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Abstract

Stain normalization is a crucial pre-processing step for histopathological image processing, and 

can help improve the accuracy of downstream tasks such as segmentation and classification. To 

evaluate the effectiveness of stain normalization methods, various metrics based on color-

perceptual similarity and stain color evaluation have been proposed. However, there still exists a 

huge gap between metric evaluation and human perception, given the limited explainability power 

of existing metrics and inability to combine color and semantic information efficiently. Inspired by 

the effectiveness of deep neural networks in evaluating perceptual similarity of natural images, in 

this paper, we propose TriNet-P, a color-perceptual similarity metric for whole slide images, based 

on deep metric embeddings. We evaluate the proposed approach using four publicly available 

breast cancer histological datasets. The benefit of our approach is its representation efficiency of 

the perceptual factors associated with H&E stained images with minimal human intervention. We 

show that our metric can capture the semantic similarities, both at subject (patient) and laboratory 

levels, and leads to better performance in image retrieval and clustering tasks.
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1 INTRODUCTION

Stain normalization, which transforms the color distribution of an image into a defined 

reference space, is a crucial pre-processing step for histopathological image processing. 

Various factors such as varying staining procedures across labs, different color responses of 

digital scanners and inconsistent stain manufacturing processes lead to undesired color 

variation in microscopic images [22, 27, 45]. These variations hamper the performance of 

machine learning algorithms on downstream analysis tasks for automated disease diagnosis. 
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Pre-processing with stain normalization techniques can mitigate this issue and has been 

shown to empirically improve classification [28] and nuclei segmentation accuracy [9, 49].

Conventional approaches rely on estimating the underlying stains by computing color de-

convolution matrix [23, 31, 45] or performing histogram-matching [36]. More recently, 

machine learningbased methods have focused on leveraging internal morphological 

structures using nuclei segmentation or deep generative models Figure 2: Our training 

pipeline: in the a) pre-processing step, we tile a whole slide image to 512 × 512 sized 

patches and select ones with top filtering score (s0–1), and in the b) learning step, we first 

embed three images of a triplet to lower dimensional vectors, and require perceptually closer 

images to have a lower distance in the embedding space. This is captured by triplet loss and 

we train the embedding networks end-to-end on pre-processed data. like variational-

autoencoders [22] and generative adversarial networks [50]. To enable automatic evaluation 

of the effectiveness of these methods, various metric-based approaches have been proposed. 

We can categorize popular metrics used in evaluating color normalization into two groups: 

1) perceptual similarity-based and 2) stain evaluation-based.

In perceptual similarity-based evaluation metrics, popular approaches include comparing 

images using per pixel measures like peak-signal-to-noise ratio (PSNR), L2 Euclidean 

distance in alternate color spaces (HSV/Lαβ) or leveraging perceptually motivated distance 

metrics used for image quality assessment like Structural Similarity Index (SSIM) [10], 

Feature Similarity Index (FSIM) [53], Multi-Scale Structural Similarity Index (MS-SSIM) 

[47] and Quanterion Structural Similarity Index (QSSIM) [25]. PSNR and SSIM are 

amongst the most popular metrics in stain normalization literature [7, 40]. However, key 

drawbacks of these metrics include assuming pixel-wise independence or limited ability to 

capture higher order image structure and contextual color information for tissue components, 

which humans could easily perceive. Even in perceptually motivated color spaces like Lαβ, 

color channels are not completely independent due to dye contribution and cannot be 

compared independently. Another drawback of intensity-based index like SSIM is its high 

sensitivity to geometric and scale distortions. This becomes a big problem in stain-

normalization studies wherein, the whole slide images being compared can have significant 

geometric differences.

Stain evaluation-based approaches rely on comparing the color distribution of hematoxylin 

& eosin (H&E) stained regions. Nuclei absorb hematoxylin while eosin is absorbed by 

stroma region. These metrics try to incorporate tissue structure by leveraging nuclei 

segmentation to estimate separate color distributions for hematoxylin-stained and eosin-

stained regions. Normalized Median Intensity (NMI) or histogram percentiles are compared 

for each distribution using L2 distance [14, 16, 51]. However, accurate estimation of color 

distribution entails manual annotation of nuclei and stroma pixels in reference image. Also, 

summary statistics-based measures have limited ability to capture semantics.

