.05 and FDR < 0.25 were considered sta-
tistically significant. Differentially expressed genes were 
also subjected to pathway analysis regarding the Biocarta 
pathways using DAVID Bioinformatics Resources [32]. In 
this analysis an FDR-corrected p-value < 0.05 was consid-
ered statistically significant.

DNA was isolated from CAMA-1 and CAMA-1_ribo-
ciclib_resistant cells using DNeasy Blood & Tissue Kit 
(Qiagen, Cat. No.: 69504) according to the manufac-
turer’s protocol. For whole-exome sequencing, libraries 
were prepared using Agilent SureSelect XT human All 
Exon v7 following the manufacturer’s protocol. Libraries 
were sequenced on a NovaSeq6000 with 2 X150 paired-
end reads to a sequencing depth of 285X (CAMA-1) 
and 300X (CAMA-1_ribociclib_resistant). Reads were 
trimmed with Trimmomatic prior to alignment to hg19 
using BWA-mem [33, 34]. Genome Analysis Tool Kit 
(GATK) best practice guidelines were then followed 
including the use of Picard and Samtools for PCR dupli-
cate removal and bam manipulation, and GATK for indel 
realignment and base recalibration [35, 36]. Variant call-
ing was performed using an n − 1 consensus approach 
using three somatic variant callers: Mutect2, Strelka 
and Varscan2 [35, 37, 38]. This approach was chosen to 
reduce caller specific false positives. Variant annotations 
were generated using SNPeff, and Annovar [39, 40]. All 
bioinformatic analysis utilized the BETSY workflow man-
ager [41].

Lentiviral labeling of sensitive and resistant cells
Lentiviruses incorporating Venus (LeGO-V2) and 
mCherry (LeGO-C2) fluorescent proteins were gener-
ated using Lipofectamine 3000 reagent (Thermo Fisher 
Scientific) according to the manufacturer’s instructions. 

LeGO-V2 and LeGO-C2 vectors were gifts from Boris 
Fehse (Addgene plasmids #27340 and #27339) [42]. 
CAMA-1 and CAMA-1_ribociclib_resistant cell lines 
were transduced with Venus- and mCherry-containing 
lentivirus, respectively using reverse transduction, result-
ing in CAMA-1_V2 and CAMA-1_riboR_C2 cell lines. 
Briefly, 1  ml of polybrene-containing cell suspension of 
200,000 cells were plated in a well of a 6-well plate, where 
0.5  ml of viral aliquot was previously dispensed. Cells 
were incubated for 48 h at 37 °C and 5% CO2, after which 
cells were washed and fresh regular culture medium was 
applied. Fluorescently labeled cells were selected using 
fluorescence-activated cell sorting after further subcul-
ture of transduced cells to attain homogeneously labeled 
cell populations.

Coculture experiments
2000 cells were plated in different proportions (100% 
CAMA-1_V2, 50% CAMA-1_V2—50% CAMA-1_riboR_
C2, 100% CAMA-1_riboR_C2) in 96-well round-bottom 
ultra-low attachment spheroid microplate (Corning, Cat. 
No.: 4520). 24  h later, spheroids were washed and fresh 
medium including treatment drugs was applied. Sphe-
roids were treated for a total of 21  days with imaging 
and media change been performed at every 4th and 7th 
day of the week. Imaging was performed using Cytation 
5 imager (Biotek Instruments) gathering signal intensity 
from brightfield, YFP (for Venus fluorescence) and Texas 
Red (for mCherry fluorescence) channels. Raw data pro-
cessing and image analysis were performed using Gen5 
3.05 software (Biotek Instruments). Briefly, the stitch-
ing of 2 × 2 montage images and Z-projection using 
focus stacking was performed on raw images followed 
by spheroid area analysis. On the 21st day of treatment, 
spheroids were harvested, trypsinized, washed, resus-
pended in 2  µg/ml DAPI containing flow cytometry 
buffer (PBS + 5% FBS). Samples were subjected to flow 
cytometry analysis using Fortessa X20 flow cytometer 
(BD Biosciences) to assess the relative proportion of sen-
sitive (Venus-labeled) and resistant (mCherry-labeled) 
cells. Venus fluorescence was excited with 488 nm laser 
and was separated by a 505 long-pass filter and detected 
through a 530/30 bandpass filter. mCherry fluorescence 
was excited with 561  nm laser and was separated by a 
595 long-pass filter and detected through a 610/20 band-
pass filter. DAPI fluorescence was excited with 355  nm 
laser and was separated by a 410 nm long-pass filter and 
detected through a 450/50 bandpass filter. Flow cytom-
etry data were analyzed using FlowJo software (FlowJo, 
LLC version 10.5.3). Following the exclusion of doublets, 
fluorescence-positive live cells were analyzed in order to 
determine the proportion of sensitive and resistant cells 
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within the spheroids. All coculture experiments were 
performed in triplicates.

