Skip to main content
. 2020 Jun 17;21:110. doi: 10.1186/s12875-020-01180-3

Table 5.

Correlations between regions, sociodemography, healthcare utilisation and commitment to GP: results of a multivariate linear regression adjusted for random effects on the levels of German federal states, administrative districts and GP practices (n = 753)

Model 1 Model 2 Model 3
ß (95% CI) p ß (95% CI) p ß (95% CI) p
Region
urban areasvs.rural areas −1.06 (−1.81/−0.31) 0.006 −1.05 (−1.79/−0.31) 0.005 −0.85 (−1.58/−0.12) 0.022
environsvs.rural areas −0.90 (− 1.74/−0.07) 0.034 −0.96 (− 1.79/− 0.13) 0.024 −0.80 (− 1.57/− 0.02) 0.045
Age (per 10 years) 0.20 (− 0.04/0.43) 0.098 0.28 (0.05/0.51) 0.018 0.25 (− 0.07/0.58) 0.126
Sex: malevs.female 1.09 (0.48/1.70) < 0.001 1.02 (0.42/1.62) 0.001 1.14 (0.53/1.74) < 0.001
Number of medical chronic conditions 0.17 (0.08/0.27) < 0.001 0.15 (0.05/0.25) 0.003 0.10 (0.00/0.20) 0.043
Contacts with GP 0.33 (0.17/0.49) < 0.001 0.30 (0.15/0.46) < 0.001
Contacts with medical specialists −0.86 (−1.49/−0.23) 0.007 − 0.75 (− 1.36/− 0.13) 0.018
Education (pursuant to CASMIN):
 medium vs. low −0.60 (−1.29/0.08) 0.086
highvs.low −1.74 (−2.68/−0.81) < 0.001
Equivalised disposable income: natural logarithm −0.93 (−1.56/− 0.30) 0.004
Professional situation
 employed 0.24 (−1.04/1.52) 0.714
 self-employed/freelancer −0.57 (− 2.21/1.08) 0.499
 housewife/homemaker 0.88 (−1.11/2.88) 0.385
 job-seeking/unemployed 0.73 (−1.39/2.85) 0.499
 retiree/pensioner 0.01 (−1.45/1.46) 0.993

Statistically significant results (p ≤ 0.05) are shown in bolt and italic