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Abstract

Cells can store memories of prior experiences to modulate their responses to subsequent stresses, 

as seen for the protein kinase A (PKA)-mediated general stress response in yeast, which is 

required for resistance against future stressful conditions. Using microfluidics and time-lapse 

microscopy, we quantitatively analyzed how the cellular memory of stress adaptation is encoded in 

single yeast cells. We found that cellular memory was biphasic. Short-lived memory was mediated 

by trehalose synthase and trehalose metabolism. Long-lived memory was mediated by PKA-

regulated stress-responsive transcription factors and cytoplasmic messenger ribonucleoprotein 

(mRNP) granules. Short- and long-lived memory could be selectively induced by different priming 

input dynamics. Computational modeling revealed how the PKA-mediated regulatory network 

could encode previous stimuli into memories with distinct dynamics. This biphasic memory-

encoding scheme might represent a general strategy to prepare for future challenges in rapidly 

changing environments.

One-sentence summary:

Yeast use different PKA-dependent mechanisms to encode short- and long-term memories of 

stresses.

Editor’s summary:

Remembering stress with PKA

A prior stress can prime organisms to successfully survive subsequent stresses. In yeast, the kinase 

PKA is inhibited by stress, resulting in changes in gene expression that mediate the general stress 

response. Using PKA inhibition as a mimic for stress, Jiang et al. examined how yeast encoded the 
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memories of previous stresses. Short-term memory required metabolism of the sugar trehalose and 

was more sensitive to the amplitude of the stress than its duration. In contrast, long-term memory 

was sensitive to stress duration and required stress-induced transcription factors and the storage of 

messenger ribonucleoproteins (mRNPs) in granules. These results show how yeast use PKA to 

“remember” previous exposures to stress in the short term or over a longer period of time.

Introduction

Cells survive rapidly changing environments through adaptation mediated by sophisticated 

signaling and gene regulatory networks. How these networks operate dynamically to process 

complex extracellular signals and elicit appropriate responses remains a challenging 

question (1–3). Advances in microfluidics and single-cell imaging technologies allow us to 

track the responses of individual living cells in a precisely controlled changing environment, 

providing a unique opportunity to elucidate the underlying principles for dynamic signal 

processing in cells (4). In this study, we exploited these technologies to systematically probe 

the regulatory network that enables cells to encode memory of prior environmental cues in 

order to modulate their adaptive responses to future challenges.

History-dependent cellular behaviors have been found in many organisms (5–11). For 

instance, plant cells obtain enhanced resistance to various future diseases and abiotic 

stresses, once primed by mild stresses or chemical compounds (12, 13). In another example, 

pre-treatment of human macrophages with interferon-γ substantially boosts subsequent 

responses triggered by lipopolysaccharide (LPS) against various pathogens and in tumor cell 

killing (14, 15). In this study, we referred these history-dependent responses in single cells 

as “cellular memory”, which is of course fundamentally different from the neuronal memory 

in animals.

In the yeast Saccharomyces cerevisiae, a given stress can activate its specific response 

pathway as well as a common signaling pathway shared by several different stresses, called 

the general stress response (GSR) pathway (16). This pathway is primarily mediated by 

protein kinase A (PKA). In response to stresses, PKA is rapidly inhibited, leading to 

activation of downstream transcription factors, such as Msn2 and Msn4, and the induction of 

hundreds of stress responsive genes (17–20). The GSR pathway is not required for survival 

against immediate stress threats, but instead, is required for resistance against future stressful 

conditions (21–23). However, the mechanisms that mediate memory encoding of 

environmental changes remain unclear.

In this study, we used GSR as a model to quantitatively analyze how PKA-dependent 

regulatory processes operate dynamically to encode the memory of environmental changes. 

We combined microfluidics with time-lapse microscopy to precisely control the dynamics of 

priming inputs and to quantify the memory effect on stress adaptation in single cells. We 

found that cellular memory shows two phases, a fast-decaying phase mediated by trehalose 

metabolism and a long-lasting phase mediated by stress-activated transcription factors and 

messenger ribonucleoprotein (mRNP) granules. Moreover, the memory dynamics could be 

modulated by priming inputs. Whereas a high amplitude transient input specifically induced 

the fast-decaying phase of memory, a prolonged input was needed to elicit the long-lasting 
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memory effect. We further developed a computational model based on the molecular 

processes identified experimentally. Our model quantitatively revealed the regulatory 

scheme that encodes the information of previous environmental inputs into distinct memory 

dynamics, implying a general strategy to optimize resource allocation and prepare for future 

challenges under rapidly changing environments.

Results

PKA encodes biphasic cellular memory

Probing the effect of cellular memory has long been challenging, in part due to the difficulty 

in generating well-controlled sequential environmental changes in cell cultures. We took 

advantage of advances in microfluidic technologies that allow the precise control of 

extracellular conditions and tracking of the responses of single cells over extended periods 

(24, 25). In this study, we modified the channel design of an existing microfluidic device 

(18) to include separate control of three media inlets, one each for the priming input, the 

normal growth medium, and the stress treatment (Fig. 1A). To increase the experimental 

throughput, we also aligned four individual channels into a single device to enable 

simultaneous running of multiple experiments, each with its own cell population and 

stimulus condition. Using this device, we first exposed the cells to a pulse of priming input 

followed by a “break time” with the normal growth medium. We then treated these primed 

cells with a sustained environmental stress and evaluated their adaptation responses. The 

device was mounted on a time-lapse microscope to track the responses of a large number of 

single cells throughout the entire experiment.

For the priming input, we used a chemical genetics strategy in which we introduced analog-

sensitive mutations into the PKA isoforms so that they remain fully functional but can be 

specifically inhibited by the small molecular inhibitor 1-NM-PP1 (26). We have previously 

employed this strategy to control PKA activity, mimicking an upstream signaling event that 

specifically activates GSR but not other stress specific pathways (18, 27–29) (Fig. 1B). 

Moreover, combined with time-lapse microscopy and microfluidics, it enabled us to generate 

precisely controlled temporal patterns of PKA inhibition as priming inputs and to evaluate 

their effects on cells’ adaptation to the subsequent environmental stress.

For the subsequent stress treatment, we chose hyperosmotic stress (0.75M KCl) because the 

stress adaptation process in individual cells can be reliably quantified using a specific 

reporter, the stress-activated protein kinase Hog1, which we tagged with YFP. In response to 

osmotic stress, Hog1 rapidly translocates to the nucleus to induce an increase in intracellular 

osmolyte; once the osmolyte balance is restored and the cell recovers from the stress, Hog1 

exits the nucleus (30). The timing of Hog1 nuclear export strongly correlates with the 

restoration of cell volume (reflecting the turgor pressure recovery and cellular adaptation) 

(31). Thus, the duration of Hog1 nuclear localization serves as a proxy for the time needed 

for the cell to recover from a stress treatment. A shorter duration represents a faster 

adaptation whereas a longer duration represents a slower adaptation. We note that other 

pathways besides Hog1 that respond and adapt to hyperosmotic stress can also be used as 

indicators for stress recovery (32, 33). We used Hog1 nuclear localization in this study 

because it has been well characterized and is easy to quantify with time-lapse microscopy 
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(31, 34, 35). The priming input of PKA inhibition did not trigger Hog1 nuclear localization 

(Fig. S1).

