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Abstract.—We use a computational modeling approach to explore whether it is possible to infer a solid tumor’s cellular
proliferative hierarchy under the assumptions of the cancer stem cell hypothesis and neutral evolution. We work towards
inferring the symmetric division probability for cancer stem cells, since this is believed to be a key driver of progression
and therapeutic response. Motivated by the advent of multiregion sampling and resulting opportunities to infer tumor
evolutionary history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumor’s evolution
in different regions of parameter space and through time. We find strikingly different patterns in these measures for changing
symmetric division probability which hinge on the inclusion of spatial constraints. These results give us a starting point
to begin stratifying tumors by this biological parameter and also generate a number of actionable clinical and biological
hypotheses regarding changes during therapy, and through tumor evolutionary time. [Cancer; evolution; phylogenetics.]

The cancer stem cell hypothesis (CSCH) posits that
tumors are composed of a hierarchy of cells with
varying proliferative capacities. Under this hypothesis,
a subpopulation of “cancer stem cells,” also termed
tumor-initiating cells (TICs), are able to self-renew
through symmetric division and also to differentiate into
tumor cells resembling transit-amplifying cells (TACs)
through asymmetric division (Fig. 1a), giving rise to
the entire diversity of cells within a tumor (Fialkow
et al. 1967). The CSCH provides a conceptual framework
by which to understand many different aspects
of cancer progression, including: the occurrence of
functional heterogeneity despite genetically identical
states (Sottoriva et al. 2010; Vlashi et al. 2011; Magee
et al. 2012); resistance to chemotherapy (Chen et al. 2012;
Werner et al. 2016) and radiotherapy (Bao et al. 2006;
Diehn et al. 2009; Dhawan et al. 2014); recurrence (Dingli
and Michor 2006); and metastasis (Pang et al.
2010). Despite its popularity, the CSCH has been
the subject of continual debate and modification in
order to maintain compatibility with experimental
observations (Gilbertson and Graham 2012; O’Connor
et al. 2014; Scott et al. 2019).

While the specifics of the CSCH are still a matter of
debate, the clinical relevance of those cells with traits
ascribed to TICs is clear. However, our ability to measure
their dynamics in a clinical setting remains lacking.
In vivo measurement efforts are limited to carefully
conducted live imaging in genetically engineered
mice (Ritsma et al. 2014), or genetic labeling and
subsequent lineage tracing (Driessens et al. 2012).
Although in vitro systems are better suited to the
extraction of these parameters, to date little has been

done to quantify them, as technically demanding single-
cell lineage tracing (Lathia et al. 2011) is required.
These experimental difficulties speak to the need for
more theoretical work in this area, especially to propose
metrics for quantifying proliferative parameters such
as TIC symmetric division probability (Fig. 1a) from
clinical data. This is of particular importance as there
is mounting evidence for the effect of proliferative
hierarchy on response to radiotherapy (Tamura et al.
2010) and chemotherapy (Chen et al. 2012), and
microenvironmental factors such as hypoxia (Conley
et al. 2012; Dhawan et al. 2016b), acidosis (Hjelmeland
et al. 2011), growth factors (Doetsch et al. 2002), and even
stromal cell co-operation or co-option (Vermeulen et al.
2010; Liu et al. 2011) have been shown to perturb this
system. In summary, TIC symmetric division rate and
somatic mutation rate are both specific parameters of
interest in cancer biology, and these form the focus of
the present modeling.

Several published mathematical models, using
different formalisms and considering different aspects
of heterogeneity, have predicted that the evolution of a
solid tumor should depend strongly on whether or not it
exhibits a proliferative hierarchy, and on the parameters
of such a hierarchy. These models have included
spatial proliferation constraints, microenvironmental
heterogeneity, and selective pressures, and the noted
differences include shape, clonal heterogeneity,
rate of evolution, and growth dynamics. Werner
et al. (2011) specifically studied the differences in
bulk tumor behavior between tumors arising from
mutant TICs and TACs in a nonspatial context. In
a spatial context, the work of Sottoriva et al. (2010),
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FIGURE 1. Spatial stochastic model schematic with neutral mutation schema. a) The proliferative hierarchy. Each TIC can divide symmetrically
with probability � to make two identical TIC progeny, or asymmetrically with probability (1−�) to make one TIC and one TAC. TACs divide
symmetrically until they reach a specific divisional age (�=4 for this work), after which they die upon division attempt. b) At each division event
(branching) after the first (carcinogenesis, labeled with a 1), a random number of mutations drawn from a Poisson distribution with expectation
� is conferred on each daughter (subsequent starred events). Each mutation event is given a unique flag, which is inherited by its offspring
unless they too mutate. Each unique mutation can then be considered as a novel mutant allele (red) appearing in the population. c) Flowchart
outlining CA rules governing TIC and TAC growth, including spatial inhibition of growth and TAC age.