There still exists a gap between metric-based evaluation and human judgment for color 

similarity (see an example illustration in Figure 1). Different semantic structure and tissue 

composition of source and reference images should be considered for developing the 

similarity metric. To capture both contextual and color information, inspired by the learned 
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perceptual similarity metric (LPIPS) [54], we propose a novel learned perceptual similarity 

metric for H&E stained images, TriNet-P, which can be used for evaluating color 

normalization methods. Our metric is computed using deep embeddings, a feature vector 

which represents a visual concept and is extracted from a convolutional neural network. 

Specifically, we learn deep embeddings for images, and distances between images in the 

embedding space are used as our similarity metric, so that perceptually more similar images 

are closer to each other. The embeddings are learned via a triplet neural network structure 

[20] in an end-to-end fashion. In line with recent color normalization studies, the image data 

used in our study originates from four publicly available breast cancer histopathology 

datasets - MITOS [2], TUPAC [3], CAMELYON17 [4] and BACH-ICIAR [5]. For training, 

we leverage comprehensive image repository like The Cancer Genome Atlas (TCGA) [1], 

which comprises of whole-slide tissue biopsy samples with different cancer stages, and 

collected across multiple laboratories and patient cohorts. The main contribution of our work 

is three-fold:

• We propose a new pipeline to learn data-driven metrics for evaluating color 

similarity in histopathology images, which requires minimal supervision with the 

help of a state-of-theart triplet network training procedure.

• We show that compared to traditional perceptual metrics, our metric has an 

improved performance on identifying perceptually similar whole slide images: 

our metric can be used to retrieve perceptually similar image patches from 

multiple whole slide images.

• We also show that the embeddings can be used to define an inter cluster 

Euclidean distance which acts as a measure for perceptual stain similarity of 

whole slide images. The embeddings showed improved performance on 

clustering tasks and are also meaningful in low dimensional visualization tasks.

2 RELATED WORK

2.1 Image similarity metrics

Measuring perceptual similarity has been the focus of image quality assessment (IQA) 

methods. IQA methods have been classified as reference and no-reference based metrics. 

No-reference-based metrics use information contained in an image itself, such as the 

presence of noises and artifacts, for quality assessment, without comparing to the ground-

truth image for reference [32, 33, 42]. On the other hand, reference-based metrics typically 

focus on evaluating the similarity between a reference image and a modified version of that 

image containing artifacts like blurring and distortion.

Traditional reference-based metrics which incorporate structural information include SSIM 

[10], Feature Similarity Index (FSIM) [53], Visual Information Fidelity (VIF) [35] and 

HaarPSI [37]. These metrics were not designed to compare images with spatial ambiguities 

and rely on sliding window based convolutions to measure local similarity within images. 

This makes them unsuitable for comparing images from two domains with different internal 

composition. SSIM is widely used for comparing natural images due to its simplicity and 

effectiveness in measuring perceptual changes by taking pixel inter-dependencies into 
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account. SSIM performs structural comparison after normalizing for luminance & contrast 

changes across images and combines the structure comparison index with luminance & 

contrast comparison indices. It can be extended for multi-channel images by averaging the 

indices across all channels.Another line of research [44] has attempted to define new color 

spaces and corresponding distance metric that map colors with better perceptual uniformity. 

Recently, Zolotarev and Kaarna [55] leveraged a triplet network to learn a color metric using 

spectral data, which aligns better with human perception compared to Lαβ space. However, 

these methods are not widely popular for image similarity assessment due to their limitation 

in linking color with structural information.

In recent years, internal activations of deep convolutional networks trained for high-level 

image classification tasks have been shown to correspond well with perceptual sensitivity in 

humans, thus yielding an optimum space to measure image distance. Distance metric based 

on activations derived from simple unsupervised network initialization beats traditional 

image quality metrics significantly [54]. Our formulation is similar in spirit to the Learned 

Perceptual Similarity (LPIPS) metric proposed by Zhang et al. [54], LPIPS uses the hidden 

unit activations of the convolutional layers from image classification network such as 

AlexNet [29] and combines them with feature-specific weight to compute weighted 

activations. The final image distance metric d (·, ·) is computed by summing the average 

squared L2 distances between weighted activations over all layers. LPIPS optimizes the 

weights by training a fully connected network (G) with modified ranking loss (L), such that 

the distance metric best agrees with human judgment (h) derived from two-alternative forced 

choice (2AFC) tests. Given the pairwise distances in a image triplet (I, I1, I2) the loss 

function is given by:

L(l, l1, l2, h) = − hlogG(d(l, l1), d(l, l2)) − (1 − h)log(1 − G(d(l, l1), d(l, l2))) (1)

where I is the reference image and h ∈ [0, 1].