Statistical analysis
Dose–response curves were generated using GraphPad 
Prism 7.02 software. Differences in dose–response curves 
were compared using extra sum-of-squares F-test. Dif-
ferences in spheroid areas and cell proportions were ana-
lyzed using Student’s independent samples T-test. Unless 
otherwise stated a p-value < 0.05 was considered statisti-
cally significant.

Results
Long‑term ribociclib treatment results 
in ribociclib‑resistant cell line
After months of continuous ribociclib treatment, resist-
ance to ribociclib emerged (CAMA-1_ribociclib_
resistant cell line), as demonstrated with the different 
dose–response curves (p < 0.0001 Fig.  1a). Short-term 
ribociclib treatment resulted in 151 and 69 differentially 
expressed genes in the sensitive (CAMA-1) and resistant 
(CAMA-1_ribociclib_resistant) cell lines, respectively, 
with 68 genes downregulated in both cell lines (Fig. 1b–d, 
Additional file 1: Tables S1, S2). Using both Hallmark and 

Biocarta pathway gene sets, we find that “CDK regula-
tion of DNA replication” was significantly altered in the 
resistant cells (untreated vs. ribociclib treated CAMA-1_
ribociclib_resistant cells, FDR-corrected p-value: 
7.2 × 10−6) while the two significantly dysregulated path-
ways between untreated and treated sensitive CAMA-1 
cells were “CDK regulation of DNA replication” (FDR-
corrected p-value: 6.6 × 10−10) and “cyclins and cell cycle 
regulation” (FDR-corrected p-value: 3.0 × 10−2), which is 
consistent with the mode of action of ribociclib.

We performed whole-exome sequencing on DNA 
isolated from the sensitive and resistant cells to detect 
acquired mutations in resistant cells. We found 9 high 
impact mutations mainly resulting in early stop codon 
occurrence and 34 moderate mutations resulting in sin-
gle amino acid changes, while 18 mutations did not 
change the amino acid sequence of the coded proteins 
(Table  1). Although no detected mutations are directly 
associated with resistance against CDK4/6 inhibition, 
we found several mutations in cancer-associated genes 
possibly contributing to the acquired resistance against 
CDK4/6 inhibition.
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Fig. 1  Transcriptional response to ribociclib in sensitive and ribociclib-resistant cells. a Dose–response curves of CAMA-1 and CAMA-1_ribociclib_
resistant cells under different concentrations of ribociclib treatment. Cells were treated with increasing concentration of ribociclib for 96 h, after 
which viability was measured using CellTiterGlo Chemiluminescent kit. The measured luminescence was normalized to the average of the lowest 
applied concentration (0.01 nM). Data points show the average of three replicates, error bars show standard deviation if it is larger than the size 
of the data point. b Venn diagram demonstrating the number of significantly differentially expressed genes in response to 12 h of 1 µM ribociclib 
treatment in CAMA-1 and CAMA-1_ribociclib_resistant cells. Blue circle incorporates differentially expressed genes in CAMA-1, while the red circle 
incorporates differentially expressed genes in CAMA-1_ribociclib_resistant cells. Red numbers demonstrate the number of upregulated, while blue 
numbers demonstrate the number of downregulated genes in response to ribociclib treatment. c, d Heatmaps demonstrating the expression of 
significantly differentially expressed genes in response to ribociclib treatment in CAMA-1_ribociclib_resistant (c) and CAMA-1 (d) cells
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Table 1  SNPs of high and moderate predicted impact in CAMA-1_ribociclib_resistant cells compared to parental CAMA-1 
cells