Using Hog1 nuclear localization as a reporter, we observed that a 45-min priming input with 

3 μM PKA inhibitor (Fig. 1C), which causes full PKA inhibition (based on the level of Msn2 

translocation (18, 27, 29)), shortened the time needed to recover from hyperosmotic stress. 

Furthermore, the effect of this priming input decayed with increasing break times (Fig. 1D). 

To quantify the effect of priming input and the dynamics of its decay, we measured and 

compared the durations of Hog1 nuclear translocation with and without the priming input 

(Tprimed, Tunprimed) for each break time. For instance, the priming input with a 10-min break 

time decreased the adaptation time by 34.7% from 40 min to 26 min (Fig. 1E). We defined 

this percentage decrease in recovery time 
Tunprimed − Tprimed

Tunprimed
× 100% as a quantitative 

measure of the “memory effect” and used it throughout our report (data processing workflow 

shown in Fig. S2).

When we plotted the memory effect as a function of break time, we observed that the decay 

of memory effect was biphasic. About half of the memory effect was lost rapidly within 30 

minutes, whereas the remaining memory effect plateaued until 90 minutes and then declined 

slowly (Fig. 1F; Hog1 time traces shown in Fig. S1). These biphasic memory dynamics were 

in contrast with the scenario where the memory is primarily mediated by the expression of 

stress-resistance genes (21, 22), which would follow an exponential decay trajectory as gene 

products are degraded during the break time (Fig. 1F, exponential decay curve). We termed 

the fast-decaying component “short-lived” memory and the longer-lasting component “long-

lived” memory. We also evaluated the effect of priming inputs on Hog1 adaptation in single 

cells but did not observe overt changes in cell-to-cell variability (Fig. S3, A and B). As a 

control, we performed the same experiments in WT cells without PKA analog-sensitive 

mutations and did not observe a memory effect from the 1-NM-PP1 input, confirming that 

analog treatment affected stress recovery specifically by inhibiting PKA activity (Fig. S4).

To test whether the memory effect showed two phases with a natural stress as priming input, 

we used 0.5M KCl as the priming input and observed similar biphasic memory dynamics 

(Fig. S5, A and B; Fig. S6), indicating that the memory pattern we found was not specific to 

chemical inhibition of PKA. In addition, to determine whether similar memory dynamics 

were observed with a different secondary stress, we evaluated the effect of PKA inhibition as 

the priming input on the cells’ adaptation to glucose limitation. The stress-activated 

transcription factor Msn2 displays an adaptive nuclear translocation response to glucose 

limitation and hence can be used as a reporter for stress recovery (18, 36). Similar to 

hyperosmotic stress response, we observed that the priming input shortened the adaptation 

time substantially, and the memory effects decayed with a biphasic pattern (Fig. S7, A to D; 

Fig. S8). These results suggest that the biphasic pattern of memory dynamics may be a 

general property for yeast stress responses.
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Short- and long-lived memory can be selectively induced by different priming input 
dynamics

We next considered how changing the dynamics of priming inputs affected cellular memory. 

We used the three types of priming inputs used here are referred to as: “high-amplitude 

prolonged” (3 μM 1-NM-PP1, 45 min); “high-amplitude transient” (3 μM, 15 min); and 

“low-amplitude prolonged” (0.75 μM, 45 min). Cells exposed to a 15-min priming input 

with 3 μM 1-NM-PP1 (Fig. 2A) exhibited only the fast-decaying component of memory 

effect and the long-lasting phase was abolished, in contrast to the response in cells exposed 

to a 45-min priming input with the same amplitude (Fig. 2B, compare the blue and dark pink 

curves). When cycloheximide (CHX) was added to inhibit protein synthesis during the 

priming experiment, this short-lived memory effect was not affected (Fig. 2C), suggesting 

that short-lived memory did not depend on gene expression, but might instead be mediated 

by metabolites or post-translational protein modifications. Although the effect of this 15-min 

priming input on stress adaptation was small (~ 4 min decrease in adaptation time), it was 

statistically significant (Fig. S9, A and B).

To further evaluate the effect of input amplitude on cellular memory, we treated cells with a 

45-min priming input of lower amplitude (0.75 μM 1-NM-PP1), which partially inhibited 

PKA based on the level of Msn2 translocation (18, 27, 29) (Fig. 2D). Under this condition, 

the fast-decaying memory component and the plateau phase (0 – 90 minutes) of long-lived 

memory were both abolished (Fig. 2E, compare the orange and dark pink curves). Instead, 

cells displayed a slow exponential decay trajectory, as would be expected if the memory 

effect was primarily mediated by gene expression. Accordingly, CHX abolished this 

memory effect (Fig. 2F), confirming that it required gene expression. Furthermore, the 

memory effect in response to 45-min priming input with high amplitude (3 μM 1-NM-PP1) 

was decreased by more than 2-fold with the CHX treatment (Fig. 2G), indicating that the 

memory under this condition, which consisted of both short-lived and long-lived memory 

components (Fig. 1F), depended partially on gene expression.

Together, these results demonstrated that the short- and long-lived components of cellular 

memory could be dissected by modulating the amplitude and duration of priming inputs and 

might be mediated by different molecular processes. Short-lived memory might be mediated 

through a fast translation-independent process, whereas an input duration-dependent slow 

gene expression process might mediate the long-lasting memory, which could be further 

stabilized by another input amplitude-dependent mechanism.

Short-lived memory is mediated by trehalose synthesis and metabolism

To determine the molecular process that mediated short-lived memory, we deleted 5 known 

or putative PKA phosphorylation targets (Gph1, Ctt1, Nth1, Gcy1, and Tps1) involved in 

metabolic or stress-response pathways (37–39). Among these PKA targets, deletion of the 

trehalose synthase Tps1 (40, 41) abolished short-lived memory (Fig. 3A). Trehalose is a 

simple carbohydrate produced in many organisms that acts as membrane protectant and 

protein stabilizer to enhance cell survival under stressful conditions (42). We used the tps1Δ 
hxk2Δ strain because tps1Δ is unable to grow on fermentable carbon sources, such as 

glucose, but this growth is restored in a tps1Δ hxk2Δ double mutant (43). Because the 
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deletion of HXK2 alone did not affect the memory effect (Fig. 3A), the effect of the double 

mutant was primarily due to the deletion of TPS1. We further confirmed that intracellular 

trehalose level was rapidly increased in response to the PKA inhibition input and that this 

increase was lost with Tps1 deletion (Fig. 3B). Because trehalose plays an important role in 

cellular protection against osmotic stress (42), the increased level of trehalose by the priming 

input could temporarily enhance the acquired resistance to the subsequent osmotic stress, 

accounting for the observed short-lived memory.

