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Abstract. The solution of large-scale combustion problems with codes
such as the Arches component of Uintah on next generation computer
architectures requires the use of a many and multi-core threaded app-
roach and/or GPUs to achieve performance. Such codes often use a low-
Mach number approximation, that require the iterative solution of a large
system of linear equations at every time step. While the discretization
routines in such a code can be improved by the use of, say, OpenMP or
Cuda Approaches, it is important that the linear solver be able to per-
form well too. For Uintah the Hypre iterative solver has proved to solve
such systems in a scalable way. The use of Hypre with OpenMP leads to
at least 2x slowdowns due to OpenMP overheads, however. This behavior
is analyzed and a solution proposed by using the MPI Endpoints app-
roach is implemented within Hypre, where each team of threads acts as a
different MPI rank. This approach minimized OpenMP synchronization
overhead, avoided slowdowns, performed as fast or (up to 1.5x) faster
than Hypre’s MPI only version, and allowed the rest of Uintah to be
optimized using OpenMP. Profiling of the GPU version of Hypre showed
the bottleneck to be the launch overhead of thousands of micro-kernels.
The GPU performance was improved by fusing these micro kernels and
was further optimized by using Cuda-aware MPI. The overall speedup of
1.26x to 1.44x was observed compared to the baseline GPU implemen-
tation.
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1 Introduction

The asynchronous many task Uintah Computational Framework [3] solves com-
plex large-scale partial differential equations (pdes) involved in multi physics
problems such as combustion and fluid interactions. One of the important tasks
in the solution of many such large scale pde problems is to solve a system of
linear equations. Examples are the linear solvers used in the solution of low-
Mach-number combustion problems or incompressible flow. Uintah-based sim-
ulations of next generation combustion problems have been successfully ported
to different architectures, including heterogeneous architectures and have scaled
up to 96K, 262K, and 512 K cores on the NSF Stampede, DOE Titan, and DOE
Mira respectively [3]. Such simulation employs the Arches component of Uintah.
Arches is a three dimensional, Large Eddy Simulation (LES) code developed at
the University of Utah. Arches is used to simulate heat, mass, and momentum
transport in reacting flows by using a low Mach number (Ma < 0.3) variable
density formulation [14]. The solution of a pressure projection equation at every
time sub-step is required for the low-Mach-number pressure formulation. This is
done using the Hypre package [14]. Hypre supports different iterative and multi-
grid methods, has a long history of scaling well [2,5] and has successfully weak
scaled up to 500000 cores when used with Uintah [11].

While Uintah simulations were carried out [3] on DOE Mira and Titan sys-
tems [11], the next generation of simulations will be run on many core architec-
tures such as DOE’s Theta, NSFs Frontera, Riken’s Fugaku and on GPU archi-
tectures such as DOEs Lassen Summit, Frontier and Aurora. On both classes
of machines, the challenge for library software is then to move away from an
MPI-only approach in which one MPI process runs per core to a more efficient
approach in terms of storage and execution models. For many cores a common
approach is to use a combination of MPI and OpenMP to achieve this mas-
sive parallelism. In the case of GPUs an offload of the OpenMP parallel region
to GPU with CUDA or OpenMP 4.5 may be used. It is also possible to use
portability layers such as Kokkos [7] to automate the process of using either
OpenMP or Cuda. The MPI-only configuration for Uintah is to have one single
threaded rank per core and one patch per rank. In contrast, the Uintah’s Unified
Task Scheduler was developed to leverage multi-threading and also to support
GPUs [8]. Work is in progress to implement portable multi-threaded Kokkos
- OpenMP and Kokkos - Cuda [7] based schedulers and tasks to make Uintah
portable for future heterogeneous architectures. These new Uintah schedulers are
based on teams of threads. Each rank is assigned with multiple patches, which
are distributed among teams. Teams of threads process patches in parallel (task
parallelism) while threads within a team work on a single patch (data paral-
lelism). This design has proven useful on many core systems and in conjunction
with Kokkos has led to dramatic improvements in performance [7].

