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Abstract

Mammalian spermatogenesis is a complex developmental program that transforms mitotic tes-
ticular germ cells (spermatogonia) into mature male gametes (sperm) for production of offspring.
For decades, it has been known that this several-weeks-long process involves a series of highly
ordered and morphologically recognizable cellular changes as spermatogonia proliferate, sperma-
tocytes undertake meiosis, and spermatids develop condensed nuclei, acrosomes, and flagella.
Yet, much of the underlying molecular logic driving these processes has remained opaque be-
cause conventional characterization strategies often aggregated groups of cells to meet technical
requirements or due to limited capability for cell selection. Recently, a cornucopia of single-cell
transcriptome studies has begun to lift the veil on the full compendium of gene expression phe-
notypes and changes underlying spermatogenic development. These datasets have revealed the
previously obscured molecular heterogeneity among and between varied spermatogenic cell types
and are reinvigorating investigation of testicular biology. This review describes the extent of avail-
able single-cell RNA-seq profiles of spermatogenic and testicular somatic cells, how those data
were produced and evaluated, their present value for advancing knowledge of spermatogenesis,
and their potential future utility at both the benchtop and bedside.

Summary Sentence

This review details the host of new and revolutionary single-cell RNA-seq results from mouse
and human spermatogenic cells that are already informing basic biological concepts of testicular
function with high translational significance for male infertility and contraception.
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Heterogeneity in spermatogenesis

Gamete production is the limiting factor for transmission of
genomic information to the next generation through fertiliza-
tion. While the mammalian ovary produces a limited number
of oocytes over the female reproductive lifespan [1-5], the testis
sustains a high level of sperm output until death [6-8]. Life-long
spermatogenesis is enabled by a highly productive, adult stem
cell-based developmental system in which spermatogenic cell
development is executed under the careful watch of the testicular
soma. Spermatogonia are mitotic spermatogenic cells that can
be broadly classified into undifferentiated and differentiating

subsets based on nuclear histomorphological appearance [8-11] or
expression of markers (e.g. KIT, ZBTB16) [12-19]. Spermatogonial
stem cells (SSCs) are the most primitive spermatogonia and are
a subset of undifferentiated spermatogonia capable of perpetual
self-renewal [20] (Figure 1A). SSCs can also initiate spermatogenic
differentiation by producing progenitor spermatogonia that are
functionally distinct from SSCs because they have limited self-
renewal capacity and are committed to continue differentiation
[20]. Subsequently, differentiating spermatogonia undergo a species-
specific number of amplifying mitotic divisions before producing
spermatocytes that will undergo two meiotic divisions to produce
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Figure 1. Application of single cell RNA-seq to the study of spermatogenesis. (A) The complex testicular tissue is dissociated enzymatically and with mechanical
force into individual cells. Many scRNA-seq studies explored the transcriptomes of these cell unselected/unsorted cell suspensions, while others used various
strategies reliant on transgenic reporters, antibody labeling or cell density to enrich for particular cell types. (B) Unsorted or selected cell suspensions were then
used for single-cell RNA-seq. Two popular platforms are the 10x Genomics Chromium (left) and Fluigidm C1 (right). In the 10x Genomics droplet-digital RNAseq
approach, individual cells are capsulated in aqueous droplets together with microbeads that deliver barcoded primers for reverse transcription. The Fluidigm

C1 physically captures individual cells on microfluidic chips and automatically generates full-length cDNA. (C) After next-generation sequencing of single-cell
RNA-seq libraries, the 10x Genomics and Fluidigm C1 produce different data types depicted by the “tracks” of colored sequence located above the genome
annotation. 10x Genomics libraries utilize 3" end-counting chemistry, which maximizes cell throughput and better controls for PCR duplication bias through the
use of unique molecular identifiers (UMIs). Fluidigm C1 libraries are full-length transcriptomes, meaning that mRNA variants (e.g., spliceoforms, alternative TSS
usage) can be recognized, but with the drawback of reduced cell throughput and greater expense. This figure is available in color at Biology of Reproduction

online.

haploid spermatids that undertake the multi-step spermiogenesis
process to produce flagellated sperm [21]. Production of sperm from
SSCs is completed over the course of roughly five (mice) to eight
(human) weeks [22].

This simplistic characterization of the spermatogenic process,
though, ignores decades of morphological studies which have
described in intricate detail the identity, numbers, and kinetics of
multiple spermatogenic cell types and subtypes (Figure 1A) [10].
Consider that in mice, undifferentiated spermatogonia (including
functionally defined SSCs and progenitor spermatogonia) exist
in multiple clonal generations of undifferentiated spermatogonia,
Agingle (1 cell), Apsired (2 cell clones), and Agjigned (4-16 cell clones),
which give rise to multiple sequential generations of differentiating
spermatogonia that are themselves morphologically distinguishable

(Types A1, A2, A3, A4, intermediate, and B spermatogonia)
[23-34]. At the time of entry into prophase I of meiosis, Type B
spermatogonia will transition into preleptotene spermatocytes that
subsequently follow the meiotic program characterized by the well-
defined primary spermatocyte (leptonema, zygonema, pachynema,
diplonema) and secondary spermatocyte phases [35]. Finally,
spermiogenesis is separable into two broad phases encompassing
round spermatid and elongating/condensing spermatids and occurs
in 16 distinct steps over more than two weeks [36-38]. During
spermiogenesis, these steps coincide with genome repackaging in
which the vast majority of histones are sequentially replaced by
transition proteins and then protamines, formation of an acrosome
and assembly of the flagellum [39]. While spermatogenesis in higher
primates utilizes different terminology to describe spermatogenic
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cell types and occurs with more limited clonal amplification, the
process is considered to be highly conserved [22].