2.2 Deep Metric Embeddings

Metric embedding aims to learn a function, fθ , which maps semantically similar samples of 

the data onto closer points in metric space while dissimilar samples are pushed apart. The 

function fθ is parameterized by θ and can range from a linear transform to complex non-

linear mappings usually represented by deep neural networks. Deep metric learning has been 

applied to learn embeddings in various tasks including person classification [19], face 

recognition [41], visual product search [8], and object retrieval [52].

Learning perceptual similarity generally focuses on comparing example-to-example 

distances to train deep embeddings. This is achieved with pairwise distance based loss 

function using structures like pairs or triplets. Two widely popular formulations are 

contrastive loss and triplet loss. Contrastive loss based network tries to minimize the 

distance between matching pair (same class) while maximizing the distance between non-

matching pair. Siamese networks [11] is a key milestone utilizing contrastive loss for 

signature recognition and face identification. A drawback of contrastive embedding is that it 

requires real-valued accurate pair-wise similarities for training, which is difficult to obtain in 
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pathology. Natural image perceptual similarity metrics rely on human judgement studies to 

generate class labels for training. To address this, Triplet network was proposed by Ding and 

Tao [13] which focuses on relative dissimilarities between image pairs. Triplet network 

samples a triplet (i.e. a positive, a negative, and an anchor) and tries to learn the embeddings 

such that positive sample is pulled closer to the anchor by a pre-defined margin compared to 

the negative sample. Positive sample belongs to the same class as the anchor while negative 

sample belongs to a different class.

The performance of triplet network depends on selecting informative training triplets. Since 

the overall number of triplets is O(N3), where N is the size of the dataset, covering all 

combinations is inefficient and leads to slower training. Various approaches for triplet 

selection include pair-wise relevance based [46], semi-hard mining [39] and hard mining 

[20]. Recently, online hard mining based on selecting hardest triplets on a mini-batch level 

has been shown to generate higher accuracy for person re-identification [19]. Deep 

Embedding Learning in Medical Imaging. Deep metric embedding methods have also been 

applied in medical imaging applications. For example, Thammasorn et al. [43] used triplet 

loss to extract meaningful features that result in improved classification performance on 

gamma images during radiotherapy deliveries, and Yan et al. [48] used triplet network to 

learn lesion image embeddings that be used for abnormality detection.

3 METHOD

3.1 Problem Statement

We aim to learn a distance metric d that measures the distance between two images I, I1 as 

d(I, I1). The intuition is that the qualitative evaluation results matches human judgment of 

similarity:assume the oracle judgment can be represented as a function h, we’d like for any 

triplets (I, I1, I2), pairs deemed closer by human h should also be deemed closer by our 

metric d:

d(l, l1) > d(l, l2), ∀ l, l1, l2, for h(l, l1) > h(l, l2) (2)

To obtain a parametric form for d(I, I1), we adopt embedding based approach: we learn an 

embedding function fθ parameterized by θ, and the distance between two images is 

represented by the Euclidean distance between their embedding vectors in the embedding 

space as d(I, I1) = L2(fθ (I), fθ (I1)). To learn a distance metric is then to learn an 

embedding function that captures the semantic relationships between images, specifically in 

our case, the majority stain component from whole slide images.

3.2 Learning fθ with Triplet Loss

We use the triplet loss proposed by Hoffer and Ailon [20] to capture the intuition of Eq. (2). 

More specifically, for an anchor image I, we choose a positive image I+ that is from the 

same class of I (i.e. two patches from the same whole slide image), and also a negative 

image I− that is from a different class of I (i.e. two patches from different whole slide 

images). We provide a detailed description of how we assign the class of each image in later 

sections.
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To match our intuition on the property of the metric, we require that the distance between 

the anchor and the positive sample d+ = L2(fθ(I), fθ(I+)) is smaller than the distance 

between the anchor and the negative sample d− = L2(fθ (I), fθ (I−)), by at least a margin γ . 

Mathematically, the loss function is

loss(l, l + , l − ) = (y + d + − d − ) + (3)

where the function (t)+ = max(t, 0) is the hinge loss function. We utilize the numerically 

more stable soft-margin approximation given by softplus function : ln(1 + exp(d+ − d−)). 