Sottoriva and Tavaré (2011), Enderling et al. (2009),
and Morton et al. (2011) represent the first papers
where it was shown that the parameters governing TAC
dynamics can constrain tumor growth, and also that
TIC-driven tumors have significantly different spatial
growth patterns: specifically, that they exhibit “patchy”
growth. In none of these models, except Sprouffske
et al. (2013), in which the main question centered on
TAC numbers, were these differences studied across
TIC symmetric division probabilities, which is a key
parameter governing the hierarchy, and one that is
exceedingly difficult to measure or perturb in vitro or
in vivo.

To describe the evolutionary relationship between
cells in a multicellular tissue, we require a phylogenetic
approach. While the use of objective, genetic information
to infer phylogenetic trees has a long history in
evolutionary biology, its application to cancer evolution
is much more recent, giving rise in the last decade to a
subfield recently dubbed “PhyloOncology” by Somarelli
et al. (2016). Using phylogenies reconstructed from
spatially separated biopsies and informatic algorithms,
many aspects of tumor evolution have begun to be
elucidated (Gerlinger et al. 2014), including the genetic

heterogeneity present within a primary tumor (Sottoriva
et al. 2013), the origin of individual metastatic
tumors within the primary site (Gerlinger et al. 2012;
Naxerova and Jain 2015), the earliest events driving
progression and metastasis (Zhao et al. 2016), and
the effect of chemotherapy on primary and metastatic
sites (Murugaesu et al. 2015; Faltas et al. 2016).

In addition to these sorts of questions, there are
precedents in other fields for using phylogenetic
information, integrated with population dynamics to
infer other underlying biological processes—a technique
termed phylodynamics (Grenfell et al. 2004). For
example, Leventhal et al. (2012) proposed that the
phylogenetic tree contains a “fingerprint” that can be
used to determine the evolutionary process driving
the population in question. Modeling the spread of
HIV within a contact network, the authors investigated
whether the network structure could be inferred
from the resulting disease phylogenies. To address
this question, the authors simulated a range of
epidemics on several families of random graphs and
measured the resulting phylogenetic trees, finding that
certain tree-based measures could discriminate between
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the qualitatively different families of random graph
structures considered.

We may expect cancer cell phylogenies to look
quite different from viral phylogenies. Nevertheless,
these precedents motivate us to ask whether a similar
approach could be used to discriminate between in
silico tumors with different symmetric division rates.
To test this hypothesis, we study the effect of TIC
symmetric division probability on tumor evolution
using a computational modeling approach. We focus
on observed patterns in reconstructed phylogenetic trees
across a range of symmetric division probabilities. The
estimation of this proliferative parameter from clinical
data could help improve our understanding of the
effect of therapies on tumor growth dynamics, and our
ability to stratify tumors for consideration of different
therapies. In this way, we seek to provide translatable
measures to aid in understanding tumor biology: to use
mathematical modeling to “see the invisible.”

The remainder of this article is structured as follows.
We first present a spatial stochastic model of tumor
growth under a proliferative hierarchy with neutral
mutations, which we embed on a 2D lattice to enable the
study of the effect of spatial constraints. Next, we develop
an algorithm to reconstruct the branched phylogenetic
structure from each realization of our tumor growth
model. We apply a range of statistical measures of
phylogenetic tree shape to simulation outputs for
comparison. We explore the temporal dynamics of these
measures over the course of tumor growth to assess
whether they are robust to tumor size changes, and then
to changes in mutation frequency. Finally, we discuss the
possible clinical utility of these measures.

MATERIALS AND METHODS

Model Development
Here, we describe the development of a 2D, lattice-

embedded cellular automaton (CA) model of tumor
growth with contact inhibition growing under neutral
evolution and a proliferative hierarchy. We also develop
a nonspatial companion model in order to assess the role
of spatial constraints on the evolutionary process.

Proliferative hierarchy.—For both models, we consider
a proliferative hierarchy comprising two cell types,
TICs and TACs. We assume that each TIC divides
symmetrically with probability �, creating two TICs,
and asymmetrically with probability 1−�, creating
one TIC and one TAC. For simplicity, we assume
that � takes a constant value for all cells in a given
simulation, and is not dependent on the mutation rate
(see below). Note that in practice, microenvironmental
parameters such as nutrient deprivation (Flavahan
et al. 2013), acidity (Hjelmeland et al. 2011), and
hypoxia (Heddleston et al. 2009; Li et al. 2009), as well
as accumulated mutations such as those commonly
observed in colorectal cancers (Baker et al. 2014),

are all known to be capable of affecting symmetric
division probability among cells in a tumor. As it has
been shown theoretically that the overall population
dynamics of TIC-driven tumors is equivalent with
or without TIC symmetric differentiation (Rodriguez-
Brenes et al. 2011) (when a TIC divides to create two
TACs), and as the lineage extinction possible in this
case would significantly complicate our phylogenetic
analysis, we make the simplifying assumption that there
is no symmetric differentiation. We do not rule out that
the addition of symmetric differentiation could affect
phylodynamics, but leave that question for further study.