Across an entire adult testis in steady-state, spermatogenesis is
both highly ordered and asynchronous, which allows for continual
sperm production [15, 40, 41]. At any given position along the
length of the seminiferous tubules of the testis, spermatogenic
development occurs in repeating fashion, termed the cycle of the
seminiferous epithelium, which is characterized by a recurrent set
of defined cellular associations between different spermatogenic cell
types [10, 42]. Each set of associations between different types of
spermatogonia, spermatocytes and spermatids is considered to be
a “stage” of the cycle of the seminiferous epithelium—there are 12
stages in mice [35] and rhesus monkeys [43], but only 6 stages in
humans [44-46], and at any given time, stages appear to proceed
in a wave-like fashion along the length of the seminiferous tubules
[36-38, 47]. In mice, a pulse of retinoic acid (RA) production at the
mid-point of the seminiferous epithelial cycle (stages VII-VIII) drives
spermatogonial differentiation and coincides with meiotic entry and
spermatid release (spermiation) [48, 49]. At any given position along
the length of mouse seminiferous tubules, the differentiation induc-
ing RA pulse occurs every 8.6 days [14-16, 50]. Thus, spermatogenic
development is highly heterogeneous in time and space.

A wealth of advancements in our collective understanding of
the fundamental biological mechanisms responsible for the ongoing
spermatogenesis have emerged in the molecular biology era. Gene ex-
pression patterns among spermatogenic cell types have been reported
numerous times and have generally relied upon analyses of bulk RNA
from two sources: (1) whole testes of mice during the first wave of
spermatogenesis and (2) enriched, but mixed aggregates of particular
spermatogenic cell types [32, 37, 51]. For instance, it has been very
popular to generate enriched populations of adult pachytene sperma-
tocytes and round spermatids from suspensions of adult testes based
on cell density using StaPut gravity sedimentation [52-54] (Figure
1A). However, this and similarly “crude” methods such as cell sort-
ing (FACS) for DNA ploidy, transgenic reporters, or cell surface an-
tibody labeling do not produce purified cell populations and instead
group multiple cell types together (e.g. the seven steps of round sper-
matids) (Figure 1A). Likewise, during the first weeks after birth in
the mouse testis, succeeding spermatogenic cell types emerge sequen-
tially during what is called the “first wave” of spermatogenesis [55],
providing a window into the molecular changes that accompany
emergence of each new cell type. But, first-wave spermatogenic cells
may also exhibit unique features compared with their counterparts
from steady-state adult spermatogenesis [31, 56]. Most importantly,
though, these approaches fail to reveal the variation within and be-
tween cell types, and may completely ignore the phenotypes of rare
cell populations, such as SSCs or transitional cell types later in the
lineage, because such cells are masked by ensemble averaging across
the aggregate population(s). Therefore, there is a need to overcome
the limitations of conventional gene expression approaches, to ef-
fectively probe the gene expression signatures associated with each
spermatogenic step and distinguish unique patterns within heteroge-
neous cell populations that may reflect distinct subsets.

Distinguishing spermatogenic cell phenotypes
with single-cell resolution
Until relatively recently, measuring gene expression at the mRNA

level across the entire transcriptome (e.g. gene expression microar-
ray, RNA-seq) required input of purified RNA from hundreds-to-

millions of cells. Given the low resolution of most spermatogenic cell
selection methods, effectively discerning the gene expression patterns
of every unique spermatogenic cell type was impossible because of
ensemble averaging. Transcriptome profiling at the single-cell level
(i.e. single-cell RNA-seq or scRNA-seq) can overcome this limitation
by comprehensively measuring mRNA levels within all spermato-
genic cells to detect the variation across the lineage and heterogeneity
among cells at any given step or phase [57].

Single-cell RNA-seq methods

A variety of scRNA-Seq methodologies have been reported [58],
including two which have become more accessible to the research
community following successful commercialization: (1) microfluidic
capture SMART-Seq using the Fluidigm C1 platform [59] and (2)
droplet-digital RNA-seq using the 10x Genomics platform [60] (Fig-
ure 1B and C). In general, the SMART-Seq chemistry affords greater
sensitivity and permits analysis of the full length transcriptome (e.g.
detection of splice variants), but at much lower cell throughput (10s-
100s) and with greater normalization difficulty and considerable ex-
pense (>$50/cell) (Figure 1C) [61]. The greater single-cell transcrip-
tome depth achieved using the Fluidigm C1-SMART-Seq approach
can facilitate enhanced detection of low-abundance transcripts and
lower false-negative detection (dropout) rate, but with the tradeoff
of profiling fewer cells and often requiring cell type enrichment (e.g.
FACS), thereby introducing selection bias or potentially missing rare
cell populations (Figure 1A). Reciprocally, droplet-digital RNA-seq
methods employ 3’ end-counting chemistries that are multiple
orders of magnitude cheaper (<$1/cell), afford easy bioinformatics
normalization of PCR duplication, and much greater cell throughput
(1000s-10 000s) (Figure 1C) [60]. This facilitates profiling of cells
without pre-selection and detection of rare populations, but with
reduced transcriptome depth in any given cell which leads to increase
probability of gene dropout. In actuality, these alternate methods
are complementary and each can be chosen to match experimental
objectives (Figure 1). While the commercialized scRNA-seq methods
require expensive instrumentation and disposables/reagents, it is
possible to use home-grown methodologies such as Drop-Seq [62],
Microwell-Seq [63], mechanical cell picking/single-cell sorting with
Smart-Seq2 [64, 65] or single-cell combinatorial indexing RNA-seq
(sci-RNA-seq) [66] to reduce the cost [61, 67]. For instance,
Microwell-Seq utilizes 3’ end-counting chemistry and was used re-
cently to report the mouse single cell atlas in which cells from nearly
every tissue in the mouse body were characterized [63]. Relatively
cheaply, this one study investigated more than 400 000 individual
primary mouse cells, including 19 659 cells from mouse testes
(although no effort was made to even distinguish between germ cells
and somatic cells, let alone among spermatogenic cell types) [63].