Minimizing the sum of softplus loss over valid triplets, for which d+ > d−, is our overall 

training objective.

Triplet Mining.—The key to learning meaningful embeddings is to sample triplets which 

effectively contribute to the loss function (i.e., generate larger gradients). To this end, we 

evaluate batch-hard and batch-all-based triplet mining proposed by Hermans et al. [19]. In 

batch-hard sampling, for each anchor image I, we select I+ that is from the same class of I, 

but is farthest from I in terms of perceptual distance, and I− that is not from the same class 

but is closest to I. Batch-all sampling considers all combinations of valid triplets (semi-hard 

and hard) in a mini-batch.

3.3 Class Assignment and Image Selection

To generate training data for our network, we partition each whole slide image (WSI) into 

512 × 512 sized tiles and sample relevant patches. Tiles belonging to a WSI are assigned to a 

particular class. Since a large portion of WSI contains background, thresholding is required 

to extract tissue regions. Random sampling from WSI would lead to high intra-class 

variation in training data, primarily due to color variations caused by different absorption of 

H & E stains, and presence of artifacts like tissue folds, shadows, smudges & pen markings 

[27]. Hard mining-based triplet loss is sensitive to noise and as such, it would make the 

training difficult. Hence, at a class level, we need to ensure that there is relative color 

homogeneity. Moreover, tissue regions containing at least a certain number of nuclei have 

been leveraged in color normalization studies [14] implying that prioritizing nuclei 

containing areas can improve our metric’s accuracy. To ensure this, we incorporate weak 

supervision by leveraging the scoring function proposed by Eriksson and Hu.

s = t 2 p ∗ ln(1 + sf ∗ qf ∗ cf), scaledscore(s0 − 1) = 1 − 10 10 + s . (4)

Here, tp represents tissue percentage, sf measures how broadly saturation channel values are 

distributed, qf represents tissue quantity (more the better) and cf represents colorfactor 

which differentiates purple shades from pink shades and measures the relative deviation of 

each pixel’s hue value from pink and purple vectors in HSV (Hue, Saturation, Value) color 

space.

The scoring function focuses on tiles with higher tissue percentage and weighs hematoxylin 

staining over eosin staining. This ensures that extracted images within a class have sufficient 
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nuclei component and fully represent the semantic color dependencies between various 

tissue components.

3.4 Network Architecture for fθ

The core architecture of our model is based on the standard deep learning classification 

network and contains a convolutional neural network initialized with pre-trained weights. 

We utilize ResNet50- v1 [18] architecture pre-trained on ImageNet [38] database as our 

backbone architecture. It allows us to accommodate a larger batch size which leads to better 

optimization of triplet loss due to increased possibility of finding harder triplets. We also 

replace the last classification layer of the original ResNet network with two fully connected 

layers, the first one has 1,024 units, followed by ReLU and Batch Normalization [21] while 

the second layer is the feature embedding of dimension 128. We use global average pooling 

to reduce the spatial dimension of last convolutional layer. During each training step, the 

image triplet is fed to three convolution blocks with weight sharing to generate three 

embeddings for loss computation and back-propagation.

3.5 Training Configurations

Using pre-trained ResNet within our architecture leads to more effective generalization, in 

line with previous studies [6, 19]. Due to GPU memory constraints, we utilize 256 × 256 

dimension images to train the network. Sampled tiles are re-sized to 256 × 256 dimension 

while inputting to the network and standard data augmentation using random cropping and 

flipping is applied. We apply data augmentation during training only, no test time 

augmentation is performed. Training is performed using both batch-hard and batch-all 

sampling approaches with mini-batch size of 80 images (P= 4 classes and K = 20 images per 

class). We use the Adam optimizer [24] available in TensorFlow with default 

hyperparameter values (ϵ = 10–8, β1 = 0.9, β2 = 0.999). We train the network for 30,000 

iterations, starting with a learning rate of 3 × 10–4 and decay the learning rate exponentially 

after 20,000 iterations to close to zero.