We assume that every TAC division is symmetric,
creating two TACs, but only allow this to progress for
� rounds of division, after which the TAC will die if
chosen to divide again. Here � represents the replicative
potential of TACs, and is posited to represent telomere
length (Poleszczuk et al. 2014). Previous theoretical
work has shown that tumor growth kinetics in spatially
constrained geometries are strongly affected by the
value of � (Morton et al. 2011). In particular, if �>
5, then simulated tumors experience unrealistically
lengthy growth delays. Therefore, we follow a previously
used assumption (Sottoriva et al. 2010; Sprouffske
et al. 2013) and fix �=4. This mode of growth and
differentiation is illustrated in Figure 1a. For simplicity,
we neglect cell death, which could disrupt growth
patterns. Indeed, Williams et al. (2016) have shown that
the overall patterns of mutations, as measured by variant
allele frequencies, is changed. The addition of cell death
in this model is therefore a natural avenue for future
work.

Neutral evolution.—To understand the effects of neutral
evolution on tumors with differing proliferative
hierarchies, we extend our model of tumor growth under
a proliferative hierarchy to include random mutations.
At each cell division, there is a possibility that one
or more mutations occur. To determine the number
of mutations accumulated by a given daughter cell,
we independently draw a random number from a
Poisson distribution with expectation �. We assume for
simplicity that every mutation arising in our model
is unique. This “infinite sites” assumption is usually
ascribed to Kimura (1969).

For simplicity, we assume that mutations confer
no advantage, disadvantage or any other phenotypic
change and therefore serve only as a method by which to
track clonal lineages (i.e., they are neutral; Williams et al.,
2016). This assumption could in principle be loosened
to allow for positive selection (Bignell et al. 2010), or a
balance of positive and negative selection (McFarland
et al. 2013). A schematic of this model of evolution, and
labeling scheme, is shown in Figure 1b.

For computational efficiency, instead of storing
a genome of length n (G ∈{0,1}n), we record a
unique integer flag only for the most recent mutation
accumulated within a cell, which is passed down to
its progeny, unless a mutation occurs, in which case a
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new flag (the next integer) is assigned. We also record
each mutation event in the form of an ordered pair
(parent flag, child flag), so that the complete genome, G,
can be reconstructed for future use, and the length will be
only as long as is needed to represent the changes which
occurred during the simulation. As they are the only cells
capable of forming tumors on their own, and infinite
replication, we follow previous works in considering
new mutations to accrue only in TICs (Sottoriva et al.
2010; Sottoriva and Tavaré 2011; Sprouffske et al. 2013;
Poleszczuk et al. 2015). A natural extension for human
cancer would be to consider instead sequences formed
of DNA characters ATCG.

Nonspatial Model Implementation
To implement a first version of our hierarchical model

with neutral evolution, we consider the case in which
there are no spatial constraints—which could be a
sensible model for liquid tumors like leukemias which
are well mixed in the blood. We initialize our simulation
with a single TIC. We then implement discrete updates,
which we will term “time steps.” As we are not studying
temporal dynamics here, we do not prescribe any proper
dimension to this time. At each discrete time step, we
choose a cell uniformly at random from the population to
either divide and possibly mutate, or die. Our simulation
is considered complete when the total population of cells
reaches a prescribed number.

If the cell is a TIC, then we first draw a random
number, r, from U[0,1] and compare it to the probability
of symmetric division, �. If r<�, then the cell divides
symmetrically, and we draw the number of new
mutations accumulated in each daughter independently
from a Poisson random distribution with expectation
value �. A new TIC daughter is then generated and
given a mutational “identity” which is the mathematical
sum of the parent cell’s identity and the number of new
mutations. The parental cell is also updated by changing
its identity based on the number of new mutations it
accrues, if any. If the cell is not determined to divide
symmetrically, then it divides asymmetrically and a TAC
daughter is created with age 0 and the parental TIC is
updated for new mutations as above, see Figure 1.

If the chosen cell is instead a TAC, then we first check
that its age is less than the allowed TAC age, �. If the
age is equal to the allowed TAC age, then the cell dies.
If the age is less than the allowed TAC age, then the cell
ages and divides, and a new daughter with the same
identification is created, whereupon the loop continues
(see Fig. 1 for schematic).

Spatial Model Implementation
As we are interested in the effect of the proliferative

hierarchy on the neutral evolutionary process in solid,
spatially constrained tumors, we embed our cell-based
model in a 2D square lattice. While recent work has
shown some qualitative differences in vascularized

CA models between two and three dimensions, using
a 2D lattice for unvascularized tissue is a common
simplification (Anderson and Chaplain 1998; Alarcón
et al. 2006; Gerlee and Anderson 2008; Scott et al.
2016) that allows spatial constraints to be studied
in a computationally tractable manner. In addition
to the above description of cell proliferation, we
consider cell proliferation to be modulated by contact
inhibition (Anderson 2005). A cell is allowed to divide
only if at least one of the eight adjacent lattice sites (north,
south, east, west, and diagonal neighbors) is unoccupied;
if this is not the case, then we consider the cell to be
in a quiescent state that may be exited when space
becomes available. At each time step, each “cell” has an
opportunity to divide given that it has space to do so.
Cells are chosen uniformly at random for updates from
the entire population to avoid order bias. Apart from
these spatial effects, the model is otherwise identical to
the nonspatial model presented earlier.