It is important to recognize that individual single-cell transcrip-
tome datasets may vary considerably based on a variety of tech-
nical parameters, including cell number, multiplet rate, sequencing
depth, and replication, all of which drive important outcomes that
should be considered when designing and evaluating such studies
(Tables 1 and 2). The number of cells profiled is one basis of the
statistical power to uncover differentially expressed genes, but is
also critical for detection of rare cell types. The rarer the cell type
of interest, the more cells need to be profiled, and vice versa. Ex-
periments intended to compare relatively abundant cell populations
may require relatively low cell throughput. Yet, consider that an
experiment designed to detect SSCs, which have a reported abun-
dance of 1 in 3000 cells from adult mouse testes [68], would need to
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profile 300 000 adult mouse testis cells to detect only 100 SSCs in
the absence of cell enrichment/selection. Detecting rare cells is fur-
ther complicated by the frequency of cell multiplets in the dataset.
Multiplets are data points which, rather than arising from bona fide
single-cells, actually arise from two or more cells, and the frequency
of multiplets can be determined empirically and can be partially ad-
dressed bioinformatically [69]. Sequencing depth per cell is also an
important parameter that influences gene/transcript detection and all
downstream analyses. Depths may vary widely between studies, but
are typically within the range of 2.5 x 10*-2.5 x 10’ reads per cell
for droplet-digital scRNA-seq studies [62] to 2-5 x 10° reads per
cell for SMART-Seq-based studies [70]. In either case, increasing de-
grees of sequencing depth leads to enhanced sensitivity for detecting
genes and transcripts, though in a non-linear fashion [71], and the
degree of sequencing saturation can be calculated empirically for a
given dataset. Lastly, scRNA-seq studies may utilize widely different
strategies of replication, including multiple independent prepara-
tions of cells (biological replicates) and independent assessments of
the same cell preparations (technical replicates), which understand-
ably, impact the robustness and reliability of the data. In general, it
appears that the value of technical replication is less than biologi-
cal replication, particularly for commercial scRNA-seq approaches,
while greater biological replication is valuable in experiments com-
paring cells from genetically diverse vs. uniform sources [72]. As
noted for other technical parameters, replication sufficiency can and
should be determined empirically using statistical methods.

Bioinformatic analysis

Perhaps an equally important consideration in the generation of
single-cell transcriptomes of spermatogenic cells are the methods
used to analyze the data and draw conclusions about the underlying
biology of the system. The bioinformatics processing of scRNA-seq
data is not trivial and can be undertaken in a variety of ways using
different algorithms, assumptions, and parameters, in unbiased and
biased manners, and with varying degrees of extrapolation to draw
biological inferences. In general, the data are simplified for presen-
tation/visualization using dimensionally reduction strategies like as
Principal Component Analysis (PCA) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) and cells are grouped into clusters
(e.g. k-means) on the basis of variably expressed genes among all
cells in the datasets (Figure 2A) [67]. Differentially expressed genes
(DEGsS) can then be determined between cell clusters (Figure 2B) to
facilitate pathway analyses or trajectory analysis in pseudotime to
dynamically evaluate cellular relationships (Figure 2C) [67]. Seurat
(https://satijalab.org/seurat/) [73] is one software package that can be
used to perform these analyses and has been employed in almost all of
the scRNA-seq studies of spermatogenic cells [63-65, 74-81]. Like-
wise, Monocle (http://cole-trapnell-lab.github.io/monocle-release/)
[82-84] has been utilized in several of these same studies to per-
form pseudotime analysis [65, 74, 75, 77, 79, 85-88].

Validation

Following establishment and analysis of single-cell transcriptomes, it
is essential to confirm the reliability of the analysis with independent
approaches. Tissue-based approaches are amongst the most popular
and can help recapitulate the spatial expression patterns lost during
tissue dissociation. Tissue validation includes low-throughput meth-
ods like protein immunostaining (Figure 2D) and single-molecule
RNA fluorescence in situ hybridization (smFISH, Figure 2E), as well
as high-throughput approaches like a sequential in situ hybridiza-

tion (seqFISH) [89-92]. However, when applied to the testis, these
tissue-based validation approaches are not created equal. Consider
that during spermatogenesis, post-transcriptional gene regulation
may disturb the correlation between mRNA and protein, making
immunostaining potentially less informative than smFISH or seq-
FISH [93]. Nearly all of the testicular scRNA-seq datasets produced
to date have utilized some form of tissue-based validation (Tables 1
and 2). Many alternative approaches to validate scRNA-seq datasets,
including combined marker-based cell sorting combined with batch
qRT-PCR/RNA-seq, cross-validation with other scRNA-seq meth-
ods, and use of gene knockout or knock-down, have been also been
utilized with success (Tables 1 and 2).

The newfound accessibility of scRNA-seq methods within the
spermatogenesis research community and the relative ease with
which resulting data can be analyzed have led to a flood of scRNA-
seq studies reporting results from various testis cell populations of
mice and humans. Consequently, all spermatogenic cell types can
be recognized and separated into at least 11 different major pop-
ulations based on validated unique expression of numerous genes
and Sertoli cells are divisible into at least 9 different subpopulations
(Figure 3). For the remainder of this review, we will discuss each
of these studies grouped thematically by: (1) developing mouse
testis during the first-wave of spermatogenesis, (2) steady-state adult
mouse spermatogenesis, and (3) human spermatogenesis.