Gene symbol Predicted 
SNP 
impact

Predicted SNP effect Detected mutation Gene’s implication in cancer prognosis/progression

MIA3 High Stop gained c.2335A>T p.Lys779*

BTLA High Stop gained c.94G>T p.Glu32*

SAMD9 High Stop gained c.2827G>T p.Gly943*

ARMCX2 High Stop gained c.1055C>A p.Ser352*

WDFY3 High Stop gained c.7504C>T p.Gln2502*

SEMA6A High Stop gained c.270T>A p.Tyr90* Benign prognostic factor in glioblastoma [53]

ALDH5A1 High Structural interaction variant c.844T>C p.Phe282Leu Benign prognostic factor in high-grade serous ovarian 
carcinoma [54]

ARHGDIA High Structural interaction variant c.573C>A p.Ser191Ser Benign prognostic factor in glioma [55]

MAPKBP1 High Stop gained c.3268G>T p.Glu1090*

SORCS1 Moderate Missense variant c.2303G>A p.Gly768Glu

RAG1 Moderate Missense variant c.2023C>A p.Leu675Met

NEUROD4 Moderate Missense variant c.204G>T p.Lys68Asn

NALCN Moderate Missense variant c.2091T>G p.Ile697Met Somatic mutations in pancreatic ductal adenocarcinomas 
[64]

AHNAK2 Moderate Missense variant c.12994G>A p.Val4332Met Correlates with poor prognosis in pancreatic ductal adeno-
carcinomas [65]

MYO9A Moderate Missense variant c.4708G>C p.Glu1570Gln

CHD2 Moderate Missense variant c.595C>T p.Arg199Cys

CNTNAP1 Moderate Missense variant c.2109C>G p.Phe703Leu

NLRP5 Moderate Missense variant c.2448G>A p.Met816Ile

HEATR5B Moderate Missense variant c.307G>T p.Asp103Tyr

SPTBN1 Moderate Missense variant c.5222G>T p.Arg1741Leu

TTC3 Moderate Missense variant c.3788G>C p.Arg1263Thr

ZNF502 Moderate Missense variant c.503C>T p.Ser168Leu

CRYBG3 Moderate Missense variant c.1753A>G p.Lys585Glu

BMP3 Moderate Missense variant c.845C>A p.Ser282Tyr

TREML2 Moderate Missense variant c.496A>C p.Met166Leu

DPYD Moderate Missense variant c.384G>T p.Met128Ile

RASAL2 Moderate Missense variant c.199C>T p.Arg67Trp

CFAP46 Moderate Missense variant c.1333G>T p.Ala445Ser

CEP83 Moderate Missense variant c.380A>G p.Glu127Gly

TSPOAP1 Moderate Missense variant c.3004C>A p.Pro1002Thr

ZNF761 Moderate Missense variant c.1492G>C p.Glu498Gln

PAXIP1 Moderate Missense variant c.2004A>T p.Arg668Ser

RP1 Moderate Missense variant c.5123C>A p.Ala1708Asp Somatic mutations in intramedullary spinal cord ependi-
momas [66]

NCOA2 Moderate Missense variant c.3320G>T p.Ser1107Ile Frequently amplified in breast cancer [67]

GLYR1 Moderate Missense variant c.1336G>C p.Ala446Pro

DNAAF4 Moderate Missense variant c.572A>G p.Glu191Gly

CYP3A43 Moderate Missense variant c.1154T>C p.Leu385Ser

LRP4 Moderate Missense variant c.4798C>T p.Leu1600Phe

F11 Moderate Missense variant c.1654C>A p.His552Asn

CCDC166 Moderate Missense variant c.67G>C p.Ala23Pro

ANKRD22 Moderate Missense variant c.1253G>A p.Arg418Gln Correlates with relapse and short overall survival in non-
small cell lung cancer [68]