The challenge addressed here is to make sure that similar improvements may
be seen with Uintah’s use of Hypre and its Structured Grid Interface (Struct)
at the very least performs as well in a threaded environment as in the MPI
case. Hypre’s structured multigrid solver, PFMG, [2] is designed to be used
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with unions of logically rectangular sub-grids and is a semi-coarsening multigrid
method for solving scalar diffusion equations on logically rectangular grids dis-
cretized with up to 9-point stencils in 2D and up to 27-point stencils in 3D. Baker
et al. [2] report that various version of PFMG are between 2.5 and 7 times faster
than the equivalent algebraic multigrid (AMG) options inside Hypre because
they are able to take account of the grid structure. When Hypre is used with
Uintah the linear solver algorithm uses the Conjugate Gradient (CG) method
with the PFMG preconditioner based upon a Jacobi relaxation method inside
the structured multigrid approach [14].

The Eq. (1) that is solved in Uintah is derived from the numerical solution
of the Navier-Stokes equations and is a Poisson equation for the pressure, p,
whose solution requires the use of a solver such as Hypre for large sparse sys-
tems of equations. While the form of (1) is straightforward, the large number
of variables, for example 6.4 Billion in [14], represents a challenge that requires
large scale parallelism. One key challenge with Hypre is that only one thread per
MPI rank can call Hypre. This forces Uintah to join all the threads and teams
before Hypre can be called, after which the main thread calls Hypre. Internally
Hypre uses all the OpenMP threads to process cells within a domain, while
patches are processed serially. From the experiments reported here, it is this
particular combination that introduces extra overhead and causes the observed
performance degradation. Thus, the challenge is to achieve performance with the
multi-threaded and GPU versions of Hypre but without degrading the optimized
performance of the rest of the code.

∇2p = ∇ · F +
∂2ρ

∂t2
≡ R (1)

1.1 Moving Hypre to New Architectures

In moving the Hypre to manycore architectures OpenMP was introduced to sup-
port multithreading [6]. However, in contrast to the results in [6], when using
Uintah with Hypre in the case of one MPI process and OpenMP with multiple
cores and mesh patches, a dramatic slowdown of up to 3x to 8x slowdown was
experienced when using Hypre with Uintah as in a multi-threaded environment,
as compared to the MPI-only version. Similar observations were made by Baker
using a test problem with PFMG solver and up to 64 patches per rank and
slowdown of 8x to 10x was observed between the MPI-only and MPI+OpenMP
versions [2]. The potential challenges with OpenMP and Hypre either force Uin-
tah with Hypre to singlethreaded (MPI only) version or use OpenMP with one
patch per rank. This defeats the purpose of using OpenMP.

This work will show that the root cause of the slowdown to be the use of
OpenMP pragmas at the innermost level of the loop structure. However the
obvious solution of moving these OpenMP pragmas to a higher loop level does
not seem to offer the needed performance either. The solution adopted here is to
use a variant of an alternate threading model “MPI scalable Endpoints” [4,16] to
solve the problem and to achieve a speedup consistent with the observed results
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of [2,6]. The approach described here is referred to as “MPI Endpoints”, and
abbreviated as MPI Ep, requires overriding MPI calls to simulate MPI behavior,
parallelizing packing and unpacking of MPI buffers.

In optimizing Hypre performance for GPUs, Hypre 2.15.0 was run as a base-
line code on Nvidia V100 GPUs, to characterize performance. Profiling on GPU
reveals the launch overhead of GPU kernels to be the primary bottleneck and
occurs because of launching thousands of “micro” kernels. The problem was fixed
by fusing these micro kernels together and using GPU’s constant cache mem-
ory. Finally, Hypre was modified to leverage Cuda-aware MPI on Lassen cluster
which gives extra 10% boost.

The main contributions of this work are: (i) Introduce MPI EP model in
Hypre to avoid slowdowns observed in the OpenMP version, which can achieve
faster overall performance in the future while running the full simulation using
multi-threaded task scheduler within Uintah AMT. (ii) Optimize the Cuda ver-
sion of Hypre to improve CPU to GPU speedups ranging from 2.3x to 4x in the
baseline version to the range of 3x to 6x in the optimized version, which can
benefit the future large-scale combustion simulations on GPU based supercom-
puters.