To validate the central role of trehalose in short-lived memory, we manipulated its 

degradation. The activity of the trehalose-degrading enzyme Nth1 is also regulated by PKA-

dependent phosphorylation (38, 44). We observed that, whereas short-term memory was 

abolished in the absence of Tps1, it became prolonged when NTH1 was deleted (Fig. S10, A 

and B; compare the blue and grey blue curves), suggesting that the activation of Nth1 

accounted for the fast decay rate of the trehalose level. In other words, the duration of short-

lived memory was encoded by the activity of Nth1.

To test whether Tps1 and trehalose also contributed to long-lived memory, we examined 

memory dynamics in response to the high-amplitude prolonged input (3 μM 1-NM-PP1, 45 

min). The absence of Tps1 abolished the fast-decaying component of memory without 

affecting long-lived memory (Fig. 3C, compare the red and dark pink curves), indicating that 

trehalose synthesis and metabolism contribute exclusively to short-lived memory. In 

summary, these results showed that short-lived memory was mediated by PKA-dependent 

regulation of Tps1 and Nth1, which control trehalose synthesis and metabolism (Fig. 3D).

Long-lived memory is mediated by stress-activated transcription factors and mRNP 
granules

We next investigated the processes underlying long-lived memory, which was gene 

expression-dependent (Fig. 2F). To determine the transcription factors that induced this 

response, we deleted 6 PKA-regulated stress-responsive transcription factors (Gis1, Sko1, 

Hot1, Yap1, and Msn2/4) (17, 45–49). Whereas the deletion of Msn2/4 abolished long-lived 

memory in response to the 45 minutes, 0.75 μM 1-NM-PP1 priming input (Fig. S11A), the 

mutant showed only a partial loss of memory in response to the 3 μM 1-NM-PP1 priming 

input (Fig. S11B), suggesting that another transcription factor might play a compensatory 

role under this condition. Because the deletion of Yap1 also diminished long-lived memory 

in response to the 0.75 μM 1-NM-PP1 priming input (Fig. S11A), we generated the msn2Δ 
msn4Δ yap1Δ triple mutant and observed a complete loss of long-lived memory in the triple 

mutant (Fig. S11B). These results identified Msn2/4 and Yap1 as the primary transcription 

factors that mediate the transcriptional response generating long-lasting memory. Moreover, 

we observed that the short- and long-lived memories are both abolished in the triple mutant 

(Fig. 4A and B). This loss of short-lived memory in the triple mutant was consistent with 

previous studies (29, 50), which showed that the expression of TPS1, required for short-lived 

memory, depends on the transcription factors deleted in the triple mutant.

We then investigated the mechanism that stabilizes long-lived memory underlying the 

plateau phase of memory that is maintained up to 90 minutes after the removal of priming 

inputs (Fig. 1F). In response to stress or PKA inhibition, cells accumulate various stress-

Jiang et al. Page 6

Sci Signal. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responsive gene mRNAs in cytoplasmic mRNP granules, called processing-bodies (PBs) and 

stress granules (SGs), which regulate mRNA translation, decay, and storage (51–54). PKA 

regulates the formation of these mRNP granules by phosphorylating the PB scaffolding 

protein Pat1 (51), which is essential for the formation of PBs (51, 55). We observed that the 

plateau phase of long-lived memory was abolished in the pat1Δ strain and the memory effect 

exhibited a continuous decay (Fig. 4C, compare the red to the dark pink curves). We also 

observed a similar change in memory dynamics in edc3Δ lsm4ΔC cells, which are defective 

in PB formation (56)(Fig. 4D). These results indicate that PBs are required for maintaining 

the plateau phase. PBs and SGs are discrete but functionally interacting compartments. 

Some mRNAs in PBs can be stored in a translationally silenced state during stress and then 

return to translation through SGs upon stress removal (53, 55). To determine the role of SGs 

in memory, we examined memory dynamics in the absence of the SG component Pub1 (55). 

Similar to pat1Δ and edc3Δ lsm4ΔC cells, pub1Δ cells no longer exhibited the plateau phase 

of memory (Fig. 4E, compare the red and dark pink curves). We note that pub1Δ and WT 

cells grew at a similar rate throughout the experiments, indicating that the plateau phase 

observed in WT cells was not related to cell growth rate. These results suggested that the 

plateau phase of long-lived memory depended on the PB- and SG-mediated mRNA storage 

pathway. Notably, pat1Δ, edc3Δ lsm4ΔC, and pub1Δ showed higher memory levels than 

those of WT for shorter break times (Fig. 4C, D and E, 15 – 30 mins), in agreement with the 

role of PBs and SGs in mRNA translational silencing in addition to storage.

Furthermore, to confirm the localization of the mRNAs of stress responsive genes to mRNP 

granules, we used the MS2 coat protein (MS2-CP) fused to GFP (57, 58) to visualize the 

mRNAs of two well-characterized PKA-regulated stress responsive genes, DCS2 and SIP18 
(28, 29) in living cells. In response to the 3 μM 1-NM-PP1 input, DCS2 and SIP18 mRNAs 

formed foci that co-localized with PBs as indicated by the PB marker Dcp2-mCherry (59) as 

well as some distinct granules (Fig. S12). We have previously observed a similar localization 

pattern for Msn2/4 targets, such as GLC3 and HXK1, during glucose starvation (54). This 

localization pattern coincided with poor protein production from these mRNAs during stress, 

suggesting that these stress-induced mRNAs were translationally silenced and stored in 

mRNP granules to confer long-lasting cellular memory. Together, these findings uncovered 

that two processes, gene transcription and mRNA storage by mRNP granules, operated 

together to generate long-lived memory (Fig. 4F).

A computational model can simulate and predict memory dynamics

To quantitatively understand the dynamic encoding of memory, we constructed a 

computational model. In the model, the network is composed of two memory-encoding 

motifs, one for short-lived memory and the other for long-lived memory (Fig. 4F). The 

short-lived memory motif comprises a fast process, in which PKA regulates the activities of 

Tps1 and Nth1 by phosphorylation (38, 39). In response to PKA inhibition, Tps1 is 

activated, boosting trehalose production; at the same time, Nth1 is inhibited, slowing down 

trehalose degradation. As a result, the trehalose level increases rapidly. Subsequently, when 

the PKA inhibition input is removed, Tps1 is inhibited while Nth1 is activated, leading to a 

rapid decline in trehalose levels during the break time. This feedforward loop enables quick 

tuning of trehalose levels, accounting for the fast-changing component of memory effect. 
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The long-lived memory motif consists of two processes that function together to regulate 

gene expression dynamics, a transcriptional response mediated by transcription factors Yap1 

and Msn2/4 (60) and a mRNA storage process mediated by Pat1 (53). For the model output, 

we assumed that the memory effect linearly depended on the sum of the amounts of 

trehalose and stress resistance gene products in most of the kinetic regimes, unless the 

substance concentrations reached extremely high levels. We validated this assumption using 

a computational model developed by Muzzey et al. (31), which explicitly simulates the 

adaptation dynamics of the osmotic stress signaling pathway and has been well constrained 

by experimental data (Fig. S13, A to C).