4 EXPERIMENT AND RESULTS

4.1 Datasets

Our experiments were conducted using four breast cancer histological datasets with training 

and testing data derived as follows:

Training dataset. : Tumor Proliferation Assessment Challengeb (TUPAC) and The Breast 

Cancer Histology (BACH) datasets were used for training our model. TUPAC dataset has 

been derived from The Cancer Genome Atlas (TCGA) and consists of H&E-stained invasive 

cancer whole slide images (WSI). It comprises of 500 training WSIs with multiple levels of 

cancer proliferation and scanned at different laboratories. The WSIs are stored as multi-

resolution pyramid structures and contain multiple downsampled versions of the original 

tissue scanned at 40x magnification and a spatial resolution of 0.25 μm/pixel. BACH dataset 

was released as a part of ICIAR-2018 challenge and consists of 30 high resolution 

H&Estained breast histology WSI comprising four carcinoma stages. We merged TUPAC 

and BACH datasets, and randomly sampled 210 WSI for training. From each WSI, we 

Choudhary et al. Page 7

ACM BCB. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample a maximum of 1,000 tiles at highest magnification level, generating 200,000 image 

patches, each of size 512 × 512.

Test dataset. : Test images were drawn from MITOS and CAMELYON17 datasets, both 

of which are distinct from the training dataset. The class labels for each test image were 

defined based on its respective subject and laboratory ids. MITOS dataset is a publicly 

available dataset released as a part of MITOS-ATYPIA ICPR’14 challenge. The dataset 

comprises of 16 WSI with multiple 10x frames per case, scanned using Aperio scanner and 

re-scanned using Hamamatsu scanner. It allows us to evaluate our metric on inter-

microscope variability. We consider 11 subject cases in MITOS and sample 2,700 non-

overlapping patches of dimension 512 × 512 across each microscope at 10x magnification. 

Given the paired images from two microscopes, extracted patches have overlapping image 

content but different staining. CAMELYON17 dataset was collected across five medical 

centers in the Netherlands and released as part of CAMELYON17 Grand Challenge. It 

comprises of 1,000 WSI cases with 5 slides per subject, each having lymph-node metastasis 

condition. Since the centers might have employed different slide scanners or tissue staining 

procedures, we leverage the dataset to evaluate our metric on laboratory-related color 

variations. From CAMELYON17, we randomly select three subjects at each laboratory and 

sample 500 image patches for each subject at 40x magnification, generating 7,500 images. 

For quantitative benchmarking (Experiments 1 and 2), we create a smaller dataset by 

subsampling 20% images from the original test dataset. This is due to computational 

challenges involved in calculating SSIM and LPIPS metrics across image pairs. For 

visualizing the embeddings (Experiment 3), we consider the complete test dataset (12,900 

images).

4.2 Pre-processing

Pre-processing has been an important step in histopathology analysis for effective color 

normalization [14] or malignancy prediction [17, 34]. In line with the standard practice, we 

pre-process the whole slide image to improve the quality of our training dataset.

Tissue Segmentation.

Typically, whole slide images comprise of large amount of non-useful regions including 

background which need to be removed. We sub-sample each whole slide image by a factor 

of 1/16 to generate lower resolution image for tissue segmentation. Hysteresis thresholding 

is applied to remove background regions followed by color-based filtering across R,G, and B 

channels respectively to remove tissue artifacts. This is followed by morphological 

operations (closing & dilation) and removal of small objects to generate the final 

segmentation mask.

Tile Scoring.

Post tissue extraction, slides are split into contiguous image tiles of 512 × 512 pixels in size 

and a corresponding score (s0–1 defined in (4)) is generated for each tile. Moreover, only 

tiles with more than 90% tissue are considered. Tiles are sampled in decreasing order of 

scores and maximum of 1,000 tiles, with more than 90% tissue, are extracted for each WSI 
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for training. We found that sampling 1,000 tiles gives a balanced representation of various 

tissue components.

4.3 Experiment Results

We evaluate the performance of our proposed similarity metric in terms of its ability to 

retrieve and cluster similar image tiles from WSIs, both quantitatively and qualitatively. We 

also evaluate as to how effectively the performance of two popular perceptual similarity 

assessment metrics, SSIM and LPIPS translates to pathology images. We utilize AlexNet 

architecture for LPIPS, with weights calibrated to human judgment using 2AFC data. For 

SSIM, we evaluate the structural similarity index independently for each channel and 

subsequently, average the indices across channels. Our experimental evaluation is split up 

into two sections. The first part highlights the performance on class-wise image retrieval task 

with much better performance than perception-based image quality assessment metrics. In 

the second part, we evaluate the 128 dimensional embedding vector on its ability to 

effectively capture perceptual differences, in images acquired via different microscopes or at 

different laboratories, using a clustering-based approach. We also highlight our embedding’s 

effectiveness in assessing the quality of color normalization.