REM1 Moderate Missense variant c.188C>T p.Pro63Leu

PCSK1 Moderate Missense variant c.1270C>G p.Pro424Ala
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Ribociclib treatment selects for resistant cells in mixed 
cultures of sensitive and resistant cells
To discriminate sensitive and resistant cells in a cocul-
ture system, cell lines were labeled using lentiviral gene 
transfer with Venus and mCherry fluorescent proteins, 
respectively. Positively labeled cells were sorted using 
fluorescence-activated cell sorting to retain the homoge-
nously labeled populations and were further subcultured 
to be utilized in the spheroid experiments. To analyze the 
long term effects of ribociclib treatment in 3D cocultures 
of sensitive and resistant cells, 21-day-long experiments 
using spheroids of different compositions (100% sensi-
tive, 50% sensitive − 50% resistant, 100% resistant) were 
initiated (Fig. 2a).

Under no treatment, the growth of all spheroids was 
remarkable, reaching a 15- to 17-fold increase in sphe-
roid area during the 21-day treatment (Fig. 2b, Additional 
file  1: Table  S3). In the coculture setting, sensitive cells 
exhibited a relative proliferative advantage, as the FACS 
analysis confirmed that the majority of cells were Venus-
labeled sensitive cells (Fig.  2c, d). Continuous ribociclib 
treatment of 400 nM principally inhibited the growth of 
the spheroids that were started with 100% sensitive cells 
(only threefold increase in spheroid area over 3  weeks). 
In contrast, treatment only had a modest effect on the 
growth of spheroids that were started with 100% resist-
ant cells (12-fold increase in spheroid area over 3 weeks). 
Resistant cells proliferated more effectively under drug 
pressure in the coculture as well, resulting in a spheroid 
area 10% smaller than the treated 100% resistant mono-
culture. Flow cytometry analysis confirmed that riboci-
clib treatment selected for the resistant cells (Fig. 2c, d).

Transcriptional profiling of sensitive and resistant cells 
reveal key acquired vulnerability of resistant cells
To optimize the treatment of mixed spheroids of sensi-
tive and resistant cells, we aimed to detect acquired 
vulnerabilities in the phenotype of the resistant cells, 
upon which collateral sensitivity of potential combina-
tion drugs can be applied. We compared the transcrip-
tional profiles of untreated sensitive and resistant cells 
(untreated CAMA-1 vs. untreated CAMA-1_riboci-
clib_resistant) and found that 625 genes were signifi-
cantly dysregulated (fold change > 2 and false discovery 
rate < 0.05, Additional file 2: Figure S1, Additional file 1: 
Table S4). Among these genes, several cell cycle (CDK6, 
RUNX2, CCNB3) and antiapoptotic (BCL2) genes were 
found to be overexpressed in resistant compared to sensi-
tive cells. Pathway analysis using the Hallmark pathways 
provided 7 pathways significantly dysregulated between 
sensitive and resistant cells (Fig. 3a, b, Additional file 3: 
Figure S2, Additional file 1: Table S5).

The loss of the G2/M checkpoint renders cells more 
susceptible to mitotic catastrophe in the absence of suf-
ficient quality control. Since the CAMA-1_ribociclib_
resistant cells are more resistant to the G1 arrest caused 
by ribociclib and quality control at the G2/M checkpoint 
is also diminished in these cells based on the transcrip-
tional profiling, Wee-1 inhibition stimulating resistant 
cells to enter mitotic catastrophe can be more toxic to 
these cells. Dose–response experiments with the Wee-
1-inhibitor, adavosertib, on sensitive and resistant cells 
showed the IC50 value for adavosertib dropping by 42% 
(504.2  nM in CAMA-1 cells compared to 291.1  nM in 
CAMA-1_riboR cells, p-value: 0.0497), confirming the 
acquired sensitivity of resistant cells against adavosertib 
(Fig. 3c).