With computationally obtained best-fit parameters, our model reproduced all the 

experimental data (Fig. S14). In particular, in our model, the high-amplitude transient input 

(Fig. 5A, left panel) specifically induces the trehalose production process (Fig. 5A, middle 

panel), generating the fast-decaying memory (Fig. 5A, right panel, compare with data in Fig. 

2B). The low-amplitude prolonged input (Fig. 5B, left panel) only induced the 

transcriptional response but not mRNP granule formation, because the input was too weak, 

(Fig. 5B, middle panel), resulting in a slow exponential decay of the memory effect after 

input removal (Fig. 5B, right panel, compare with data in Fig. 2E). The high-amplitude 

prolonged input (Fig. 5C, left panel), however, led to co-activation of the fast trehalose 

production and the slow transcriptional response with mRNA storage by mRNP granules 

(Fig. 5C, middle panel). Once the transcriptional response was initiated, a portion of the 

newly synthesized mRNAs for stress resistance genes was stored in mRNP granules due to 

PKA regulation of Pat1. Upon input removal, these mRNAs were slowly released and 

translated, resulting in a long-lasting (up to ~90 minutes) memory plateau (Fig. 5C, right 

panel, compare with data in Fig. 1F). Consistent with the model, we observed that the high-

amplitude prolonged input induced the formation of mRNP granules, as indicated by DCS2 
mRNA foci, whereas the high-amplitude transient input or low-amplitude prolonged input 

could not (Fig. 5, A to C, right panel insets). These live-cell mRNA results support our 

model in which the formation and function of mRNP granules depended on both the input 

amplitude and duration. In summary, our model suggested that the three PKA-regulated 

processes - trehalose metabolism, gene transcription and mRNP granule formation - 

operated and coordinated in a specific temporal order to enable the biphasic memory 

dynamics observed experimentally.

Moreover, our model largely reproduced the memory dynamics observed in the mutants of 

key regulatory factors. In the absence of Tps1, the priming input (Fig. S15A, left panel) 

could not induce the production of trehalose (Fig. S15A, middle panel), resulting in a loss of 

the fast decaying component of memory, whereas the long-lived memory remained intact 

(Fig. S15A, right panel, compare with data in Fig. 3C). Upon deletion of the transcription 

factors Msn2/4 and Yap1, the priming input (Fig. S15B, left panel) could no longer induce 

the expression of stress resistance genes, resulting in a loss of long-lived memory. 

Meanwhile, the absence of these transcription factors led to the loss of Tps1 expression 

required for the short-lived memory (Fig. S15B, middle panel). As a result, both short- and 

long-lived memories were abolished (Fig. S15B, right panel, compare with data in Fig. 4A). 

When Pat1 was deleted, the newly synthesized mRNAs, induced by the priming input (Fig. 

S15C, left panel), could no longer be stored in mRNP granules (Fig. S15C, middle panel), 
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but instead underwent immediate translation, resulting in a higher initial level of stress 

resistance than that of WT cells (during break time 0 – 30 min). This stress resistance, 

however, decayed more quickly, because the gene products are being directly and 

continuously degraded, and cells can no longer maintain a plateau of long-lived memory 

(Fig. S15C, right panel, compare with data in Fig. 4C).

To test our model, we first used it to predict how the memory effect changes as a function of 

priming input duration while keeping the break time constant (Fig. 6A). We chose a 60-min 

break time to focus on the long-lived memory, which depended on input duration (Fig. 2B 

and Fig. 5A). Our model predicted that the memory effect would increase sharply between 

15 and 30-min of input duration, the time window needed to sufficiently activate gene 

expression and mRNP granules, and would gradually reach saturation with increasing input 

duration beyond 30 minutes (Fig. 6A, “Prediction”). The data from our experiments agreed 

with the model prediction, with a curve shape similar to that of the simulated one (Fig. 6A, 

“Experiment”).

Furthermore, we used the model to predict the memory dynamics in response to a combined 

pattern of priming input. Neither low-amplitude prolonged input nor high-amplitude 

transient input could induce the plateau phase of memory (Fig. 2B and E), yet our model 

predicted that these two inputs, when applied sequentially (Fig. 6B), should be capable of 

generating a memory plateau phase that is Pat1 dependent (Fig. 6C, “Prediction”). In this 

scenario, the low-amplitude prolonged input would first produce a high amount of mRNAs, 

and the subsequent high-amplitude transient input would induce mRNP granules to store 

newly synthesized mRNAs, enabling the plateau phase. This prediction was intriguing 

because it illustrated that the memory effect to the combined input was not simply the sum 

of the effects to the two single inputs (Fig. 6C, “Prediction”, compare the purple and light 

pink curves) due to the mRNP-dependent storage mechanism. Therefore, because the 

memory-encoding processes were largely independent, the memory effects would become 

additive when the mRNA storage process was removed in the pat1Δ mutant (Fig. 6D, 

“Prediction”). In agreement with the model, our experiments showed a plateau phase of 

memory in response to the combined input (Fig. 6C, “Experiment”). Moreover, in the 

absence of Pat1, the plateau phase was abolished and the memory dynamics largely 

resembled the sum of memory effects to the two single inputs (Fig. 6D, “Experiment”), 

consistent with the model prediction.

These results validated our model and demonstrated its predictive power. Given that the 

memory-encoding processes were kinetically separated, the model-guided analyses suggest 

the possibility of rationally designing patterns of priming input and reprogramming the 

temporal order of regulatory processes to generate the desired forms of memory dynamics.

Discussion

Cellular memory allows cells to adjust their responses to environmental cues based on their 

prior experience. In this study, we used GSR in yeast Saccharomyces cerevisiae as a model 

system and demonstrated that the memory effect on stress adaptation was biphasic, 

comprised of a fast decaying component (short-lived memory), which was mediated by post-
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translational regulation of the trehalose metabolism pathway, and a long-lasting component 

(long-lived memory), which was mediated by transcription factors and mRNP granules. 

These memory-encoding processes were mediated by PKA, an evolutionarily conserved 

kinase with a central role in many molecular and cellular processes that is also associated 

with diverse diseases (61, 62). Due to the functional pleiotropy of PKA, it has been difficult 

to target pharmacologically to achieve therapeutic specificity. Here, we found that different 

PKA signaling dynamics, depending on the input amplitude and duration, selectively 

induced specific downstream pathways or processes, leading to distinct memory dynamics. 

These results raise the possibility of perturbing the dynamics of signaling hubs for specific 

therapeutic outcomes (63, 64).

Among the PKA-controlled pathways, our results highlighted the contributions of two major 

biological processes to acquired stress resistance. The first one was metabolism of trehalose, 

which is critical for mediating yeast stress responses. For instance, under non-optimal 

temperatures, Tsl1, a regulatory factor of the trehalose synthase Tps1, mediates the 

heterogeneous cellular phenotypes in growth, survival (65), and bimodal gene expression 

(66). Because Tsl1 is also encoded by a GSR gene (67), it would be interesting to expand 

our approach to evaluate the priming effects of PKA input on single-cell responses to 

temperature stress. This analysis could shed light on how priming inputs influence cell-to-

cell variability and fate decision in stress response.