2 Analysis of and Remedies for OpenMP Slowdown

The slowdown of OpenMP was investigated by profiling of Hypre using the
PFMG preconditioner and the PCG solver with a representative standalone code
that solves a 3D Laplace equation on a regular mesh, using a 27 point stencil.
Intel’s Vtune amplifier and gprof were used to profile on a single node KNL
with 64 cores. The MPI-Only version of the code was executed with 64 single
threaded ranks and the MPI + OpenMP version used 1× 64, 2 × 32, 4 × 16, 8 × 8
and 16 × 4 ranks and threads, respectively. The focus was on the solve step that
is run at every time step rather than the setup stage that is only called once. This
example mimicked the use of Hypre in Uintah in that each MPI rank derived
its own patches (Hypre boxes) based on the rank and allocated the required
data structures accordingly. Each rank owned from a minimum of 4 patches to
a maximum of 128 patches and each patch was then initialized by its respective
rank. The Struct interface of Hypre was then called - first to carry on the setup
and then to solve the equations. The solve step was repeated up to 10 times to
simulate timesteps in Uintah by slightly modifying cell values every time. Then
each test problem used different combinations of domain and patch sizes: a 643

or 1283 domain was used with 43 patches of sizes 163 or 323. A 1283 or 2563

domain was used with 83 patches of sizes 163 or 323. Multiple combinations of
MPI ranks, number of OpenMP threads per rank and patches per rank were
tried and compared against the MPI-only version. Each solve step took about
10 iterations to converge on average.

The main performance bottlenecks were noted as follows.
(a) OpenMP fork-join overhead. Figure 1a shows the code structure of how

an application (Uintah) calls Hypre. Uintah spawns its own threads, gener-
ates patches, and executes tasks scheduled on these patches. When Uintah
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(a) Existing Control Flow of Hypre (b) New Control Flow of Hypre

Fig. 1. Software design of hypre

encounters the Hypre task, all threads join and the main thread calls Hypre.
Hypre then spawns its own OpenMP threads and continues.
With 4 MPI ranks and 16 OpenMP threads in each, Vtune shows that Hypre
solve took 595 s. Of this time the OpenMP fork-join overhead was 479 s and
spin time was 12 s.
The PFMG-CG algorithm calls 1000 s of “micro-kernels” during the solve
step. Each micro kernel performs lightweight operations such matrix vector
multiplication, scalar multiplication, relaxation, etc. and uses OpenMP to
parallelize over the patch cells. However, the light workload does not offset
the overhead of the OpenMP thread barrier at the end of every parallel for
and results into 6x performance degradation. As a result, Hypre does not
benefit from multiple threads and cores, with a performance degradation
from OpenMP that grows with the number of: OpenMP threads per rank,
patches per rank and points per patch.

(b) Load imbalance due to serial sections. Profiling detected three main
serial parts - namely: 1. Packing and unpacking of buffers before and
after MPI communication, 2. MPI communication and 3. Local data halo
exchanges. Furthermore, the main thread has to do these tasks on behalf of
worker threads while in the MPI-only version, each rank processes its own
data and, of course, it does not have to wait for other threads.

(c) Failure of auto-vectorization. Hypre has “loop iterator” macros (e.g.
BoxLoop) which expand into multidimensional for loops. These iterator
macros use a dynamic stride passed as an argument. Although the dynamic
stride is needed for some use cases, many use cases have a fixed unique stride.
As the compiler cannot determine the dynamic stride a priori, the loop is
not auto-vectorized.
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2.1 Restructuring OpenMP Loops

One obvious solution to the bottlenecks identified above is to place pragmas at
the outermost loop possible, namely the loop at “patch” level. This was tested
for the Hypre function hypre PointRelax. Table 1 shows timings for the MPI
only version, default MPI + OpenMP version with OpenMP pragmas around cell
loops and the modified OpenMP version where OpenMP pragmas were moved
from cells to mesh patches, thus assigning one or more mesh patches to every
thread. The shifting of OpenMP pragma gave a performance boost of 1.75x.
However this is still 2x slower than the MPI only version. The final result in
Table 1 is for the new approach suggested here that performs as well as MPI and
is now described.