First-wave mouse spermatogenesis

Investigating spermatogonia in the adult testis during steady-state
spermatogenesis is technically complicated due to the relative rarity
of spermatogonia. To address this issue and study developmental
questions such as the origin of SSCs, many have resorted to studying
the biologically-enriched spermatogonia found in the early postnatal
mouse testis. In 20135, the first study to profile gene expression at the
single-cell level among postnatal male germ cells was published [93].
This study examined expression of a 172-gene panel by qRT-PCR
among 584 mouse first-wave spermatogonia and hypothesized that
observed subsets of cells that exhibited gene expression difference
correlate with functionally distinct subgroups [93]. Speculation that
a spermatogonial subset at postnatal day 6 (P6) was enriched for
SSCs was buoyed by knowledge that the ID4 was a candidate SSC-
specific marker [23, 28, 94] and transplantation of cultured ID4-
EGFP + spermatogonia definitively demonstrated that SSCs were
exclusively found within the Id4 expressing fraction [23]. Still, it was
only in subsequent studies where this concept was borne out with
evidence that a novel marker (TSPANS) which differentially labeled
these subsets correlated with enriched transplantable SSC numbers
[34]. This initial foray into the single-cell mRNA characterization of
postnatal male germ cells was limited by profiling expression of only
a hand-picked subset of genes. Subsequent experiments reported by
Song and colleagues in 2016 examined the complete transcriptomes
of nearly 200 sorted ID4-EGFP + mouse spermatogonia at two time
points (P3 and P7) [95] (Table 1). Heterogeneity was evident among
these spermatogonia in expression of more than 1000 genes that
pointed to a subset of spermatogonia likely to populate the SSC
pool [95]. Liao et al., examined the transcriptomes of 71 sorted P5.5
OCT4-GFP + /KIT-spermatogonia and reported CD87 as a stem
cell marker which they posited was involved in the initial estab-
lishment of SSC pool [86] (Table 1). Makino et al., examined the
transcriptomes of 80 prospermatogonia at P1.5 and 96 spermato-
gonia at two time points (P3.5 and P5.5) and reported that DEC2
regulates the maintenance of SSCs via direct inhibition of Sohlh1
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expression [88] (Table 1). Earlier in testis development, Neirijnck et
al., reported results from 483 prospermatogonia at embryonic day
(E) 16.5, although no in-depth analysis was performed since the sub-
ject of the study was the developing testicular soma [76] (Table 1).
Together, these data may point to important distinguishing features
which allow recognition of future SSCs as they arise during the
prospermatogonia to spermatogonia transition, a poorly understood
process which is thought to begin as early as E18.5 in mice [96].
More recently, 10x Genomics analyses have been applied to pro-
file spermatogenic cells during postnatal testis development across
the first wave without cell selection (Table 1). Specifically, Hermann
et al., examined 3466 unselected P6 testis cells [77], Grive et al.,
examined 1200-2500 cells each from P6, P14, P18, P25, and P30
mouse testes [80], and Ernst et al., examined cells from P5, P10,
P15, P20, P25, P30, and P35 mouse testes [97] (Table 1). Beyond
simply the sequential emergence of spermatogenic cells across the
first wave of spermatogenesis, which were defined manually based
on expression of key cell type-specific markers, Grive and colleagues

observed dynamic changes in the transcriptomes of spermatogenic
cells as the first wave progressed (P6, P14, P18, P25, and P30) [80].
For instance, Asrgll was highly expressed in spermatogonia from
P6 mice, but decreased as the first wave proceeded. Reciprocally,
the genes encoding ATM and RADS1 exhibited progressively higher
expression among pachytene spermatocytes as the first wave pro-
gressed. Ernst and colleagues also observed dynamic changes in the
transcriptomes of spermatogenic cells as the first wave progressed
(P5, P10, P15, P20, P25, P30, and P35) [97]. For instance, as the
first wave progressed, Prss50 and Pou5f2 exhibited progressively
higher expression from pre-leptotene to zygotene spermatocytes and
among diplotene spermatocyte, respectably.

Uniquely, Hermann and colleagues focused only on Pé sper-
matogonia and compared unselected spermatogonia to sorted sub-
sets that were enriched or depleted for transplantable SSCs [77]
(Table 1). This study selected the most epifluorescent (ID4-
EGFPisht) spermatogonia from mice bearing the Id4-Egfp trans-
gene, which are highly enriched for transplantable SSCs, along
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with those GFP + spermatogonia with low epifluorescence (ID4-
EGFP4™) which have little SSC activity [98]. Parallel 10x Ge-
nomics and Fluidigm C1 analyses were performed of sorted P6 ID4-
EGFPY"ight and ID4-EGFP4™ spermatogonia in order to directly cor-
relate functional SSCs with single-cell phenotypes. SSCs expressed
known markers (Id4, Gfral, EtvS), novel signaling intermediates
(Tcll, Duspé6) as well as, unexpectedly, genes involved in autophagy
(Figure 3B) [99, 100]. Reciprocally, first-wave progenitor and differ-
entiating spermatogonia were characterized by activation of the cell
cycle, a metabolic shift to oxidative phosphorylation, and could be
recognized by a new marker, NDRG#4 (Figure 3B) [77]. Together,
these single-cell analyses of spermatogenic cells during the first-wave
of mouse spermatogenesis have resolved new subsets of spermato-
gonia and defined the dynamic nature of spermatogenic initiation.

Steady-state adult mouse spermatogenesis

By far, the most abundant of type spermatogenesis single-cell
datasets are those that examined cells from adult mouse testes [74,
75,77, 80, 81, 85, 97] (Table 1). In common among the Hermann,
Grive, Lukassen, Green, and Ernst studies is analysis of data from
spermatogenic cells that were not selected for any particular cell type,
which allows for confidence in the relative proportions of cells as well
as the low likelihood that selection bias leads to erroneous loss of rare
or transitional cell types (Figure 1A). These datasets shared a strik-
ing common feature—the clear demonstration that spermatogenic
cell phenotypes existing on a continuum, rather than distinct sub-
groups separated by large transcriptome changes (Figure 2A). That
is, the heterogeneity within and between spermatogenic cell types is
s0 high that the borders between cell types become blurred. Notably,
one of the rationales for profiling unselected cells is to prevent se-
lection bias which could exclude rare unique/novel cell populations.
Yet, collectively, identification of novel cell subsets has not been an
outcome of these experiments.