The second process that we revealed was mRNP granule-regulated gene expression. 

Cytoplasmic mRNP granules, such as PBs and SGs, play important roles in controlling the 

translation, degradation and storage of mRNAs upon environmental changes (53, 68). 

Although the biochemical and biophysical characteristics of mRNP granules have been 

elucidated (69), their functional roles in cell physiology remain largely unclear. mRNP 

granules have been related to cellular memory formation. For example, transient 

overexpression of proteins with intrinsically disordered domains (highly enriched in RNA-

binding proteins) can induce inheritance of biological traits in yeast cells over many 

generations (70). Another report showed that the aggregation of Whi3, a yeast RNA-binding 

protein, can encode memory of previous unsuccessful mating attempt and modulate cells’ 

mating capacity (71). Moreover, a synthetic biology study revealed phase-separated protein 

droplets can memorize transient spatial stimuli in mammalian cells (72). In accord with 

these findings, our results provide additional independent evidence that the PKA-regulated 

mRNP granules contribute to a long-lasting memory of previous environmental challenges 

and facilitate the adaptation to future stresses. Further analyses will systematically determine 

the identities of these stored mRNAs that mediate the memory effect, the detailed 

mechanisms that direct these mRNAs to mRNP granules, and the prevalence of this mRNP-

dependent memory effect in regulating other cellular responses, such as the hormetic effect 

on aging (73).

In addition, through our modeling analysis, we obtained a quantitative understanding about 

the dynamics of cellular memory and the regulatory network that controls these dynamics. 

Previous systems biology studies focused on cellular memory originated from bistability, in 

which different initial conditions lead to distinct steady states, resulting in history-dependent 

cellular behaviors or outcomes (74, 75). These systems often contain positive feedback loops 
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that give rise to bistability underlying differentiation or fate decision processes (76–78). In 

contrast, in this study, we investigated the cellular memory in adaptive stress response, 

which arose from regulated storage and decay of gene products. The memory dynamics are 

governed by a network comprised of multiple parallel pathways with highly diversified 

inherent kinetics. This network architecture conferred signal processing capability and 

plasticity in shaping memory dynamics, enabling cells to determine their memory patterns in 

response to rapidly changing environments. In particular, this system coupled two low-pass 

filters with different thresholds to effectively separate the short-term responses to transient 

signals from the chronic ones to prolonged signals. Moreover, the system also featured a 

PKA-regulated mRNP granule formation process, which represented a new network motif 

for biological information storage. The initiation of the storage depended on input 

amplitude, whereas how long the storage could last depended on the amount of newly 

synthesized mRNAs being localized in the granules and hence depended on both the 

amplitude and the duration of priming inputs. In this way, mRNP granules enabled cells to 

integrate the information about input amplitude and duration and tune the dynamics of their 

memory. Guided by the dynamic regulatory schemes revealed by modeling, we further 

designed priming input patterns to reprogram the temporal order of fast- and slow-acting 

processes in the network and reshape the memory dynamics. For future studies, advanced 

fluorescent reporters and imaging technologies (68, 79) could be employed to track on a 

single-cell level the explicit spatiotemporal dynamics of key species in the model, such as 

mRNAs and mRNP granules. These data would enable us to constrain and improve our 

model and, ultimately, enhance the predictive power of the model. We anticipate that a 

quantitative and predictive understanding of memory control would produce opportunities 

for broader and more effective use of priming treatments as a low-cost non-genetic approach 

for stress management in agriculture, biotechnology, and clinical intervention.

Finally, we want to highlight the biological relevance of our findings. We revealed that, 

because the molecular processes governing the two memory components have distinct 

kinetic properties, short- and long-lived memories could be selectively induced by different 

dynamics of priming inputs. Whereas a high amplitude transient input induced fast decaying 

memory that enabled short-term stress resistance, a prolonged input elicited long-lasting 

memory conferring long-term stress resistance. This regulatory scheme is analogous to the 

fast-responding innate immune response and the long-lasting adaptive immune response in 

mammals. Moreover, mRNP granules were responsive to the amplitude and duration of 

inputs and could function to further tune the duration of the long-term memory component 

based on the input dynamics. Together, this integrated regulatory network enables cells to 

process the information of a previous stress encounter and determine the length of their 

memories. We speculate that this type of regulation may represent a strategy for cells to 

optimize resource allocation for future challenge preparation and may be widely applicable 

to organisms living in rapidly changing environments. Furthermore, given that this 

regulation is readily tunable, cells could evolve their memory dynamics through natural 

selection to match the environmental fluctuations in their habitats.
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Materials and Methods

Strain Construction

Standard methods for the growth, maintenance, and transformation of yeast and bacteria and 

for manipulation of DNA were used throughout. All Saccharomyces cerevisiae strains used 

in this study are derived from the W303 background (MATa leu2–3,112 trp1–1 can1–100 
ura3–1 ade2–1 his3–11,15 GAL+ psi+ ADE+). The strains used in this study are listed in 

Table S1.

Microfluidics

The previously reported Y-shape microfluidic device (18, 28) with two inlets has been 

modified to accommodate three inlets on a single device and used in this study. The device 

fabrication and the setup of microfluidic experiments were performed as described 

previously (18, 20, 24, 27, 28).

Time-lapse microscopy

All time-lapse microscopy experiments were performed using a Nikon Ti-E inverted 

fluorescence microscope with an Andor iXon X3 DU897 EMCCD camera and a Spectra X 

LED light source. A CFI Plan Apochromat Lambda DM 60X Oil Immersion Objective (NA 

1.40 WD 0.13MM) was used for all experiments. Three positions were chosen for each 

microfluidics channel. For each position, phase contrast, YFP, mCherry, and iRFP images 

were taken sequentially every two minutes. When the acquisition of the image series started, 

cells loaded in the microfluidic device were maintained in synthetic complete medium (SC, 

2% dextrose) for the first five minutes before 1-NM-PP1 was introduced. Media input was 

switched manually between SC medium, SC medium with 1-NM-PP1 and SC medium with 

KCl at the indicated time points. The exposure and intensity settings for each fluorescence 

channel were set the same as that used in our earlier work (28).

For priming experiments, cells were inoculated from a YPD plate into 2 ml SC liquid media 

two days before the experiment. On the second day, saturated cells were diluted by 1:20,000 

into fresh SC media and grown overnight to reach OD = 0.6. These exponentially growing 

cells were diluted by 1:2 and grown for another 2 hours before being loaded into the 

microfluidic devices.