Cell-type specific rules.—If space is available, and the cell
is a TIC, then the type of division is determined by
choosing a uniform random number, r, from [0,1]. If r<
�, then the TIC divides symmetrically, creating another
TIC that is placed uniformly at random in one of the
free neighboring lattice sites. The parent and daughter
TICs will independently acquire a random number of
new mutations, as described above. If r≥�, then the TIC
divides asymmetrically, creating a TAC that is placed
uniformly at random in one of the free neighboring
lattice sites. The daughter TAC is created with the same
mutation identity (ID) as the parent, and age =0, while
the parent TIC will independently acquire a random
number of new mutations, as described above.

If the chosen cell is instead a TAC, then the check
after available space is a check of the cell’s proliferative
age, which is the number of divisions as a TAC. If the
TAC age is equal to the replicative potential, �, then
the TAC dies, at which point it is removed from the
simulation. If the TAC age is less than �, then we create a
new TAC daughter and place it uniformly at random in
one of the free neighboring lattice sites. The parent and
daughter TACs share the same mutation ID and their age
is updated to be one more than the age of the originally
chosen TAC.

Full Implementation
The full CA flowchart, represented in Figure 1c,

schematizes the entire process of cell fate decisions that
each cell undergoes at each time step in the spatial model.
In the top panel, the rule set followed by the TICs is
represented to include differentiation and mutation. In
the bottom panel, the TAC rule set is defined to include
death by terminal differentiation and TAC aging. An
example simulation of tumor growth over time is shown
in Figure 2, where the effect of lowering � can be seen
on overall tumor growth kinetics, where the color-bar
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FIGURE 2. Temporal evolution of the spatial model reveals observable morphologic differences between TIC-driven and non-TIC-driven
tumors, as observed by others. We plot representative results of simulations of two tumors, each simulated on a square lattice of size 400×400.
Top: a tumor simulated with �=0.2 and �=4. We notice, as have Enderling et al. (2009) and Sottoriva et al. (2010), a “patchy” clonal architecture,
and nonuniform edge. Bottom: a tumor simulated with �=1.0, that is, no proliferative hierarchy. We note smooth edges, radial patterns of clonal
architecture, and relatively faster population growth, reaching ≈70,000 cells in less than 200 time steps. To reach a similar size, the tumor with
symmetric division probability of 0.2 took 35,000 time steps. Color bars denote number of mutations present in a given clone, note that the top
scale is about 1/3 of bottom scale.

represents the current clonal state (mutation ID) of a
given clone.

Recovering Phylogenetic Trees from Simulation
While experimentalists and clinicians can only infer

phylogenies from incomplete data, reconstruction of
the “true” phylogeny is possible in our model as we
can record the entire life history of the simulated
tumor. Thus, we can test whether phylogenetic tree-
based measures are able to discriminate TIC symmetric
division probability in the case where the “ground truth”
is known. At each time step, we record the spatial
location of each individual cell with its mutation ID,
which is our CA state vector. Additionally, we record
the evolutionary “life history” as a list of ordered
pairs of every mutation event (parent mutational ID,
child mutational ID). We then recursively construct the
phylogenetic tree from this life history.

Phylogenetic tree reconstruction algorithm.—To create
the complete tree data structure required for our
quantitative analyses, we use the information encoding
the mutation events from our stochastic simulation. To
this end, we create a list of unique parent–child pairs
using the life history of mutation events. We then apply
an iterative process in which each child is added as a
subnode below the parent (from the unique parent–child
pair). This process is continued until all parent–child

pairs are added to the structure, and the tree is
complete. The simulation code and functions to create
these trees and calculate the metrics are freely available at
https://github.com/cancerconnector/clonal_evolution.

Qualitative comparison of reconstructed trees.—To compare
phylogenies from simulations with different underlying
parameter values, we first construct and visualize
the phylogenies constructed from three example
simulations with differing TIC symmetric division
probabilities in Figure 3. It is clear by inspection that
the number of mutations increases with symmetric
division probability (more branches). However, the tree
structure is not as easy to parse visually. For ease of
visualization, the trees depicted in Figure 3 have been
pruned of all terminal nodes (also called leaves) with no
children of their own. While this transformation does
affect the quantitative results, it does not qualitatively
affect the resultant phylogenetic tree statistic ranks (see
Figure 8 of Supplementary material freely available at
https://github.com/cancerconnector/clonal_evolution).
All analyses shown will utilize the full trees.