Table 1. Comparison of MPI vs OpenMP execution time(s) using 64 323 Mesh Patches

Hypre run time configuration Runtime (s)

MPI Only 64 ranks 1.45

Default 4 ranks, each with 16 threads, OpenMP on cells loop 5.61

Modified 4 ranks, each with 16 threads, OpenMP on boxes loop 3.19

MPI Endpoints: 4 ranks each with 4 teams each with 4 threads 1.56

The MPI Endpoints approach adopted to overcome these challenges is shown
in Fig. 1b. In this new approach, each Uintah “team of threads” acts: indepen-
dently as if it is a separate rank (also known as MPI End Point or EP) and calls
Hypre, passing its own patches. Each team processes its own patches and com-
municates with other real and virtual ranks. The mapping between teams and
ranks is virtual rank = real rank * number of teams + team id. MPI wrappers
are updated to convert virtual ranks to real ranks and vice versa during MPI
communication. This conversion generates an impression of each team being an
MPI rank and the code behaves as if it is MPI only version. The smaller team
size (compared to the entire rank) minimizes overhead incurred in fork join in
the existing OpenMP implementation, yet can exploit data parallelism.

The design and implementation of this approach posed the following chal-
lenges.

(a) Race Conditions: All global and static variables were converted to
thread local variables to avoid race conditions.

(b) MPI Conflicts: A potentially challenging problem was to avoid MPI con-
flicts due to threads. In Hypre only the main thread was designed to handle
all MPI communications. With the MPI Endpoints approach, each team is
required to make its own MPI calls. As Hypre already has MPI wrappers
in place for all MPI functions, adding some code in every wrapper function
to convert between a virtual rank and a real rank and to synchronize teams
during MPI reductions was enough to avoid MPI conflicts.
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(c) Locks within MPI: The MPICH implementation used as a base for Intel
MPI and Cray MPI for the DOE Theta system uses global locks. As a result,
only one thread can be inside the MPI library for most of the MPI functions.
This is a potential problem for the new approach as the number of threads
per rank are increased. To overcome the problem, one extra thread was
spawned and all the communication funneled through the communication
thread during the solve phase. This method provides a minimum thread
wait time and gives the best throughput.

2.2 Optimizations in Hypre

The implementation of this approach needed following changes:

Fig. 2. Pseudo code of MPI EP wrapper for MPI Comm rank

(a) MPI Endpoint: The approach adopted a dynamic conversion mechanism
between the virtual and the real rank along with encoding of source and
destination team ids within the MPI message tag. Also MPI reduce and
probe calls need extra processing. These changes are now described below.

(i) MPI Comm rank: this command was mapped by using the formula above
relating ranks and teams. Figure 2 shows pseudo code used to convert the real
MPI rank to the virtualMPIEP rankusing formula “mpi rank * g num teams
+ tl team id”. The global variable g num teams and the thread local variable
tl team id are set to the number of teams and the team id during initialization.
Thus the each end point gets an impression of a standalone MPI rank. The
similar conversion is used in the subsequent wrappers.

(ii) MPI Send, Isend, Recv, Irecv: The source and destination team
ids were encoded in the tag values. The real rank and the team id are easily
recalculated from the virtual rank by dividing by the number of teams.

(iii) MPI Allreduce: All teams within a rank carry out a local reduction first
and then only the zeroth thread calls the real MPI Allreduce and passes
the locally reduced buffer as an input. Once the real MPI Allreduce
returns, all teams copy the data from the globally reduced buffer back to
their own output buffers. C11 atomic operations are used for busy waiting
rather than using any locks.
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(iv) MPI Iprobe and Improbe: Each team is assigned with a message queue
internally. Whenever a probe is executed by any team, it first checks its
internal queue for the message. If the handle is found, it is retrieved using
MPI mecv. If the handle is not found in the queue, then the real Improbe
is issued and if the message at the head of the MPI queue is destined for
the same team, then again MPI mecv is issued. If the incoming message is
tagged for another team, then the receiving team inserts the handle in the
destination team’s queue. The method avoids the blocking of MPI queues
when the intended recipient of the MPI queue’s head is busy and does not
issue probe.

(v) MPI GetCount: In this case, the wrapper simply updates source and tag
values.

(vi) MPI Waitall: A use of global global locks in MPICH MPI Waitall stalls
other threads and MPI operations do not progress. Hence a MPI Waitall
wrapper was implemented by calling MPI Testtall and busy waiting until
MPI Testtall returns true. This method provided about 15–20% speedup
over threaded MPI Waitall.