Image analysis

The images were processed using custom MATLAB code for single-cell tracking and 

fluorescence quantification. The whole cell was segmented using the phase contrast images 

and the nucleus was segmented using the iRFP images. The cytoplasm was the region of the 

cell that was not the nucleus. The nuclear to cytoplasmic ratios of Hog1-YFP were 

calculated using the mean fluorescence intensities of Hog1-YFP in the nucleus and in the 

cytoplasm. The ratios were subtracted by baseline which is the ratio right before KCl was 

introduced (close to 1) and then plotted against the time. The duration of Hog1 translocation 

for each condition was quantified using the full width at half maximum (FWHM) and used 

to calculate the memory effect for each break time (Fig. S2). We determined the sample size 

of our single-cell data based on similar studies published previously (18, 27–29).
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Trehalose assay

Trehalose level was measured using the trehalose assay kit (Megazyme). Using this assay, 

trehalose was converted into gluconate-6-phosphate, generating NADPH in a two-step 

reaction; the NADPH concentration was determined by measuring the absorbance at 340 

nm. To determine trehalose concentrations, 13 mL of yeast culture at OD≈0.5 was harvested 

and put on ice for 5 minutes before centrifuged for 5 min at 4 °C. Cells were washed with 

0.1 M phosphate buffer (pH 5.9) to remove glucose in media and resuspended in 1 ml 0.25 

M Na2CO3 solution, and OD was measured. Additional Na2CO3 solution was added to 

make the cell densities (OD) the same for 0 and 20 min samples. Samples (~1 mL) were 

boiled for 20 min to release intracellular trehalose. After cooling, the samples were 

centrifuged at 12 000 g for 3 min to remove cell debris. Two aliquots (300 μl) of supernatant 

were transferred to two new tubes, which were separately used to determine total glucose 

level and pre-existing glucose level. The following regents were then added to the cell 

lysates sequentially: 150 μl acetic acid (1 M), 650 μl distilled water, 100 μL imidazole buffer 

(2 M imidazole, 100 mM magnesium chloride and 0.02% w/v sodium azide; pH 7.0), 50 μL 

NADP 1/ATP (12.5 mg/mL NADP+ and 36.7 mg/mL ATP) and 10 μL suspension of HK/

G-6-PDH (425 U/mL hexokinase and 212 U/mL glucose-6-phosphate dehydrogenase), 10 

μL trehalase (490 U/mL). The mixtures were incubated at room temperature for 5 min for 

the reactions. Absorbance at 340 nm was recorded to determine the trehalose concentration 

in solution first. To estimate the intracellular concentration, we assumed that cell density at 

OD=1 is 1×107 cells/ml and yeast cell volume is 42 fl. Pre-existing glucose was determined 

in a control reaction without added trehalase.

Live-cell mRNA visualization

The MS2-CP strains for mRNA visualization were constructed as described previously (54). 

The promoter and the coding region of genes of interest were amplified by PCR and then 

inserted into a template vector, which contains 12x MS2 loop sequences in the integration 

vector pRS305. The plasmid was linearized by EcoRV and integrated into the W303 

background yeast strain which has PKA analog-sensitive mutations (NH084) at the LEU2 
locus. A plasmid that constitutively expresses MS2 coat proteins fused with GFP driven by 

MYO2 promoter (54) was also integrated into the same strain at the HIS3 locus. To visualize 

the colocalization of mRNAs and PBs, a pRS304 plasmid that expresses DCP2-mCherry 

under the native DCP2 promoter was integrated into the same strain at the TRP1 locus 

(NH0857).

To perform live-cell mRNA visualization, cells were cultured to OD 0.6 and then loaded into 

microfluidic devices for time-lapse microscopy. For each position, phase contrast, mCherry, 

GFP and iRFP images were taken sequentially every two minutes. After the start of image 

acquisition, cells were maintained in SD media for the first five minutes to obtain a baseline 

for each fluorescence channel prior to the introduction of 3 μM 1-NM-PP1 treatment. The 

exposure and intensity settings for each channel were set as follows: GFP 200 ms at 9% 

lamp intensity, mCherry 1s at 10% lamp intensity, and iRFP 300 ms at 15% lamp intensity.
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Computational Modeling

Our model focused on the PKA-dependent memory-encoding network, comprised of the 

experimentally-identified processes that regulate the levels of metabolites or proteins needed 

for enhancing stress adaptation, including trehalose and stress resistance gene products. The 

input of the model is the PKA inhibition signal (priming input). For the model output, we 

assumed that the memory effect linearly depended on the sum of the amounts of trehalose 

and stress resistance gene products in most of the kinetic regimes, unless the substance 

concentrations reached extremely high levels. This assumption left out the explicit inclusion 

of the downstream Hog1 pathway in our model and simplified our analysis.

To validate this simplification, we tested it using a computational model developed by 

Muzzey et al. (31), which explicitly simulates the adaptation dynamics of the osmotic stress 

signaling pathway and has been well constrained by experimental data. In this model, there 

are four subsystems. H represents the reactions that link an osmotic with Hog1 nuclear 

translocation. D and I are the Hog1-dependent and Hog1-independent subsystems 

respectively. G represents the metabolic reactions involved in glycerol synthesis. The ODE 

model has three species and five parameters. where s1, s2, and s3 are the respective outputs 

of the H, D and G. The Hog1-independent subsystem, I, is a parameter in the ODEs, which 

is αi. u(t) is the input, which takes the Heaviside step form in our simulation. This model 

produces a perfect adaptation of the s1 species.

d
dt

s1
s2
s3

=
−γℎ 0 −kℎ
αd 0 0
0 1 − αi + γd

s1
s2
s3

+
kℎ
0
αi

u t

In our simplification, we assumed that our priming input changes the initial condition of this 

system by producing substances (trehalose and stress resistance gene products) before stress 

and hence reduces the adaptation time. To study the dependence of the adaptation time 

(FWHM of the peak) on the pre-produced substances, we either varied the initial condition 

of s2, which is the Hog1-dependent substances, or the value of αi, which is the Hog1-

independent substances. All other parameters and initial values were kept the same as those 

described in (31). In both cases, we observed a near-linear relationship (Fig. S13, A to C). 

These analyses validated the simplification in our model.

In our model, the network consisted of three molecular processes, trehalose metabolism, 

stress resistance gene transcription and mRNP granule formation, all of which are PKA 

regulated. For trehalose metabolism, PKA regulates both trehalose production and 

degradation by phosphorylating Tps1 and Nth1, respectively. More specifically, PKA-

mediated phosphorylation inhibits Tps1 activity and enhances Nth1 activity based on the 

previous reports. Because the regulation is primarily through phosphorylation, we assumed 

that it was a fast process. For stress resistance gene expression, PKA regulated mRNA 

transcription through transcription factors and regulated mRNA translation and degradation 

through mRNP granules. More specifically, the PKA inhibition input activated transcription 

factors and mRNP granules. Once the mRNP granules were activated, a portion of the newly 

synthesized mRNAs was stored in mRNP granules where their translation and degradation 
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were paused. Upon input removal, these mRNAs were slowly released, resuming their 

translation and degradation. Because gene transcription was a multi-step process, we 

assumed that it is a relatively slow process; in contrast, because PKA regulated mRNP 

granules through phosphorylation, we assumed that it was a relatively fast process. 