Candidate Tree-Based Measures for Model Comparison
Visual inspection of Figure 3 suggests that simulations

with different TIC symmetric division probabilities
generate distinct phylogenetic trees. However, to draw
meaningful conclusions we must perform a quantitative

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://github.com/cancerconnector/clonal_evolution


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[11:17 29/5/2020 Sysbio-OP-SYSB190072.tex] Page: 628 623–637

628 SYSTEMATIC BIOLOGY VOL. 69

FIGURE 3. Three example simulations with increasing symmetric division probability, � (0.2, 0.6, and 1.0 from top to bottom) and their
associated phylogenetic trees. Each example plot is the result of a single stochastic simulation of our spatial CA model. Each simulation is
initiated with a single TIC and complete when the domain is full, in this case 250,000 cells. Parameter values are �=4 and �=0.01. Visualized
trees (right) have been pruned of all leaves for ease of visualization, which does not qualitatively affect measure rank (see Fig. 8).

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
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comparison. Here, we present several measures useful
in summarizing and comparing phylogenetic trees.

The most commonly studied property of a
phylogenetic tree’s shape is its balance, defined as
the degree to which internal nodes (branch points)
have the same number of children as one another.
Balance (or imbalance) indices depend only on the
branching topology of trees, and not on other factors
like branch length or other features of the terminal
branches (leaves). Since the first balance index by Sackin
(1972), many others have been proposed with slightly
differing properties (Mir et al. 2013). One of the first
papers to present a systematic comparison of a suite of
balance indices (often denoted with the letter “B”) and
indices of imbalance (denoted with “I”) was by Shao
and Sokal (1990), who reported striking differences
between the studies’ measures. Their central message
was that different measures on trees can give insight into
different aspects of the underlying processes governing
the interactions, and one should thus consider several
measures for any given tree or family of trees. In this
study, we will consider several tree topology-based
measures.

Before describing the measures, it is worthwhile to
briefly define the terms which are used to describe
trees, and the two basic underlying stochastic models
which have been proposed to describe neutral evolution
and the resulting topologies. Phylogenetic trees describe
the evolutionary relationship between individuals
with different traits from one another, or in the
case of our model, different mutational combinations
(genotypes). In our model, each simulation begins
with a cell with mutation flag 1, or a genotype
with the first allele mutated (1000...), termed the
“root,” and evolution progresses stochastically, by
adding individual mutations at subsequent alleles and
increasing the mutation flag, as described in Figure 1b.
At each mutation event, an evolutionary branch point
is created, which is termed a node in phylogenetic tree
terminology. If this node gives rise to no other children
during the simulation, it is termed a terminal node,
or leaf. There are two common, classically referenced
models, which bear mention here as well, since many
tree topology-measures are normalized against them.
The first, described by Yule (1925) and sometimes termed
the “equal rate Markov” model, begins with a single
root and proceeds by replacing, uniformly at random,
a given leaf with a node with two children of its own.
The process continues until the desired number of leaves
exist. The other main model, termed the “Proportional
to Distinguishable Arrangements” (PDA) or uniform
model, was described by Rosen (1978). This model,
which is truly a model of tree growth rather than an
explicitly evolutionary process, begins as does the Yule
model (and indeed ours) with a single node labeled 1.
At each update step, a new leaf is added to the tree at
any point, either internal node or leaf. These models will
serve as normalization factors in several of the measures
we present below, which are summarized graphically in
Figure 4.

FIGURE 4. Example phylogenetic trees and their measures. From left
to right the trees contain 4, 3, and 2 internal nodes (dots) respectively,
but the same number (6) of terminal nodes.

Sackin index.—The Sackin index was the first statistic
used to understand the balance of a phylogenetic
tree (Sackin 1972; Shao and Sokal 1990). To compute this
statistic, one sums the number of ancestors (Ni) for each
of the n terminal nodes of the tree:

In
s =

n∑
i=1

Ni. (1)

This index increases with tree size: under the
Yule growth model, its expectation E[In

s ] grows as
2n log n (Yule 1925). One can therefore only perform
a meaningful comparison of Sackin indices of trees
generated from tumors if they are the same size.

Normalized Sackin index.—To address this dependence
on tree size, several normalizations to the Sackin index
have been proposed, two of which we explore here.
In particular, one can normalize the Sackin index of a
phylogenetic tree to the expectation value of a similarly
sized tree, under the Yule growth model:

IYule = 1
n

⎛
⎝In

s −2n
n+1∑
j=2

1
j

⎞
⎠. (2)

One can alternatively normalize using the PDA
model (Rosen 1978; Aldous 1996, 2001) which is simply
the Sackin index scaled by n3/2.

The B1 statistic.—The B1 statistic, originally described
by Shao and Sokal (1990), considers the balance of a tree.
To calculate the measure, one uses all i internal nodes of
the tree with the exception of the root (the founding cell).
For each nonroot internal node j, the maximum number
of nodes traversed along the longest possible path to a
terminal node, Mj, is counted. The B1 statistic is then
defined as

B1=
∑

i

1
Mj

∀i �=root. (3)

N̄.—The N̄ statistic reports the average number of nodes
above a terminal node. To compute this, we sum the
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path from each terminal node to the root, and divide by
the number of terminal nodes. An alternative definition
is the Sackin index “normalized” by the number of
terminal nodes. We define this as

N̄ = 1
n

n∑
i=1

Ni, (4)

where n is the number of tips and Ni is the number of
internal nodes between tip i and the root of the tree. For a
more complete review and comparison of the measures
presented here, and others, see Blum and François (2005)
and Shao and Sokal (1990).