Green et al., uniquely supplemented their spermatogenesis pro-
filing with selected cell populations that were found to be relatively
infrequent in their datasets [75]. Specifically, this compensated for
low abundance of spermatogonia and Sertoli cells, allowing more
comprehensive evaluation of those cell types, but with the drawback
that altered cell proportions influence the statistics underlying tra-
jectory (pseudotime) modeling. These data indicated the presence of
transient cellular states from spermatogonia to early spermatocytes,
in vivo. Moreover, expression of genes related to RNA splicing and
RNA binding proteins, early meiotic genes, chromatin remodeling
and epigenetic modifiers was distinct among cellular subsets. Impor-
tantly, this study also highlighted data indicating that Sertoli cells
contained high levels of mRNAs that are typically thought to be
expressed only by round spermatids (e.g. Prm2). SmFISH demon-
strated that round spermatids, but not Sertoli cells, transcribe Prm2,
and Prm?2 transcripts found in Sertoli cells arise from engulfment of
spermatid residual bodies in which Prm2 was highly abundant [75].

Hermann et al., performed side-by-side comparisons of uns-
elected spermatogenic cell datasets with enriched populations of
spermatogonia, spermatocytes, and spermatids in order to validate
the gene expression signatures obtained for various cell types [77].
Among the immunostaining validated novel markers, KCTD9 was
found to be expressed in spermatocytes and early round spermatids,
RHCG was expressed in spermatocytes, and ACTL7B was expressed
in round spermatids (Figure 3B). Exclusive to this study, sorted sub-
sets of spermatogonia based on ID4-EGFPight and ID4-EGFPd™
were examined with both 10x Genomics and Fluidigm C1 platform

and distinguished adult SSCs from progenitor spermatogonia based
on correlation between single-cell expression signatures and func-
tional transplantation results. Similar to first-wave spermatogonia,
SSC-containing subsets expressed known SSC markers, but a unique
subsets exhibited unique features that may point to heterogeneity
among SSCs (Figure 3B). Progenitor spermatogonia exhibited en-
hanced cell cycle gene expression and differentiating spermatogonia
appeared to undergo a metabolic shift to oxidative phosphorylation.

La et al., selectively examined Plzf-mCherry + undifferentiated
spermatogonia and observed a very similar continuum profile to oth-
ers’ observations with unselected steady-state spermatogonia [85].
This experiment led the to the observation that Pdx1 mRNA was
co-expressed by cells expressing SSC markers, which led to their
discovery that PDX1 is expressed by a subset of undifferentiated
spermatogonia and may participate in cell state regulation in con-
cert with signals from the niche (Figure 3B).

In the Lukassen et al., study, a unique analysis of sex chromo-
some gene expression during spermatogenesis demonstrated differ-
ences in X- and Y-linked gene transcription after meiosis [74]. As
expected, sex chromosome transcription was silenced among sper-
matocytes due to meiotic sex chromosome inactivation (a feature
others have also observed and noted from their data). Here, the au-
thors noted that Y-linked transcript levels preferentially decreased
before protamine expression initiated, which was distinct from the
later decline in X-linked and autosomal transcripts.

As noted above, mammalian spermatogenesis proceeds asyn-
chronously. Thus, a likely fundamental contributor to the apparent
continuum of spermatogenic gene expression signatures and lack
of distinct novel/rare spermatogenic cell types, is the inherent asyn-
chrony in spermatogenesis across the entirety of a given testis [101].
To address this, spermatogenesis can be synchronized by suppress-
ing spermatogonial differentiation from P2-P8 with WIN18 446 fol-
lowed by initiating spermatogonial differentiation with a bolus of
RA at P9 [47]. Chen and colleagues used this approach and ex-
amined a total 1136 cells obtained from synchronized mouse testes
at 20 time points varying from 10 to 540 h after RA induction
[64]. Examination of mouse testes with synchronized spermatogen-
esis demonstrated that there is still underlying heterogeneity among
spermatogenic cells independent of spermatogenic synchrony [64].
Still, these analyses were informative by providing a window into the
underpinnings of specific cellular events during spermatogenesis. For
instance, since Fbxo47 was found to be uniquely expressed at the
time of meiotic recombination and synaptonemal complex forma-
tion, the authors examined Fbxo47 knockout testes and found de-
fective meiotic recombination and infertility (Figure 3B) [64]. During
spermiogenesis, differential expression of Cd63 between early (step
1-2, CD63high) and late (steps 7-8, CD637) round spermatids was
validated through the significantly higher efficiency of blastocyst de-
velopment with CD63" round spermatids (via ROSI) than CD63hish
round spermatids (Figure 3B). Lastly, Sox30 was found to be highly
expressed in pachytene spermatocytes and round spermatids but not
in somatic cells. Consequently, evaluation of Sox30 knockout testis
and ChIP-seq for SOX30 demonstrated the repertoire of SOX30 reg-
ulates genes involved in spermatid differentiation including Chds5,
Hils1, and Sun$ (Figure 3B) [64]. Importantly, these results also
suggested that common mechanisms underlie the first-wave of sper-
matogenesis and the steady-state spermatogenesis.