(b) Parallelizing serial code: The bottleneck of fork - join was no longer
observed after profiling MPI Endpoints. However, this new approach exposed
a load imbalance due to serial code. The packing and unpacking of MPI
buffers and a local data transfer are executed by the main thread for all
the data. Compared to the MPI-only version, the amount of data per rank
is “number of threads” times larger, assuming the same workload per core.
Thus the serial workload of packing - unpacking for the main thread also
increases by “number of threads” times. The solution was to introduce
OpenMP pragmas to parallelize the loops associated with these buffers. Thus
each buffer could then be processed independently.

(c) Interface for parallel for: A downside of explicitly using OpenMP
in Hypre is possible incompatibilities with other threading models. in the
spirit of [7] an interface was introduced that allows users to pass their own
version of “parallel for” as a function pointer during initialization and
this user-supplied parallel for is called by simplified BoxLoop macros. Users
of Hypre can implement parallel for in any threading model they wish
and pass on to Hypre to make flexible.

(d) Improving auto-vectorization: The loop iterator macros in Hypre oper-
ate using dynamic stride which prevents the compiler from vectorizing these
loops. To fix the problem, additional macros were introduced specifically for
the unit stride case. The compiler was then able to auto-vectorize some of
the loops and gave additional 10 to 20% performance boost depending on
the patch size.

3 GPU Hypre Performance Characterization
and Profiling

While Hypre has had CUDA support from version 2.13.0, version 2.15.0 is used
here to characterize performance, to profile for bottlenecks and to optimize the
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solver code. The GPU experiments are carried out on LLNL’s Lassen cluster.
Each node is equipped with two IBM Power9 CPUs with 22 cores each and four
Nvidia V100 GPUs. Hypre and Uintah both were compiled using gcc 4.9.3 and
cuda 10.1.243. The initial performance characterization was done on 16 GPUs
of Lassen using a standalone mini-app which called Hypre to solve a simple
Laplace equation and run for 20 iterations. GPU strong scaling is carried out
using 16 “super-patches” of varying sizes 443, 643 and 1283. The observed GPU
performance is evaluated against the corresponding CPU performance, which
is obtained using the MPI only CPU version of Hypre. Thus, corresponding
to every GPU, 10 CPU ranks are spawned and super-patches are decomposed
smaller patches into smaller patches to feed each rank, keeping the total amount
of work the same. Figure 3 shows the CPU performs 5x faster than the GPU
for patch size 443. Although 643 patches decrease the gap, it takes the patch
size of 1283 for GPU to justify overheads of data transfers and launch overheads
and deliver better performance than CPU. Based on this observation, all further
work as carried out using 1283 patches. HPCToolkit and Nvidia nvprof were
used to profile CPU and GPU executions. The sum of all GPU kernel execution
time shown by nvprof was around 500 ms, while the total execution time was
1.6 s. Thus the real computation work was only 30% and nearly 70% of the time
was spent in the bottlenecks other than GPU kernels. Hence, tuning individual
kernels would not help as much. This prompted the need for CPU profiling which
revealed about 30 to 40% time consumed in for MPI wait for sparse matrix-vector
multiplication and relaxation routines. Another 30 to 40% of solve time was spent
in the cuda kernel launch overhead. It should be noted that although the GPU
kernels are executed asynchronously, the launching itself is synchronous. Thus
to justify the launching overhead, the kernel execution time should be at least
10µs - the launch overhead of the kernel on V100 (which was shown in the
nvprof output).
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Fig. 3. GPU performance variation based on patch size

Table 2 shows the top five longest running kernels for the solve time of 1283

patches on 16 GPUs with one patch per GPU. InitComm and FinComm kernels
which are used to pack and unpack MPI buffers are fourth and fifth in the list.
The combined timing of these two kernels can take them to the second position.
More interestingly, together these kernels are called for 41,344 times, but the
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Table 2. Top five longest running kernels before and after merging

Before merging After merging

Name Calls Tot time Avg time Name Calls Tot time Avg time

MatVec 3808 110.69ms 29.067 us MatVec 3808 110.59ms 29.040 us

elax1 2464 55.326ms 22.453 us Relax1 2464 55.350ms 22.463 us

Relax0 2352 45.153ms 19.197 us Relax0 2352 44.987ms 19.126 us

InitComm 20656 38.544ms 1.8650 us Axpy 1660 35.664ms 21.484 us

inComm 20688 37.894ms 1.8310 us Memcpy-HtoD 12862 26.689ms 2.0750 us

average execution time per kernel execution is just 1.8µs. On the other hand
the launch overhead of the kernel on V100 is 10µs (which was revealed in the
profile output). Thus the launch overhead of pack-unpack kernels consumes 0.4 s
of 1.6 s (25%) of total execution time.