Moreover, the level of Tps1 also depended on PKA-regulated gene expression, resulting in a 

connection between the trehalose metabolism pathway and the gene expression process. 

Based on the experimental observations, these three processes had different dependence on 

input amplitude and duration. Trehalose metabolism and mRNP granules could be activated 

only in response to high-amplitude inputs; by contrast, mRNA transcription could be 

induced by low-amplitude input but a prolonged duration was needed.

Computational modeling and all the simulations were done using MATLAB. The model 

contained 13 variables and 27 independent parameters. The effect of growth-dependent 

dilution was incorporated in the decay rates in our model. The function “lsqnonlin” was used 

for data fitting. The data of three dynamic inputs and three mutants (tps1Δ, pat1Δ, msn2/4Δ 
yap1Δ) were used for data fitting (Fig. S14). To highlight the role of mRNP granules, time 

points for long-lived memory plateau (Fig. 1F) were weighted by 20-fold for data fitting. 

Fitting starting with completely random guesses failed. Because our model is an abstract 

model in which each equation or parameter represents a combination of a series of 

biochemical reactions, the initial guesses for most of the parameters are not available from 

the literature. Instead, we estimated the initial guesses based on the experimental data. In 

particular, the memory dynamics data from different priming conditions and various mutants 

allowed us to estimate the initial guesses of parameters, step by step, for each small sub-

network in the system. Here we used the parameters for the trehalose pathway as an example 

to illustrate how we obtained the initial guesses. Our data showed that high-amplitude 

transient input activated the short-lived memory that depended solely on Tps1 (Figs. 2, A 

and B, and 3A). We further showed that the trehalose degradation enzyme Nth1 was 

involved in regulating the decay rate of trehalose, and thereby the decay rate of memory 

effect (Fig. S10, A and B). The short-lived memory decayed at ~15 min (Fig. 2B), which 

allowed us to estimate the limits for trehalose decay rate (k18) and Nth1 activation rate (k1). 

In addition, the memory effect remained at a plateau for ~10 min after the removal of the 

priming input (Fig. 2B), suggesting a delay between the inactivation of Nth1 and the decay 

of trehalose. This delay could arise from a thresholding effect in the enzymatic reactions of 

trehalose degradation, governed by the trehalose decay equilibrium constant (KM8) and the 

Hill coefficient (n), and hence could be used for initial guesses of these parameters. 

Furthermore, the trehalose production rate (k19) could be estimated by dividing the memory 

level (~0.08 from Fig. 2B) by the duration of priming input (15 min) and the Tps1 level.

Among the Hill coefficients in the model, n3 governed the thresholding effect in Nth1-

mediated trehalose degradation and was important for reproducing the ~10 min delay 

between Nth1 inactivation and trehalose decay (Fig. 2B), and n4 governed the thresholding 

effect in mRNP formation, both of which were important for reproducing the response to the 

low amplitude prolonged input (Fig. 2E). We chose the value of 4 for all these Hill 

coefficients because it generated enough non-linearity required for the thresholding 

behaviors while not exceeding the biologically relevant range. We did not include these Hill 

coefficients in model fitting to reduce the number of parameters for fitting.
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We tested 10 random sets of initial guesses which are randomly chosen within 8-fold (1/8 to 

8) of our first set of guesses and compared the squared norm of the residuals of the final 

fitting results and then selected the best-fit set of parameter values. We further expanded the 

range of parameter scan to 16-fold of the first initial guesses and tested additional 10 random 

sets of initial guesses. We did not find parameter sets that outperformed the chosen best-fit 

parameter set. Due to the large number of parameters in the model, the chosen best-fit 

parameter set might not be the global minimum mathematically. However, it did not prevent 

us from using this model to illustrate our hypothesized mechanism and to make testable 

predictions (Figs. 5, A to C and 6, A to D).

Under our experimental conditions, the stress adaptation responses were relatively uniform 

among cells, and priming inputs did not alter cell-to-cell variability (Fig. S3, A and B). 

Therefore, we did not consider stochasticity in our model.

The initial conditions are provided in Table S2. Reactions and rate constants are provided in 

Table S3.

Model Equations:

d TFa
dt = k11 ⋅ TFi −

k12 ⋅ PKAn1

KM3n1 + PKAn1 ⋅ TFa

d TFi
dt = − k11 ⋅ TFi +

k12 ⋅ PKAn1

KM3n1 + PKAn1 ⋅ TFa

d T ps1RNA
dt =

k14 ⋅ TFa
n2

KM7
n2 + TFa

n2 + k15 − k16 ⋅ T ps1RNA

d T ps1protein
dt = k17 ⋅ T ps1RNA − k13 ⋅ T ps1protein

d Ntℎ1a
dt =

k1 ⋅ PKA ⋅ Ntℎ1i
KM4 + Ntℎ1i

−
k2 ⋅ Ntℎ1a

KM5 + Ntℎ1a

d Ntℎ1i
dt =

−k1 ⋅ PKA ⋅ Ntℎ1i
KM4 + Ntℎ1i

+
k2 ⋅ Ntℎ1a

KM5 + Ntℎ1a
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d Treℎalose
dt =

k19 ⋅ KM6n3

KM6
n3 + PKAn3 ⋅ Tre6P ⋅ T ps1protein −

k18 ⋅ Ntℎ1a
n3

KM8n3 + Ntℎ1a
n3 ⋅ Treℎalose

d Tre6P
dt =

−k19 ⋅ KM6n3

KM6n3 + PKAn3 ⋅ Tre6P ⋅ T ps1protein

d Pat1a
dt = − k4 ⋅ Pat1a +

k3 ⋅ KM1n4

KM1n4 + PKAn4 ⋅ Pat1i − 1 − PKA ⋅ k6 ⋅ mRNAs ⋅ Pat1a

+
k5 ⋅ mRNPs

KM2 + mRNPs

d Pat1i
dt = k4 ⋅ Pat1a −

k3 ⋅ KM1n4

KM1n4 + PKAn4 ⋅ Pat1i

d mRNPs
dt = 1 − PKA ⋅ k6 ⋅ mRNAs ⋅ Pat1a −

k5 ⋅ mRNPs
KM2 + mRNPs

d mRNAs
dt = k10 ⋅ TFa − k9 ⋅ mRNAs − 1 − PKA ⋅ k6 ⋅ mRNAs ⋅ Pat1a +

k5 ⋅ mRNPs
KM2 + mRNPs

d protein
dt = k8 ⋅ mRNAs − k7 ⋅ protein

output = Treℎalose + a ⋅ protein 2

b + protein 2
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Fig. 1. PKA encodes biphasic cellular memory.
(A) A diagram of the microfluidic system used in priming experiments. The microfluidic 

device contained three inlets for priming input, growth medium, and stress reagent, 

respectively. Yeast cells were immobilized in the culturing chamber for time-lapse 

microscopic imaging. The medium flow from the inlets to the waste was driven by gravity. 