The average sequence similarity among protein-coding genes be-
tween mice and humans is 85% [102], and since mice are relatively
easy to maintain and manipulate genetically, they have become the
most popular mammalian model for studying human health and
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disease. Although the scRNA-seq datasets from mouse spermato-
genic cells may provide insights into human spermatogenesis biol-
ogy given the high degree of conservation in spermatogenesis across
taxa [77, 78], there may be important differences in the underly-
ing biology between species [103]. For instance, mouse spermato-
gonia can be expanded exponentially and maintained indefinitely in
vitro [104, 105], yet similarly robust culture conditions for human
spermatogonia have yet be established. Thus, molecular and cellu-
lar mechanisms responsible for human spermatogonial maintenance
likely have unique contributors not found in mice.

Human spermatogenesis

Of particular interest due to the potentially high translational signif-
icance, five studies have examined various spermatogenic cell types
from human testes at the single-cell level: Guo et al., Hermann et
al., Sohni et al. and Wang et al. (Table 2). Three of these studies
examined unselected spermatogenic cells from adult testes [65, 77,
78], one focused exclusively on sorted adult spermatogonia [87]
and the most recent compared selected cells from testes of hu-
man infant and adults [79] (Table 2). In a similar fashion to the
mouse datasets noted above, a common theme was to identify cell
types based on expression of key markers, typically extrapolated
from mice, but without the benefit of functional and genetic valida-
tion. Also like results from mice, human single-cell spermatogenic
cell transcriptomes largely appeared to be arranged in a continuum
with considerable heterogeneity within and between spermatogenic
cell types.

Guo et al., isolated human undifferentiated and differentiating
spermatogonia by FACS using SSEA4 + or KIT + selection, re-
spectively, and profiled a small number of cells that met a stringent
quality threshold (60 SSEA4 + spermatogonia and 32 KIT + sper-
matogonia) [87]. Data from this study supported the conclusion that
upregulation of genes related to the FGF signaling pathway, which
is known to be involved in SSC self-renewal in mice [106-108],
occurred specifically in human spermatogonia with a more primi-
tive phenotype. Similarly, these data revealed upregulation of WNT
pathway related genes and BMP pathway related genes in less differ-
entiated human spermatogonia, which mirrors the SSC to progenitor
transition in mice (Figure 3B) [33, 87, 109, 110].

Guo et al., expanded these analyses to profile adult and infant
human testis cells without cell section and validated a variety of
putative spermatogonial markers (FGFR3, PHGDH, TCF3, KI67,
MAGEABI1, PIWIL4, PPP1R36, and TSPAN33) at the protein level
using immunostaining (Figure 3B) [78]. Similar to prior results [87],
data from this study also supported the conclusion that recipro-
cal upregulation of genes related to the FGF and WNT signaling
pathways in the most primitive and advanced spermatogonia, re-
spectively. Notably, this study also introduced a novel approach,
RNA velocity analysis [111, 112] (Figure 3A), which uses integrated
analysis of levels of mature spliced mRNA (steady-state) and un-
spliced (nascent) mRNA, to identify dynamic relationships among
adult human spermatogonia. This analysis of human spermatogonia
predicted the possibility that more advanced spermatogonia (state
2, KIT+, MKI67+) may revert to a more primitive state (state
1, GFRA1+, ID4+, ETVS+), which aligns with the controversial
clone fragmentation model of mouse SSC renewal (Figure 4A) [24,
26]. Ultimately, confirmation of this predicted dynamic relation-
ship between human spermatogonia will be dependent on lineage
tracing methodologies that, at this point, do not exist for human
spermatogenesis.

Hermann et al., using a nearly identical strategy to their
mouse studies, completed parallel assessments of unselected human
spermatogenic cells with enriched populations of spermatogonia
(FACS), spermatocytes (StaPut) and spermatids (StaPut) in order
to establish gene expression signatures for various cell types [77].
Both Fluidigm C1 and 10x Genomics analyses were employed
and exemplary markers were validated at the protein level using
immunostaining methods, including DUSP6, which is expressed in
undifferentiated spermatogonia, and ACTL7B, which is expressed in
round spermatids (Figure 3B). Moreover, the parallel examination
of mouse and human cells supported robust interspecies compar-
isons and permitted extrapolation of the identity of human SSCs
from their functionally defined mouse counterparts. Importantly,
one outcome of this study was demonstration of both conserved
and unique transcriptome features across the spermatogenic lineage
between mice and humans (Figure 4B).

The Sohni et al., study placed a particular emphasis on undiffer-
entiated spermatogonia and differentiating spermatogonia in adult
and infant human testes [79]. A new cell surface marker, LPPR3,
was identified which appears to mark a more restrictive popula-
tion of spermatogonia than FGFR3, and therefore, may be a more
selective SSC surface marker than FGFR3 (Figure 3B). Given the ab-
sence of a functional assay for human SSCs, this will be a difficult
hypothesis to support experimentally, but the identification of new
markers provides additional tools for future basic and translational
studies. In the infant testis, Sohni and colleagues identified two germ
cell populations, one which exhibits gene expression features that
are more similar to primordial germ cells (PGCs) and another that
appears to be intermediate between PGCs and adult spermatogonia
in pseudotime. Lastly, they report that UTF1, ETV4, and PIM2 are
markers of the population with PGC-like features and validate these
results with immunostaining.

Last, but not least, Wang et al., uniquely compared steady-state
spermatogenic cells from fertile men to testis cells from a man with
non-obstructive azoospermia [65]. This comparison confirmed the
specificity of single-cell transcriptomes and identified that apoptosis
related genes are upregulated and the accumulation of yH2AX was
observed in testicular somatic cells from NOA patient. These phe-
nomena would be potential drivers of male infertility. Along with
immunostaining studies, they used smFISH validation of HMGA1
transcripts to show specific labeling in undifferentiated and differ-
entiating spermatogonia, BMPR1B in putative SSCs, and TEX29 in
spermatids (Figure 3B).