The existing implementation iterates over neighboring dependencies and
patches and launches the kernel to copy required cells from the patch into the
MPI buffer (or vice a versa). This results in thousands of kernel launches as
shown in Table 2, but the work per launch remains minimal due to a simple
copying of few cells. The problem can be fixed by fusing such kernel launches
- at least for a single communication instance. To remedy the situation, the
CPU code first iterates over all the dependencies to be processed and creates
a buffer of source and destination pointers along with indexing information. At
the end, all the buffers are copied into GPU’s constant memory cache and the
pack (or unpack) cuda kernel is launched only once instead of launching it for
every dependency. After the fix InitComm and FinComm disappeared from the
top five longest running kernels as shown in Table 2. The combined number of
calls for InitComm and FinComm reduced from 41,344 to 8338. As a result, the
communication routines perform 3x faster than before and the overall speedup
in solve time achieved was around 20%. The modified code adds some overhead
due to copying value to the GPU constant memory, which is reflected Memcpy-
HtoD being called 12862 times compared to 4524 times earlier, but still the new
code performs faster.

With the first major bottleneck resolved, the second round of profiling using
HPCToolkit showed that the MPI wait time for matrix vector multiplication and
for relaxation routines was now more than 60%. The problem is partially over-
come by using cuda aware MPI supported on Lassen. The updated code directly
passes GPU pointers to the MPI routines and avoids copying data between
host and device. This decreased the communication wait time to 40 to 50% and
resulted in an extra speedup of 10%.
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4 Experiments

4.1 CPU (KNL) Experiments

Choosing the Patch Size: Initial experiments using only the Hypre solve
component on a small node count showed the speedups increase with the patch
size. Both MPI+OpenMP and MPI EP versions were compared against the MPI
only version for different patch sizes. As shown in Table 3, MPI+OpenMP version
always performs slower than the MPI Only version, although the performance
improves a little as the patch size is increased. On the other hand, the MPI EP
model performed nearly as well as the MPI Only version for 163 and 323 patch
sizes on 2 and 4 nodes, but broke down at the end of scaling. With 643 patches,
however, MPI EP performed up to 1.4x faster than the MPI Only version. As
a result, the patch size of 643 was chosen for the scaling experiments on the
representative problem. These results carry across to the larger node counts.
Strong scaling studies with 163 patches show the MPI+OpenMP approach works
4x to 8x slower than the MPI Only version. In case of Hypre-MPI EP, the worst
case slowdown of 1.8x was experienced for 512 nodes and the fastest execution
matched the time of Hypre-MPI Only. This experience together with the results
presented above straces the importance of using larger patch sizes, 643 and above,
to achieve scalability and performance.

Table 3. Speedups of the MPI+OpenMP and MPI EP versions compared to the MPI
Only version for different the patch sizes