The three inlets could be opened or closed to allow medium switching during the 

experiment. (B) A diagram describing the analog sensitive PKA strain used in this study. (C) 
A schematic of the experimental design. Within the microfluidic device, cells were first 

exposed to a pulse of 1-NM-PP1 priming input, which was followed by a break time of 

normal growth medium. These primed cells were then exposed to sustained 0.75 M KCl 

treatment. (D) Representative time-lapse images of Hog1 nuclear translocation in the 

priming experiments with different break times. (E) Time traces of Hog1 translocation in 

response to 0.75 M KCl (red shaded) without (top) or with (bottom) 45 min priming with 3 

μM 1-NM-PP1 (green shaded) followed by 10 min break time. The duration of nuclear 

localization was quantified using the full width at half maximum (FWHM) in single cells 

(Tprimed and Tunprimed). The memory effect was calculated using Tprimed and Tunprimed. (F) 
Biphasic memory dynamics in response to the high-amplitude prolonged priming input as 

indicated in (C). The plot shows the relationship of memory effect versus break time. Data 

points are averages of at least three independent experiments. Error bars are standard error of 

the mean (SEM). A theoretical exponential decay curve (dashed curve in dark pink) was 

superimposed with the data. The Hog1 time trace for each break time is shown in Figure S1.

Jiang et al. Page 22

Sci Signal. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Short- and long-lived memory can be selectively induced by different priming input 
dynamics.
(A) A schematic of the priming experiment with high-amplitude transient priming input (15 

min, 3 μM 1-NM-PP1). (B) The dynamics of memory effect in response to the high-

amplitude transient priming input. Dashed line in dark pink reproduces the memory 

dynamics from Fig. 1F and was included in the plot for comparison. (C) The bar graph 

shows the memory effects in response to 15 min, 3 μM 1-NM-PP1 priming input with a 10 

min break time, with or without 10 μg/mL cycloheximide treatment (CHX) to inhibit 

translation. CHX was added at the beginning of priming inputs and removed after the break 

time. 10-min break time was chosen to focus on short-lived memory. (D) A schematic of the 

priming experiment with low-amplitude prolonged priming input (45 min, 0.75 μM 1-NM-

PP1). (E) The dynamics of memory effect in response to the low-amplitude prolonged 

priming input. Dashed line in dark pink reproduces the memory dynamics from Fig. 1F and 

was included in the plot for comparison. (F) The bar graph shows the memory effects in 

response to 45 min, 0.75 μM 1-NM-PP1 priming input with a 30 min break time, with or 

without the CHX treatment. 30-min break time was chosen to focus on long-lived memory. 

(G) The bar graph shows the memory effects in response to 45 min, 3 μM 1-NM-PP1 

priming input with a 10 min break time, with or without the CHX treatment. 10-min break 

time was chosen because both short-lived and long-lived memories coexist at this break 

time. Data points are averages of at least three independent experiments. Error bars represent 

SEM.
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Fig. 3. Short-lived memory is mediated by trehalose synthesis and metabolism.
(A) The bar graph shows the memory effects in response to the high-amplitude transient 

priming input (15 min, 3 μM 1-NM-PP1) with a 10 min break time in WT and mutant 

strains. (B) The bar graph shows trehalose levels in WT and tps1Δ hxk2Δ, with and without 

PKA inhibition. Trehalose levels were measured after a 20-min treatment of 3 μM 1-NM-

PP1. (C) Memory dynamics in tps1Δ hxk2Δ in response to the high-amplitude prolonged 

priming input (45 min, 3 μM 1-NM-PP1). Left, schematic illustrating the treatment 

procedure of the priming experiment. Right, memory dynamics in tps1Δ hxk2Δ cells. 

Dashed line in dark pink reproduces the memory dynamics in WT cells from Fig. 1F and 

was included in the plots for comparison. Data points are averages of at least three 

independent experiments. Error bars show SEM. (D) A diagram illustrating the network 

motif that gives rise to short-lived memory.
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Figure 4. Long-lived memory is mediated by stress-activated transcription factors and mRNP 
granules.
(A) A schematic of the priming experiment with the high-amplitude prolonged priming 

input (45 min, 3 μM 1-NM-PP1). (B to E) Memory dynamics in msn2Δ msn4Δ yap1Δ (B), 
pat1Δ (C), edc3Δ lsm4ΔC (D), and pub1Δ (E) cells in response to the high-amplitude 

prolonged priming input. Data points are averages of at least three independent experiments. 

Error bars represent SEM. Dashed lines in dark pink reproduce the memory dynamics in WT 

cells from Fig. 1F and was included in the plots for comparison. (F) A diagram illustrating 

the PKA-regulated network that mediates short-lived and long-lived memory.
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Fig. 5. Computational modeling reveals the network-mediated encoding of cellular memory.
(A) Model simulation of memory dynamics in response to the high-amplitude transient 

priming input (15 min, 3 μM 1-NM-PP1). Left, schematic illustrating the treatment 

procedure. Middle, diagram highlighting the part of the network that is activated by the input 

(black – activated; light gray – not activated). Right, the plot shows the simulated dynamics 

of memory effect. Dashed line in dark pink reproduces the simulated dynamics in response 

to the high-amplitude prolonged priming input (45 min, 3 μM 1-NM-PP1) and was included 

in the plot for comparison. (B) Model simulation of memory dynamics in response to the 

low-amplitude prolonged priming input (45 min, 0.75 μM 1-NM-PP1). (C) Model 

simulation of memory dynamics in response to the high-amplitude prolonged priming input 

(45 min, 3 μM 1-NM-PP1). Insets, granule formation of DCS2 mRNA in response to 

indicated inputs. Representative images were acquired at the end of input treatments, as 

indicated by the arrows on left panels.
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Figure 6. Model prediction and experimental validation.
(A) Model prediction and experimental validation of memory effect as a function of priming 

input duration (60 min break time). Left, schematic illustrating the treatment procedure. 

Middle, plot showing the predicted memory effects with increasing priming input durations. 

Right, plot showing the experimentally measured memory effects with increasing priming 

input durations. (B) A diagram illustrating the temporally combined input. Two single inputs 

(45 min, 0.75 μM 1-NM-PP1 and 15 min, 3 μM 1-NM-PP1) were applied sequentially to 

produce the combined input (45 min, 0.75 μM 1-NM-PP1 followed by 15 min, 3 μM 1-NM-

PP1). (C) Model prediction and experimental validation of memory dynamics in WT cells in 

response to the combined input. Left, schematic illustrating the treatment procedure. Middle, 

plot showing the predicted memory dynamics in response to the combined input. Dashed 

line in light pink reproduces the sum of memories to two single inputs from Figs. 5A and 5B 

and was included in the plot for comparison. Right, plot showing the experimentally 

measured memory dynamics in WT cells in response to the combined input. Dashed line in 

light pink reproduces the sum of memories to two single inputs from Figs. 2B and 2E and 
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was included in the plot for comparison. (D) Model prediction and experimental validation 

of memory dynamics in pat1Δ cells in response to the combined input.
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