Leveraging collateral sensitivity controls spheroid growth 
without selecting for resistant cells
In an effort to overcome the selection of resistant cells in 
mixed spheroids, while still taking advantage of the anti-
proliferative effects of ribociclib treatment, we designed 
a follow-up experiment leveraging the collateral sensitiv-
ity of resistant cells in response to adavosertib. The same 
coculture system was used to investigate the long-term 
effects of to ribociclib, adavosertib and the combination 
of these two drugs. While the results of ribociclib treat-
ment replicated our previous experiment, long-term 
adavosertib treatment proved to be more effective on 
resistant cells, having only a slight antiproliferative effect 
on sensitive and mixed spheroids (Fig. 4a, b, Additional 
file  1: Table  S6). In line with the acquired adavosertib 
sensitivity in resistant cells, the proportion of sensitive 
cells was higher in adavosertib treated mixed spheroids, 
even compared to untreated control mixed spheroids, 
although no drug pressure also selected for the sensi-
tive cells (Fig.  4c, d). The combination of ribociclib and 
adavosertib achieved the strongest growth-limiting effect 
in the spheroids of various composition (100% sensitive, 
50% sensitive − 50% resistant, 100% resistant); however, it 
only added additional amount of growth inhibition com-
pared to single-agent therapy in the case of the mixed 
spheroids. The growth of 100% sensitive spheroids under 
ribociclib pressure with or without the addition of ada-
vosertib as well as the growth of 100% resistant spheroids 
under adavosertib pressure with or without ribociclib 
was quite indistinguishable, concluding that the combi-
nation adds considerable antiproliferative effect only in 
the mixed spheroids. The combination treatment also 
resulted in a larger proportion of sensitive cells compared 
to ribociclib mono-treatment as it selected for neither 
the sensitive nor the resistant cells.
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Discussion
Leveraging collateral sensitivity aims to control the 
growth of the tumor mass for a longer period by main-
taining a delicate balance between sensitive and resist-
ant cells without providing an unequivocal advantage 
to either cell type [17, 23]. Since rapid advancements in 
single-cell sequencing technologies enable us to track 
each cancer’s subclonal architecture throughout time 
and treatments [8, 10], personalized clinical manage-
ment of various tumors in the future might reside on the 
observed phenotypic differences of resistant subclones 
and their druggable acquired vulnerabilities.

In the present work, we aimed to create a 3D spheroid 
system as an in  vitro model of a heterogeneous tumor 
that incorporates both sensitive and resistant cells, fol-
lowed by analysis of the antiproliferative relevance of 
specifically targeting both cell types. 3D spheroids reca-
pitulate more closely the transcriptional program of 
in situ tumor cells compared to monolayer cultures and 
thus represent an emerging tool to better mimic the 
in  vivo phenotype of tumors affected by cell–cell, cell–
matrix interactions [43, 44].

As CDK4/6 inhibitors including ribociclib, abemaciclib, 
and palbociclib start to occupy a key role in the treatment 
of HR+, HER2− breast cancer [1], our interest focused 
on creating a ribociclib-resistant cell line from the widely 
used and characterized ER+, HER2− CAMA-1 cell line 
[45, 46]. Long-term exposure of ribociclib resulted in 
CAMA-1_ribociclib_resistant, a ribociclib-resistant 
CAMA-1 cell line. Sixty-nine and 151 transcripts were 
differentially expressed in response to short-term riboci-
clib treatment in the resistant and the sensitive cell lines, 
respectively. Although many fewer genes were dysregu-
lated in response to ribociclib treatment in the resistant 
cell line, Biocarta pathway analysis on the dysregulated 
genes revealed an association with “CDK regulation of 
DNA replication”. The pathway analysis, as well as the 
abundance of key members of the cell cycle-dependent 
transcriptional program (members of the E2F tran-
scription factor family, RRM2, cyclins, MCM2) [47, 48] 
underlined the clear cell cycle arrest ribociclib achieved 