Patch size: 163 323 643

Nodes MPI+OpenMP MPI EP MPI+OpenMP MPI EP MPI+OpenMP MPI EP

2 0.2 0.9 0.2 1.2 0.5 1.4

4 0.2 0.8 0.2 0.9 0.4 1.4

8 0.2 0.5 0.3 0.6 0.5 1.3

As the process of converting Uintah’s legacy code to Kokkos based portable
code which can use either OpenMP or cuda is still in progress, not all sections of
the code can be run efficiently in the multi-threaded environment. Hence a rep-
resentative problem containing the two most time consuming components was
chosen for the scaling studies on DOE Theta. The two main components are:
(i) Reverse Monte Carlo Ray Tracing (RMCRT) which is used to solve for the
radiative-flux divergence during the combustion [9] and (ii) pressure solve which
uses Hypre. RMCRT has previously been converted to utilize multi-threaded
approach that preforms faster than the MPI only version and also reduces mem-
ory utilization [12]. The second component, Hypre solver, is optimized as part of
this work for a multi-threaded environment. The combination of these two com-
ponents shows the impact of using an efficient implementation of multi-threaded
Hypre code on the overall simulation of combustion. Three different mesh sizes
were used for strong scaling experiments on DOE Theta: small (5123), medium
(10243) and large (20483). The coarser mesh for RMCRT was fixed to 1283.
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Each node of DOE Theta contains one Intel’s Knights Landing (KNL) proces-
sor with 64 cores per node, 16 GB of the high bandwidth memory (MCDRAM)
and AVX512 vector support. The MCDRAM was configured in cache-quadrant
mode for the experiments. Hypre and Uintah were compiled using Intel Parallel
Studio 19.0.5.281 with Cray’s MPI wrappers and compiler flags “-std=c++11
-fp-model precise -g -O2 -xMIC-AVX512 -fPIC”. One MPI process was launched
per core (i.e., 64 ranks per node) while running the MPI only version. For the
MPI+OpenMP and MPI EP version, four ranks were launched per node (one
per KNL quadrant) with 16 OpenMP threads per rank. The flexibility of choos-
ing team size in MPI EP allowed running the multiple combinations of teams
x worker threads within a rank: 16x1, 8x2 and 4x4. The fastest results among
these combinations were selected.

4.2 GPU Experiments

The GPU experiments were carried out on LLNL’s Lassen cluster. Each node is
equipped with two IBM Power9 CPUs with 22 cores each and four Nvidia V100
GPUs. Hypre and Uintah both were compiled using gcc 4.9.3 and cuda 10.1.243
with compiler flags “-fPIC -O2 -g -std=c++11 –expt-extended-lambda”.

Strong and weak scaling experiments on Lassen were run by calling Hypre
from Uintah (instead of mini-app) and the real equations originating from com-
bustion simulations were passed to generate the solve for the pressure at each
mesh cell. Strong scaling experiments were conducted using three different mesh
sizes: small (512x256x256), medium (5123) and large (10243). Each mesh is
divided among patches of size 1283 - such a way that each GPU gets one patch at
the end of the strong scaling. CPU scaling was carried out by assigning one MPI
rank to the every available CPU core (40 CPU cores/node) and by decomposing
the mesh into smaller patches to feed each rank.

5 Results

5.1 KNL Results on Theta:

Table 4 shows the execution time per timestep in seconds for the RMCRT
and Hypre solve components on DOE Theta. The multi-threaded execution of
RMCRT shows improvements between 2x to 2.5x over the MPI Only version for
the small problem and 1.4x to 1.9x for the medium size problem. Furthermore,
the RMCRT speedups increase with the scaling. This performance boost is due
to the all to all communication needed for the RMCRT algorithm is reduced
by 16 times when 16 threads are used per rank. The multi-threaded version
also results in up to 4x less memory allocation per node. However, the RMCRT
performance improvements are hidden by poor performance of Hypre in the
MPI+OpenMP version. As compared to the MPI Only version, a slowdown of
2x can be observed in Hypre MPI+OpenMP in spite of using 643 patches. The
slowdowns observed are as bad as 8x for smaller patch sizes. Using optimized
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Table 4. Theta results: The execution time per timestep in seconds for RMCRT, Hypre
and total time up to 512 KNLs.

Nodes MPI Only MPI+OpenMP MPI EP

Solve RMCRT Total Solve RMCRT Total Solve RMCRT Total

2 36 35 71 76 17 93 24 16 40

4 18 23 41 38 10 48 13 9 22

8 10 18 28 20 7 27 8 7 15

16 40 34 74 80 25 105 32 24 56

32 20 30 50 41 19 60 16 17 33

64 10 29 39 22 15 37 10 15 25

128 42 74 116 83 23 106 36 21 57

256 19 82 101 44 21 65 18 21 39

512 11 72 83 23 20 43 12 22 34

version of Hypre (MPI EP + partial vectorization) not only avoids these slow-
downs, but also provides speedups from 1.16x to 1.5x over the MPI Only solve.
The only exceptions are 64 nodes and 512 nodes, where there is no extra speedup
for Hypre because the scaling breaks down. Because of the faster computation
times (as observed in “Solve Time” of Table 4), lesser time is available for the
MPI EP model to effectively hide the communication and also wait time due to
locks within MPI starts dominating. Table 5 shows the percentage of solve time
spent in waiting for the communication. During first two steps of scaling, the
communication wait time also scales, but increases during the last step for eight
and 64 nodes. The MPI wait time increases from 24% for 32 nodes to 50% for 64
nodes and the communication starts dominating the computation because there
is not enough work per node.