Examples of how these measures change on several
example trees with equal numbers of leaves (but
different numbers of internal nodes) are presented in
Figure 4. (Note that in contrast with these polytomous
trees, our tumor growth model does not exhibit
polytomies, since all cell divisions are dichotomous
and each node in the phylogenetic tree is defined by
a unique mutation in an infinite sites model.) In these
examples, we compute each of the presented measures
for comparison. From left to right, the trees contain 4, 3,
and 2 internal nodes, respectively, but the same number
(6) of leaves. We note that the measures do not all follow
the same pattern. For an exhaustive description of all
possible trees with 6 leaves, and the correlation of a larger
family of associated measures, see Shao and Sokal (1990).

RESULTS

Measuring Trees from Simulation
As our primary goal is to identify whether tree-based

measures allow discrimination of simulated tumors
with different TIC symmetric division probabilities, we
focus on changes in tree measures as we vary comparable
simulations changing only this parameter. To compare
the model tree measures, we first perform 50 stochastic
simulations of both our nonspatial and spatial CA
using a range of TIC symmetric division probabilities
(0.2,0.4,0.6,0.8, and 1.0), holding mutation rate and
TAC lifetime constant (�=0.01 and �=4). For each
simulation, we construct the resulting phylogenetic
tree at tumor size 250,000 cells, as described in the
Materials and Methods section. We then measure the
value of each summary index defined earlier for all
50 simulations at the final time point and plot the
distribution in a box-whisker plot, which is shown in
Figure 5 with each data point overlaid in a swarm.
Differences between distributions were determined
using the Wilcoxon rank sum test. While these statistics
were performed post hoc, we should note that standard
statistics can be misleading for simulation based studies
with arbitrarily large sample sizes (White et al. 2014) (see
Figure 9 of Supplementary material freely available at
https://github.com/cancerconnector/clonal_evolution
for effect size).

Variation of Tree-Based Measures with Symmetric Division
Probability

The results of the model are presented in Figure 5. We
find that all of the indices have monotone relationships
with symmetric division probabilities except for N̄ in
the spatial model, and B1 in the nonspatial model. Of
note also, is that only in the Sackin index do we see
qualitative agreement for the spatial and nonspatial
models (monotone up/down) for both in the standard
(normalized) Sackin model. This difference in utility of
the different measures for the spatial and non-spatial
models are not unexpected, as Shao and Sokal (1990)
have previously shown that even for similar questions,
different models of tree topology will have different uses.
As our primary purpose is to understand the spatial
cancer model, we will leave a deeper investigation into
the dynamics of the nonspatial model for future work,
and concentrate our analysis from here forward on the
spatial model.

In terms of discernibility for the spatial model, of the
normalized indices, the B1 statistic has the least overlap
in error between symmetric division probabilities
(i.e., comparing the cases �<1 with the case �=1).
All measure distributions are significantly different
by the Wilcoxon rank sum test (p<0.05) except 0.4
and 0.6 in the Sackin index normalized by the Yule
model (p=0.08). While we recognize the dangers in
reporting p-values in simulation-based studies (White
et al. 2014), we report them here for comparison,
and report effect size as well, with full statistics for
both the spatial and nonspatial model reported in
Figure 9 of Supplementary material freely available at
https://github.com/cancerconnector/clonal_evolution.
The strongest effect for the spatial model is seen in
the Sackin index (R2 =0.871), followed by the Yule
normalized Sackin index (R2 =0.743).

Dynamics of Tree-Based Measures During Tumor Growth
As discussed in Materials and Methods, the measures

considered here are strongly dependent on the total
number of nodes in the tree. With all other parameters
held constant, simply allowing a tumor to grow larger
would increase the number of total mutations, and
therefore the number of total nodes, subsequently
altering the value of the measure. To ensure that the
differences we have noted are robust to changing tumor
size, we next consider how these measures evolve during
the growth of a tumor.

To determine how these measures vary over the
lifetime of a growing tumor, we measure each index over
the course of multiple simulations. To accomplish this,
we use the life history to reconstruct the phylogenetic
tree at 20 equally spaced time points during the course of
50 simulations for each value of the symmetric division
probability. Note that since the time taken for each
simulated tumor to fill the spatial domain depends
strongly on the symmetric division probability (see
Figure 2), to compare “like for like” we break each life