in both cell lines. By comparing the baseline transcrip-
tional profile of sensitive and resistant cells, we found 
CDK6 overexpression in resistant compared to sensitive 
cells which potentially provides a significant contribution 
to ribociclib resistance. Yang et al. also found that CDK6 
overexpression is responsible for acquired resistance to 
CDK4/6 inhibitor abemaciclib in the in vitro setting [49], 
while other recent studies further confirmed resistance 
mechanisms facilitating G1/S transition despite CDK4/6 
inhibition such as cyclin E1 amplification or Rb1 loss [50, 
51]. In our results, the overexpression of additional key 
cell cycle regulators (RUNX2, CCNB3) may also facilitate 
cell cycle progression in response to CDK4/6 inhibition 
[52]. On the DNA level, we found several acquired muta-
tions in the resistant cells. Although no specific mutated 
gene can be directly linked to resistance against CDK4/6 
inhibitors, high impact mutations in several benign prog-
nostic factors (SEMA6A, ALDH5A1, ARHGDIA) might 
also contribute to unrestricted proliferation even under 
drug pressure [53–55].

With the successful creation of the ribociclib resistant 
cell line and by labeling the cell lines with different fluo-
rescent proteins using lentiviral gene transfer (Venus for 
CAMA-1 and mCherry for CAMA-1_ribociclib_resistant 
cell lines), we were able to coculture and track the pro-
liferation of sensitive and resistant cells under different 
treatments, resulting in a model system resembling heter-
ogeneous tumors. If left to proliferate without drug treat-
ment, sensitive cells enjoyed a proliferative advantage 
over resistant cells, confirming previous assumptions and 
observations related to the fitness cost of resistance [16, 
56]. Long-term ribociclib treatment, however, selected 
for resistant cells in the coculture setting, as expected. It 
is also important to note that the growth pattern and the 
final size of the coculture are only slightly smaller than 
the 100% resistant monoculture. This reflects the growth 
of a heterogeneous tumor during which a resistant sub-
clone takes over the tumor mass, diminishing the effect 
of the primary drug, ribociclib [50].

To overcome the relative proliferative advantage of 
resistant cells in the coculture setting, and to control 
the growth of these mixed spheroids more efficiently, we 

Fig. 3  Comparing the transcriptional program of CAMA-1 and CAMA-1_ribociclib_resistant cells reveals collateral sensitivity to Wee-1 inhibition. 
a Schematic representation of significantly altered Hallmark pathways between untreated CAMA-1 and CAMA-1_ribociclib_resistant cell lines. 
Positive normalized enrichment scores (NES) corresponds to enriched pathways in CAMA-1 (blue circles), while pathways with negative NES values 
(red circles) are enriched in CAMA-1_ribociclib_resistant cells. Additional enrichment scores for Hallmark pathways can be found in Additional 
file 1: Table S5. b Heatmap of all genes included in the Hallmark G2/M pathway in untreated CAMA-1 and CAMA-1_ribociclib_resistant cells. 
Representative genes of the pathway are labeled. Heatmap with all genes labeled can be found in Additional file 3: Figure S2. c Dose–response 
curves of CAMA-1 and CAMA-1_ribociclib_resistant cells under different concentrations of Wee-1 inhibitor adavosertib treatment. Cells were treated 
with increasing concentration of adavosertib for 96 h, after which viability was measured using CellTiterGlo Chemiluminescent kit. The measured 
luminescence was normalized to the average of the lowest applied concentration (0.01 nM). Data points show the average of three replicates, error 
bars show standard deviation if it is larger than the size of the data point

(See figure on next page.)
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aimed to target sensitive and resistant cells with different 
drugs. Since sensitive cells responded well to ribociclib, 
we wanted to combine ribociclib with a secondary drug 
against which resistant cells developed collateral sensitiv-
ity [17]. By comparing untreated transcriptional profiles 
of sensitive and resistant cells, we found that the Hall-
mark pathway “G2/M checkpoint” was downregulated 
in resistant cells, which elucidates a potential druggable 
phenotypic vulnerability. G2/M checkpoint is a major 
quality control checkpoint during cell cycle progres-
sion [57, 58]. In the case of inefficient DNA replication, 
DNA damage response pathways are activated resulting 