4.4 Experiment 1: Effectiveness of Learned Metrics in Retrieving Similar Images

The setup of this experiment is an image retrieval task, where for each query image, we 

retrieve the closest images from a candidate set (search pool) based on our similarity metric. 

Due to laboratory specific protocols, images taken at a particular laboratory would be 

perceptually closer in terms of color distribution compared to images captured at different 

laboratories. Hence, an ideal metric should be able to retrieve images belonging to the same 

laboratory with high accuracy. Moreover, since our metric has been trained on inter-slide 

perceptual variations, it should be able to retrieve patches belonging to the same subject with 

reasonable accuracy, even if two different subjects from the same laboratory have similar 

stain composition. We use the standard approach in retrieval tasks i.e. evaluating the recall at 

k scores (Rank-1, Rank-5 and Rank-10).

Recall@k = # of retrieved items @k that are relevant/ total# of relevant items (5)

We subsample 20% test dataset and split it equally into query and candidate sets comprising 

1,300 images each. Each image is assigned a class label based on its subject (patient) id and 

laboratory/microscope scanner id. For each query image, we retrieve the closest candidate 

image using our metric and compare their classes. We evaluate the retrieval accuracy using 

both subject and laboratory as class ids. In Tables 1 and 2, we can see that our metric yields 

the best Rank-1 scores for both datasets, highlighting the limitations of existing metrics in 

comparing pathological images with varying semantics. Batch-all generates slightly better 

results than batch-hard mining which can be attributed to the fact that batch-hard mining is 

more sensitive to the presence of color variation and artifacts within the same slide. 

Qualitative analysis of subject-based retrieval (Figure 7) indicates our metric’s ability to 

capture color-perceptual similarity across different subjects and laboratories. Our embedding 

not only takes into account the color similarity but also prioritizes tissue patches with similar 

nuclei structure and distribution. Due to the similar stain composition of tissues scanned at 
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labs 1,2 and 4 in CAMELYON17 dataset, our metric’s retrieval performance at subject level 

is sub-optimal, although in terms of patch perceptual similarity, it performs quite well.

4.5 Experiment 2: Effectiveness of Learned Metrics in Clustering

We then utilize clustering-based approach to evaluate the effectiveness of embeddings in 

capturing color-based perceptual nuances across different laboratories. We perform 

hierarchical clustering on embeddings generated for the subsampled test dataset. For SSIM 

and LPIPS, clustering is performed using pairwise distance matrix across all image pairs. 

The number of clusters (K) is set to the number of imaging sites across which the dataset 

was acquired (K = 2 for MITOS & K = 5 for CAMELYON17). The clustering performance 

is evaluated using normalized mutual information (NMI) score (NMI ranges in [0, 1] with 1 

being perfect clustering in line with the ground truth clusters) as shown in Table 3. Our 

metric successfully captures the perceptual differences due to different scanners in MITOS 

dataset with perfect NMI score. For CAMELYON dataset, although the NMI score is lower, 

our performance is much better than existing metrics. The lower NMI score is due to 

similarity in stain color appearance of slides prepared at labs 2 & 4 (Figure 7).

4.6 Experiment 3: Visualization of Learned Embeddings

We visualize our embeddings for test samples using t-Distributed Stochastic Neighbor 

Embedding (t-SNE) [30] plots (Figure 3 & Figure 4). The plots clearly highlight the 

separation between different laboratories and imaging equipment captured by our 

embedding. To evaluate our embedding’s effectiveness on capturing color shift during stain 

normalization, we consider 2,700 paired image samples from Aperio (A) & Hamamatsu (H) 

scanners in MITOS dataset. Using Structure-Preserving Color Normalization [45], we 

colornormalize domain ‘A’ images with respect to domain ‘H’, generating stain normalized 

image A*. In Figure 5, we visualize the embeddings for A, A* & H using t-SNE plot. As 

evident, the embeddings of A* and domain ‘H’ images overlap very well, indicating our 

embedding’s efficacy in capturing color related perceptual changes. We also present 

examples of patient-wise WSI samples in Figure 6 highlighting that better stain 

normalization leads to higher overlap between the embeddings of color-normalized and 

reference images.