Given the genetic variability between individual men, the inability
to carefully control developmental timing, and underlying reasons
for tissue availability (disease, trauma), there may be particular value
to future combined re-analysis of the varied human spermatogenic
single-cell data sets. Such analyses may help to distinguish between
sample-dependent and cell type-dependent gene expression variation
that is not evident with only the few samples used for each individual
study. As the field moves forward with these data, such integrated
analyses, including those leveraging new data types (e.g. ATAC-Seq,
DNA methylome, histone modifications, etc.), may help to boil these
complex and somewhat isolated datasets down into transformative
tools for studying the biology of human spermatogenesis (Figure 4).

Testicular somatic cells

In the testis, growth factors and morphogen signals emanate from
somatic cells and play important roles instructing spermatogenic
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testes will enable identification of species-specific and conserved gene expression patterns underlying spermatogenesis. These data will undoubtedly help
advance diagnosis and treatment of male infertility as well as new modes for male contraception. Directly emanating from the single-cell data and underlying
such translational outcomes would be development of new drugs to solve male infertility and achieve contraception as well as better characterization of cells to
be used therapeutically (e.g. SSC transplant) or production and characterization of gametes in a dish.

development, including driving the balance between SSC self-renewal
and differentiation [10, 14-16, 30, 32, 104, 105, 107, 113-124]. For
instance, GDNF produced from testicular somatic cells (Sertoli cells,
peritubular myoid cells) regulates SSC self-renewal via the MAPK
and AKT signaling pathways [30, 104, 105, 107, 113-120, 125,
126]. Transgenic overexpression of GDNF causes the accumulation
of undifferentiated spermatogonia, while the deletion of genes en-
coding Gdnf or its receptor components (Gfral & Ret) depletes
undifferentiated spermatogonia [114, 116, 117, 120]. But, the tim-
ing of GDNF stimulation along the seminiferous epithelial cycle,
as well as the spatial location of GDNF-producing cells (e.g. the
SSC niche) are not well understood [27, 115, 127]. Therefore, char-
acterization of testicular somatic cells at the single-cell level may
reveal unique characteristics that define spatially and temporally re-
solved subsets that point to key spermatogenic regulators. Notably,
though, several of the unselected spermatogenic single-cell transcrip-
tome datasets demonstrated only a minor contribution from testic-
ular somatic cells identified on the basis of somatic cell markers
|64, 65, 74, 77-80]. The limited representation of somatic cells
located in the testicular interstitium between seminiferous tubules
(e.g. Leydig cells, peritubular myoid cells, macrophages, endothelial
cells, etc.) is typical for 2-step enzymatic digestion protocols used for

seminiferous tubule cell preparation since these cells are lost during
the collagenase treatment prior to tryptic digestion of seminiferous
tubules. Further, adult Sertoli cells were also underrepresented, but
not absent, in both human and mouse seminiferous datasets because
these cells are well known to be highly sensitive to the harsh tryp-
tic digestion. Green et al., overcame this limitation by specifically
selecting Sertoli cells and interstitial cells with immunological and
genetic lineage tracing methods to supplement the lack of somatic
cells [75]. They then performed in-depth analysis of these somatic
cells and reported four type of Sertoli cells, validated using smFISH
for a panel of genes, including Ptprv, Meical2, Caskinl, Esyt3, and
Lgals1, to assign these cell types to groups of stages in the cycle of the
seminiferous epithelium (Figure 3B). It is likely that future analyses
extending from similar data may reveal distinct somatic cell pro-
grams that could be spatially traced to specific testicular locations to
address unsolved questions related to the SSC niche and overarching
somatic instruction of the spermatogenic program (Figure 4A).

Conclusions

Human birth rates are declining in both the developing and devel-
oped world [128, 129] and male infertility affects more than 5%



Spermatogenesis scRNA-seq, 2019, Vol. 101, No. 3

629

of the world population. This problem is only expected to worsen
in developed countries as the generational time increases due to so-
cial factors [130]. Conversely, there is a desperate need for effective
contraception strategies to address the global need for population
control [131]. Together, these two significant problems illustrate the
need to obtain a better understanding of the fundamental biological
processes driving sperm production in the testis. A considerable body
of mechanistic knowledge about spermatogenesis has emerged from
the study of rodents, which has been extrapolated to humans. Yet,
this is only sometimes effective and valid—consider the simple dif-
ference that the duration of mouse spermatogenesis is 35 days while
human spermatogenesis takes 62 days [22]. Therefore, human and
model species (e.g. mice) can and should be examined in parallel.

High-resolution profiling of gene expression signatures across
both rodent and human spermatogenesis can arm the research com-
munity with data to begin solving infertility and executing effective
male contraception (Figure 4B). In this review, we highlighted the
available scRNA-Seq datasets generated from mouse and human
testicular somatic and germ cells and pointed to particularly no-
table features of each that focus their utility for future investigation
(Figures 3 and 4A, Table 1). We also note specific advances in knowl-
edge that emerged from these analyses (Figure 3) and highlight that
for humans, the combination analysis of these datasets may help to
refine the conserved cellular states and underlying gene sets that mark
each. After considering each dataset in isolation, a logical extension is
to ask about consistency and variation between investigations, which
includes cross-platform, cross-laboratory, and cross-species compar-
isons that introduce technical, logistical and conceptual challenges
that still have yet to be adequately addressed. One step towards us-
ing these data synergistically was the recent upgrade to the ReproGe-
nomics platform (http://rgv.genouest.org/app/#/) which now enables
web-based dataset comparisons [132, 133], and indeed, scRNA-Seq
data produced from a variety of groups have already been included
in this resource [64, 65, 74, 75, 77, 85, 95].