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://github.com/cancerconnector/clonal_evolution
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz070#supplementary-data
https://github.com/cancerconnector/clonal_evolution
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FIGURE 5. A summary of four tree indices measured over a range of symmetric division probability. We plot the distribution of each of four
measures of tree balance for the final resultant trees from 50 simulations against symmetric division probability. All simulations were run with
�=4 and �=0.01 until a tumor size of 250,000 cells was reached. In each plot, we display a box-whisker plot as well as the individual results as
points. NS = nonsignificant by the Wilcoxon rank sum test.
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FIGURE 6. Comparing phylogenetic tree measures across symmetric division probability through tumor growth. We plot the average and
standard deviation (error bars) of four phylogenetic tree measures for each of the 50 simulations for a range of symmetric division probabilities
over the course of tumor growth. Rank is maintained across symmetric division probabilities for each of the 3 tree measures with which we
could discriminate between symmetric division probabilities. As before, N̄ is not predictive and changes rank throughout tumor growth. All
tumors are grown to eventual confluence at 250,000 cells. In all simulations �=4 and �=0.01.

history into equally spaced time intervals, which act
as surrogates for tumor size. Comparing across tumor
size is of greater utility, clinically, since while the age
of a given tumor is rarely known, size can be readily
estimated.

After reconstruction, we then create a “time” trace
for each statistic. We plot these statistics over “time”
in Figure 6, where each family of 50 simulations (for a
given symmetric division probability) is represented by
a single trace with the standard deviation represented
by the colored error bars. We find that for each
of the statistics, except N̄, the relationships between
the symmetric division probabilities are maintained
over time, suggesting that, if we know the tumor
size, and true phylogeny, we can estimate the relative
symmetric division probability between two samples
from these measures. This statement must be somewhat
qualified by the fact that mutation probability was also

held constant for these simulations. While estimating
mutation probability is not trivial, significant advances
have been made in measuring the speed of the
“evolutionary clock” of tumors: essentially a proxy
for mutation probability (Curtius et al. 2016). Further,
we found that the rank order of each discriminatory
measure holds throughout tumor growth, indeed
becoming more discriminatory as the tumors grow
larger (with the exception of N̄). As the tumors
simulated in this study are unrealistically small given
the computational constraints, this information gives us
hope that in tumors of realistic size, these measures
would be even more useful. This becomes particularly
important as the statistics that we have calculated
come from the “true trees,” that is, trees comprised
of all mutation events. In reality, trees would be
inferred from the imperfect information gleaned from
biopsies.
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FIGURE 7. Comparing phylogenetic tree measures across symmetric division probability and mutation probability. We plot the average
of each of four phylogenetic tree measures at the end of each of 10 simulations for a range of symmetric division probabilities and mutation
probabilities. We vary mutational probability over two orders of magnitude (0.1−0.001), and simulate all tested symmetric division probabilities.
Rank is maintained across symmetric division probabilities for each of the three of the four measures with which we could discriminate between
symmetric division probabilities with changing mutation probability, allowing for differentiation between parameters. As before, the N̄ statistic
is not predictive. As expected, for the nonnormalized indices, Sackin, and B1, the measures change monotonically with both symmetric division
and mutation probability. For the PDA normalized Sackin index, however, there is a global minimum for �=0.01 and �=1.

Dependence of Tree-Based Measures on Mutation Probability

As the tree measures depend heavily on the
number of mutations within a given tumor, and
therefore the number of branches within a given
tree, we next ask how these measures behave when
we vary mutation probability (�) and symmetric
division probability simultaneously. To answer this, we
perform 10 stochastic simulations for each combination
of the symmetric division probabilities considered
previously and 5 different values for � varying over two
orders of magnitude (0.001,0.005,0.01,0.05,0.1), which
spans most of the range (per cell per division) as
noted by Alexandrov et al. (2013). We then use the
previously described method to reconstruct the resulting
phylogenies and calculate the measures previously
discussed. In particular, we ask how the Sackin index,
the B1 statistic and the normalized Sackin index
perform over this range of � to better understand
the applicability of these measures in determining
differences in symmetric division probability.

We plot the results of this parameter investigation
in Figure 7. In each heat map, we plot the mean
of the 10 simulations for each parameter combination

with symmetric division probability varied along the
horizontal axis and mutation probability along the
vertical axis. The indices which are not normalized
by branch number, namely the Sackin index and
B1 statistic, increase monotonically with mutation
probability and symmetric division probability in all
cases. The Sackin index normalized by the PDA model,
however, varies somewhat unexpectedly and has a
global minimum at symmetric division probability of
1.0 and mutation probability 0.01. This measure is
monotonic in symmetric division probability except
at the highest mutation probability where it becomes
somewhat more difficult to determine the differences.
As before, the B1 statistic appears to be the most
stable, and only breaks down slightly in its ability to
distinguish between the families of simulations at the
lowest mutation probability (�=0.001) and the middle
range of symmetric division probability (symmetric
division probabilities =0.4−0.8), as can be seen in
Figure 7. In these ranges of the parameter space, our
model may not provide useful predictive power.
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DISCUSSION