5 CONCLUSIONS AND FUTURE WORK

In this paper, inspired by the effectiveness of deep neural networks in extracting 

representations and evaluating natural image perceptual similarity, we proposed a pipeline to 

learn a metric for evaluating the color-based perceptual similarity of whole slide images. The 

key method of our approach is to embed whole slide images such that in the embedding 

space, perceptually similar images are closer than dissimilar images. As shown by the 

evaluation results, our learned metric can capture the perceptual similarity of whole slide 

images and has shown improved performance over popular perceptual similarity metrics in 

image retrieval and clustering tasks.

In the next phase of this project, we plan to collect physicians’ ratings for similar whole 

slide image pairs, so that we can learn a metric that is even more aligned with human 
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perception in the same fashion. We also aim to improve our pre-processing pipeline by 

developing a more sophisticated tile selection algorithm which identifies informative regions 

using a combination of histopathological image features with tile scores, in line with Kothari 

et al. [26]. Since stain normalization leads to improved performance on downstream analysis 

tasks, we also plan to incorporate our method as a quality control step in the pre-processing 

pipeline of real-world pathological image tasks such as diagnosis of heart rejection. 

Moreover, it will also be interesting to examine how alternative metric learning methods can 

be leveraged in our learning, for example, histogram distance-based loss, quadruplet 

network [12], and how this metric can be used in other biomedical imaging analysis settings.
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Figure 1: 
Perceptual Distances Scores: Efficacy of our perceptual distance (TriNet-P) over existing 

metrics for evaluating stain-normalization: structural similarity (SSIM) and learned 

perceptual similarity (LPIPS): in terms of color perception, for the first image, the third 

image should be closer compared to the second one. Our metric successful captures this 

perception distance while existing metrics cannot distinguish the two.
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Figure 2: 
Our training pipeline: in the a) pre-processing step, we tile a whole slide image to 512 × 512 

sized patches and select ones with top filtering score (s0–1), and in the b) learning step, we 

first embed three images of a triplet to lower dimensional vectors, and require perceptually 

closer images to have a lower distance in the embedding space. This is captured by triplet 

loss and we train the embedding networks end-to-end on pre-processed data.
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Figure 3: 
t-SNE plot of embeddings for whole slide samples across five pathology labs in 

CAMELYON17
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Figure 4: 
t-SNE plot of embeddings for image samples generated from 11 subject case slides scanned 

using two micro scopes - Aperio (A) and Hamamatsu (H) (MITOS dataset)
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Figure 5: 
t-SNE plot of embeddings for color-normalized Aperio scanner images in MITOS dataset
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Figure 6: 
tSNE plots of embeddings for Aperio scanned images color-normalized with respect to 

Hamamatsu for 4 subjects. First row highlights color normalization results. Good 

normalization in A11 & A12 leads to overlapping embeddings.
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Figure 7: 
Subject-based retrieval results with 10-nearest neighbours (batch-all). The heading of each 

image indicates the laboratory/scanner id & subject id. First column contains query image; 

‘Red’ border indicates subject mismatch, ‘Green’ border indicates same subject.
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Table 1:

Laboratory-based retrieval scores for MITOS and CAMELYON17 (CAM) datasets

Metric Rank-1 Rank-5 Rank-10

MITOS CAM MITOS CAM MITOS CAM

SSIM [10] 51.71 19.40 84.03 25.39 92.78 32.42

LPIPS [54] 47.72 20.44 72.81 54.69 80.99 72.14

TriNet-P (batch-hard) 100.00 85.02 100.00 97.13 100.00 98.18

TriNet-P (batch-all) 100.00 88.02 100.00 96.48 100.00 97.92
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Table 2:

Subject-based retrieval scores for MITOS and CAME-LYON17 (CAM) datasets

Metric Rank-1 Rank-5 Rank-10

MITOS CAM MITOS CAM MITOS CAM

SSIM [10] 4.37 7.16 12.74 9.64 19.77 13.28

LPIPS [54] 4.56 6.38 12.36 23.44 19.58 35.94

TriNet-P (batch-hard) 76.81 48.57 95.06 85.42 97.91 94.01

TriNet-P (batch-all) 84.03 58.59 97.53 87.63 98.67 94.66
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Table 3:

NMI scores for clustering on MITOS and CAME-LYON17 (CAM) datasets using laboratory/scanner as class

Metric MITOS CAM

SSIM [10] 0.003 0.016

LPIPS [54] 0.005 0.007

TriNet-P (batch-hard) 1.000 0.456

TriNet-P (batch-all) 1.000 0.536
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