Table 5. Theta results: communication wait time for MPI EP.

Nodes 2 4 8 16 32 64 128 512

MPI wait 2.4 1.4 1.7 6 3.9 5 11 6

Solve 24 13 8 32 16 10 36 12

% Comm 10% 11% 21% 19% 24% 50% 30% 50%

As both the components take advantage of the multi-threaded execution, the
combination the overall simulation can lead to the combined performance boost
of up to 2x as can be observed in the “Total” column of Table 4. It shows how
the changes made to Hypre attribute to an overall speedups up to 2x.
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5.2 GPU Results on Lassen
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Fig. 4. Strong scaling of solve time
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Fig. 5. Weak scaling of solve time

The strong scaling plot in Fig. 4 shows GPU version performs 4x faster than CPU
version in the initial stage of strong scaling when the compute workload per GPU
is more. As the GPU version performs better than the CPU version, it runs out
of compute work sooner than the CPU version and the scaling breaks down with
speedup reduced to 2.3x. Similarly, the optimized GPU version performs up to
6x faster than the CPU version (or 1.44x faster than the baseline GPU version)
with the heavy workload. As the strong scaling progresses, the speedup by the
optimized version against CPU reduces to 3x (or 1.26x against baseline GPU
version). The communication wait time of both GPU versions is reduced by 4x
to 5x as the number of ranks is reduced by ten times (not shown for brevity).
Thanks to faster computations, the optimized GPU version spends 15 to 25%
more time in waiting for MPI compared to the baseline GPU version.

The weak scaling was carried out using one 1283 patch per GPU (or dis-
tributed among ten CPU cores) from four GPUs to 512 GPUs. Figure 5 shows
good weak scaling for all three versions. The GPU version shows 2.2x to 2.8x
speedup and the optimized GPU code performs 2.6x to 3.4x better than the
CPU version.

Preliminary experiments with the MPI EP model on Lassen showed that the
MPI EP CPU version performed as well as the MPI Only CPU version (not
shown in Fig. 4 for brevity). Work is in progress to improve GPU utilization
by introducing the MPI EP model for the GPU version and assigning different
CUDA streams to different endpoints which may improve overall performance.

6 Conclusions and Future Work

In this paper it has been shown that the MPI-Endpoint approach makes a
threaded version of Hypre as fast or faster than the MPI-only version when
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used with multiple patches and enough workload. Thus other multi threaded
applications which use Hypre could benefit from this approach and achieve over-
all speedup as demonstrated on Theta. Similarly, improved GPU speedups can
help in gaining overall speedups for other Hypre-cuda users.

One of the bottlenecks for the MPI EP version was locks within MPI - espe-
cially for smaller patches. This bottleneck can be improved if the lock-free MPI
implementations are available or if the End Point functionality [4] is added into
the MPI standard. This work used MPI EP to reduce the OpenMP synchro-
nization overhead. However, the EP model can achieve a sweet spot between
“one rank per core” and “one rank per node with all cores using OpenMP” and
reduce the communication time up to 3x with the minimal OpenMP overhead,
which can lead to better strong scaling as shown in [15].

On GPUs the current optimized version shows around 40 to 50% time con-
sumed in waiting for MPI communication during sparse matrix vector multi-
plication and relaxation routines. If the computations and communications are
overlapped, then a new kernel needs to be launched for the dependent computa-
tions after the communication is completed. As these kernels do not have enough
work to justify the launch it resulted into slightly slower overall execution times
during the initial experiments of overlapping communications. Similar behavior
was observed by [1]. A possible solution is to collect kernels as “functors” and
to launch a single kernel later, which calls these functors one after another as a
function call. This is the work in progress, as is the application of the code to
full-scale combustion problems. Another option for speeding up the algorithm is
to use communication avoiding approaches e.g., see [10] which uses a multi-grid
preconditioner and spends less than 10% of the solve time in the global MPI
reductions on Summit. As this work here also used a multi-grid preconditioner
[13], similar behavior was observed in our experiments and the global reduction
in the CG algorithm is not a major bottleneck so far. However, these options
will be revisited when applying the code to full scale combustion problems at
Exascale.
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