While the use of phylogenetic trees is increasing in
translational oncology laboratories, there has yet to be a
method found by which we can utilize the information
clinically. To address this shortcoming, we worked to
leverage the growing interest in biomarker derivation
from spatially distinct tumor biopsies (Dhawan et al.
2016a), and the recent success of Leventhal et al. (2012)
and others in teasing apart complex biological rules from
phylogenetic information. We developed an individual-
based model of tumor growth under a TIC-driven
proliferative heterogeneity which undergoes neutral
evolution. We then developed an algorithm to construct
phylogenetic trees from simulated tumors. The resultant
trees were then analyzed and compared using a suite
of statistical measures of tree (im)balance. Through this
method, we have generated a large data set that includes
the observed statistical measures of the “true” phylogeny
for tumors spanning the full range possible of symmetric
division probabilities, which we feel is appropriate as
symmetric division probabilities as low as 5% have been
reported in glioblastoma (Lathia et al. 2011) and as high
as 90% have been reported in colorectal cancer (Baker
et al. 2014). It is worth noting that, as our phylogenies
are exact, some of the conclusions one may draw in the
future from empirically inferred trees would have to be
tempered by the inherent uncertainty in the inference
process. Further, we are by no means the first group
to seek to utilize simulation to study tree topology,
with notable recent examples being INDELible, a flexible
platform to simulation insertions and deletions (Fletcher
and Yang 2009), as well earlier models of simulating
neutral Wright–Fisher models (Hudson 2002).

In particular, we compared the classical measures of
tree topology—the Sackin index and the B1 statistic—
as well as normalized versions of each across several
parameters of our spatial and nonspatial models as
well as through the process of tumor growth. Not
surprisingly, we found that the Sackin index was able
to discriminate between the families of simulations
as it is directly correlated with branch number (in
this case correlating with total number of mutations
in the TICs, which also is increased with increasing
symmetric division probability). Encouragingly, we also
found that the normalized version of this metric was
able to discriminate between the different symmetric
division probabilities, suggesting a more meaningful
(and measurable) topological difference between the
underlying phylogenetic trees resulting from these
parameter changes (representing diverse biological
traits).

While we have shown that these measures differ
significantly from one another, we have not yet provided
a method by which we can use the metric of a given tree
to directly predict the symmetric division probability
of an unknown tumor. However, the present work
at least allows us to understand the rank order of
symmetric division rate for two tumors given their
measured indices. This could be particularly useful in
certain clinical settings. For example, this could allow

us to determine how a given therapy affects symmetric
division probability by using our calculated measures
over serial biopsies, and subsequent phylogenetic
reconstruction. This could prove particularly useful
in the treatment of leukemias, where the target cell
is known to be the TIC, eradication of which is a
requirement for cure (Roeder et al. 2006). In this case,
after phylogenetic reconstruction using any of several
methods available for single sample whole-genome
sequencing (Carter et al. 2012; Roth et al. 2014; Deshwar
et al. 2015), the tree topologies could be compared before
and after therapy, giving a measure of relative change.
Our metric (derived in this case from our nonspatial
model results) could therefore prove a useful adjunct
to existing methods of predicting TIC fraction (Werner
et al. 2016) to determine therapeutic efficacy, and guide
therapy breaks or switching.

Even with state-of-the-art multiregion sequencing
approaches, most reconstructed cancer phylogenies are
relatively small (Gerlinger et al. 2014; Zhao et al. 2016)
with very few leaves, preventing the application of our
statistical method in its current form. With continued
advances in single-cell sequencing, and more examples
of higher spatial sampling from larger tumors, like
in the most recent TRACERx Renal study (Turajlic
et al. 2018), the situation may change, but it is worth
reiterating that this theory has not yet been shown to
be quantitatively accurate in real tumor samples. Even
in the case that it does not become effective in the near
future, however, we assert that beginning to use metrics
of tree topology to compare tumors before and after
therapy, or across grade or survival, could prove useful
to enhance our understanding of tumor evolution and
treatment response in the near term.

Aiming towards a translatable method by which
to infer the symmetric division probability in solid
tumors, we have identified several phylogenetic tree-
based measures that correlate with TIC symmetric
division probability. We have found several measures
which are able to discern differences in simulated
tumors between symmetric division probabilities. These
results are robust to changes in tumor size, specifically
maintaining their rank throughout tumor growth. The
rate of mutation does affect these results to some degree,
but rank is maintained permitting comparison through
time, or between tumors of similar size.

While there is some overlap amongst the measures
when more than one parameter is varied, with
information on mutation probability and tumor size,
relative symmetric division probability can be estimated.
We have restricted our focus to measures of (im)balance,
a basic property of phylogenetic trees based only
on their branching topology. With more information,
such as evolutionary branch lengths (Kirkpatrick
and Slatkin 1993; Mooers and Heard 1997) which
are linked to the “speed” of a tumor’s molecular
clock (Curtius et al. 2016), some of these limitations
could be obviated. Further, we have only considered
neutral evolution. While most tumor evolution is
likely neutral (Williams et al. 2016), there is certainly
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evidence for nonneutrality in the form of driver and
passenger mutations (McFarland et al. 2013, 2017), which
would drastically affect the resulting phylogenetic trees
(Grenfell et al. 2004)—especially with intervening
treatment regimens. How nonneutral evolution and
treatment affect our measures remain avenues for future
work.
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