in G2-M arrest. The loss of this quality control check-
point renders cells with suboptimal cell cycle progres-
sion more susceptible to enter mitosis which results in 
mitotic catastrophe and apoptosis [59]. Apoptosis, on the 
pathway level and the key antiapoptotic regulator BCL2 
on the gene level, were both found to be upregulated in 
resistant cells. This constellation signals apoptosis induc-
tion due to continuous ribociclib pressure which is effec-
tively neutralized by elevated BCL2 levels, resulting in 
the survival of resistant cells under ribociclib pressure 
[60].
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Fig. 4  Effects of individual and combination treatments of ribociclib and adavosertib on spheroid growth and composition. a Representative 
images of time course spheroid growth of spheroids of different compositions. Images present the merged images of the Venus and mCherry 
channels. White bars correspond to 1000 µm. b Time course growth of spheroids presented on Panel A. Data points show average spheroid areas 
of three replicates, error bars show standard deviation if it is larger than the size of the data point. Vertical lines represent statistical comparisons of 
the spheroid area between spheroids on Day 21. Asterisks mark statistical significance (*p < 0.05, **p < 0.01). Further statistical analysis including all 
time points and raw data are presented in Additional file 1: Table S6. c Representative FACS analysis of mixed spheroids on Day 21 on untreated, 
ribociclib, adavosertib and ribociclib + adavosertib treated spheroids initiated in a composition of 50% sensitive and 50% resistant cells. Samples are 
identical to the mixed samples on Panel A (second, fifth, eighth and eleventh rows). d Proportion of sensitive cells under different treatments based 
on FACS analysis. Bars show the average of three replicates, error bars show standard deviation. Asterisks mark statistical significance (p < 0.05)
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Adavosertib, an inhibitor of the key G2/M checkpoint 
regulator Wee-1 kinase, was developed to facilitate 
mitotic catastrophe and subsequent apoptosis in cancer 
cells where genome integrity primarily relies on a main-
tained G2/M checkpoint [61–63]. We hypothesized 
that since the G2/M checkpoint is diminished in resist-
ant cells and BCL2 overexpression protects these cells 
against apoptosis, certain concentrations of adavosertib 
might achieve a higher antiproliferative effect on resistant 
compared to sensitive cell lines. Dose–response experi-
ments in sensitive and resistant cell lines confirmed the 
collateral sensitivity of resistant cells with regard to ada-
vosertib, prompting us for further examination in the 
long-term coculture system.

Ribociclib mono-treatment confirmed our previous 
results showing optimal growth inhibitory effect in 100% 
sensitive spheroids while selecting for the resistant cells 
in the mixed spheroids. Accordingly, with the acquired 
sensitivity of the resistant cells, adavosertib mono-treat-
ment had a larger antiproliferative effect on the resist-
ant cells compared to the sensitive cells and selected for 
the sensitive cells in the mixed setting. Although growth 
inhibitory effects of the mono-treatments, with the more 
effective drug on each monoculture (ribociclib for sen-
sitive, adavosertib for resistant), were indistinguishable 
compared to the combination treatment, combining the 
two drugs added a considerable antiproliferative effect 
in the mixed spheroids. This is in line with earlier pro-
posals that controlling the growth of heterogeneous can-
cers is optimal if all subclones are specifically targeted 
[8, 17]. Additionally, as neither cell type enjoyed a rela-
tive proliferative advantage over each other, the spheroids 
remained highly heterogeneous, keeping a delicate bal-
ance between sensitive and resistant cells [20], with the 
possibility that further treatment with this combination 
might be durable.

It is important to underline the limitations of our 
study. Our study is not able to directly translate to in vivo 
behavior of heterogeneous tumor proliferation, rather it 
represents a clinically relevant in vitro model system.

Conclusions
We created an in  vitro 3D spheroid coculture system 
modeling tumor heterogeneity dynamics with respect 
to sensitive and resistant cells towards the primary 
CDK4/6-inhibitor treatment. Following transcriptional 
profiling to detect acquired, collateral sensitivity of resist-
ant cells, we show that an integrative approach selectively 
targeting sensitive and resistant cells is needed to opti-
mally restrict spheroid growth of cocultures.
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