In the immediate future, there is a strong possibility that these
single-cell transcriptome datasets may find utility in diagnosis of male
infertility and discovery of underlying etiologies (Figure 4B). Indeed,
Hermann et al., defined specific subsets of three genes that can be
used to uniquely recognize 11 different spermatogenic cell types in
both human and mouse testes [77]. Theoretically, such gene panels
could be used as diagnostic tools to determine the precise point at
which the spermatogenic lineage is blocked (Figure 4B). Establishing
the efficacy of such a diagnostic approach would require empirical
tests akin to the comparison made by Wang et al., between profiles
of fertile and infertile testis cells (Figure 4B, [65] Table 1).

Generating single-cell transcriptomes of spermatogenic cells to
this point has necessitated the dissociation of testis tissue into its
component cellular constituents. While this allows maximal resolu-
tion among individual unit cells, the process of dissociation neces-
sarily removes key spatial information linking transcriptomes back
to the cellular locations in the testis. This is a key challenge that
has prompted many to perform validation experiments that estab-
lish spatial profiles for individual mRNAs, panels of few mRNAs or
their encoded proteins using tissue sections to reestablish spatial con-
text (Figures 2 and 4B). While largely informative, these approaches
necessarily involve low-dimensionality profiling under current tech-
nological constraints that limit the ability to relate scRNA-seq results
back to the spatial organization of the testis. Transcriptome-wide
spatial mRNA profiling using tissue sections is possible [134, 135],
but the resolution is limited to ~200xm, which is roughly the diame-
ter of a normal mouse seminiferous tubule, and thus, has insufficient

resolution to define cellular transcriptomes in space. Correcting the
loss of spatial information to achieve high-resolution spatial tran-
scriptomics in the testis will be a key advancement moving forward
for understanding testis biology (Figure 4A).

Inferences and predictions emanating from analyses of single-cell
transcriptomes using pseudotime can be very powerful for identi-
fying novel cell states and their relationships. However, those infer-
ences are limited by the static nature of the underlying measurements
of steady-state mRNA abundance. The field has been introduced to
the potential power of cutting-edge analyses like RNA velocity anal-
ysis to provide empirical evidence of cell relationships [78, 111, 112].
Wide application of this strategy would help identify unique gene sets
that could be used to build lineage tracing panels and execute toxin-
dependent lineage ablation to validate cell lineage relationships, in
vivo. Likewise, leveraging CRISPR/Cas9 to delete key novel target
[136, 137], along with CRISPR activation [138-142], CRISPR inhi-
bition [143, 144], and CRISPR epigenetic modification [145-153],
which will define the molecular circuitry controlling cell fate in the
spermatogenic lineage.

Mouse spermatogonia can be maintained indefinitely and ro-
bustly amplified in culture [104, 105] and this has provided a tremen-
dous resource for basic studies of spermatogonial biology because of
amenability for genetic modification, factor treatment studies, and
biochemical experimentation. Progress culturing human spermato-
gonia (potentially including SSCs) has also been reported [154-158],
but a similarly robust culture system for human spermatogonia has
yet to be developed, likely due to absence of some key growth factor
or other constituent necessary for human spermatogonial propaga-
tion and survival in vitro. Consequently, progress advancing our
knowledge of human spermatogonial biology has remained slow.
Clinically, a human spermatogonial culture system may also provide
an unlimited source of germ cells for therapeutic use via transplan-
tation [159, 160]. Therefore, combinatorial analyses of human and
mouse spermatogenic and testicular somatic single-cell datasets pro-
vides opportunities to define reciprocal factor-receptor combinations
that may point to missing constituents that improve spermatogonial
survival and propagation in the dish (Figure 4).

Moreover, there has been considerable interest paid to in vitro
gametogenesis, where the entirety of germ cell development, from
their initial specification during early embryogenesis through gamete
formation, is modeled in a dish starting with pluripotent stem cells
(PSCs) [161, 162]. Using embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs) to sequentially produce PGC like
cells (PGCLCs) has been accomplished in both mouse and human
[163-173], and mouse PGCLCs are fully capable of producing
sperm and offspring upon transplantation into host testes [163]. It
remains unclear, however, whether their human counterparts are
similarly functional due to a lack of functional tests dictated by
appropriate ethical boundaries. Likewise, in vitro mouse spermato-
genesis using organ culture of testis from neonatal and adult in vitro
has been established [174-178]. Curiously, GSC-like cells (GSCLCs)
from PGCLCs exhibit transplantable SSC ability [170], but these
cells are also considered to be epigenetically abnormal. These are
just a few examples of in vitro systems modeling spermatogenic
development that would benefit from comparison to the existing
datasets discussed here that constitute references of the normal
spermatogenic lineage (Figure 4B). As scRNA-seq becomes more
commonplace, cheaper and expected as a characterization tool,
such comparisons would provide a wealth of information about the
extent of variation among cells produced in vitro, as well as their
comparability to their normal in vivo counterparts.
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In conclusion, the flurry of new transcriptome studies examining
mouse and human spermatogenic cells at the single-cell level have
provided a wealth of new information to advance our understanding
of spermatogenic biology (Figures 3 and 4). The impact of this work
is already being realized through advancements in identification of
specific cell types, including the elusive human SSC, and new appre-
ciation of the extent of heterogeneity among spermatogenic cells and
how that relates to their development. New bioinformatics and wet
bench techniques already available and on the horizon will allow the
field to build on these observations by solving the limitations of static
observations and spatial remapping to bring these data full-circle to
truly advance our foundational knowledge. Ultimately, a more ad-
vanced understanding of the biology of spermatogenesis will help
the field work towards developing new diagnoses for male infertil-
ity, deciphering their etiologies, devising new treatment modalities,
and conversely, cultivate new methods for male contraception to
maximize human health (Figure 4).
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