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Abstract
Recent studies have demonstrated the existence of rich visual representations in both occipitotemporal cortex (OTC) and
posterior parietal cortex (PPC). Using fMRI decoding and a bottom-up data-driven approach, we showed that although robust
object category representations exist in both OTC and PPC, there is an information-driven 2-pathway separation among
these regions in the representational space, with occipitotemporal regions arranging hierarchically along 1 pathway and
posterior parietal regions along another pathway. We obtained 10 independent replications of this 2-pathway distinction,
accounting for 58–81% of the total variance of the region-wise differences in visual representation. The separation of the PPC
regions from higher occipitotemporal regions was not driven by a difference in tolerance to changes in low-level visual
features, did not rely on the presence of special object categories, and was present whether or not object category was task
relevant. Our information-driven 2-pathway structure differs from the well-known ventral-what and dorsal-where/how
characterization of posterior brain regions. Here both pathways contain rich nonspatial visual representations. The
separation we see likely reflects a difference in neural coding scheme used by PPC to represent visual information compared
with that of OTC.
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Introduction
Although the posterior parietal cortex (PPC) has been largely
associated with visuospatial processing (Kravitz et al. 2011),
over the last 2 decades, both monkey neurophysiology and
human brain imaging studies have reported robust nonspatial
object responses in PPC along the intraparietal sulcus (IPS)
(Freud et al. 2016; Kastner et al. 2017; Xu 2017). For example,
neurons in macaque lateral intraparietal (LIP) region exhibited
shape selectivity (Sereno and Maunsell 1998; Lehky and Sereno
2007; Janssen et al. 2008; Fitzgerald et al. 2011) that was tolerant
to changes in position and size (Sereno and Maunsell 1998;
Lehky and Sereno 2007). Similarly, human IPS topographic
areas IPS1/IPS2 exhibited shape selective fMRI adaptation
responses that were tolerant to changes in size and view-point

(Konen and Kastner 2008; see also Sawamura et al. 2005). Given
that macaque LIP has been argued to be homologous to human
IPS1/IPS2 (Silver and Kastner 2009), there is thus convergence
between the monkey and human findings. Recent fMRI studies
have further reported the existence of a multitude of visual infor-
mation in human PPC (Liu et al. 2011; Christophel et al. 2012;
Zachariou et al. 2014; Ester Edward et al. 2015; Xu and Jeong
2015; Bettencourt and Xu 2016; Bracci et al. 2016, 2017; Jeong and
Xu 2016; Weber et al. 2016; Woolgar et al. 2015, 2016; Yu and
Shim 2017). Areas along IPS, especially a visual working memory
(VWM) capacity defined region in superior IPS region that over-
laps with IPS1/IPS2 (Todd and Marois 2004; Xu and Chun 2006;
Bettencourt and Xu 2016), have been shown to hold robust
visual representations that track perception and behavioral
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performance (Bettencourt and Xu 2016; Jeong and Xu 2016). PPC
now appears to contain a rich repertoire of nonspatial representa-
tions, ranging from orientation, shape, to object identity, just like
those in occipitotemporal cortex (OTC). Meanwhile, just like PPC,
robust representation of spatial information has been found in
both monkey and human OTC (Hong et al. 2016; Schwarzlose
et al. 2008; Zhang et al. 2015; see also topographic mapping
results from the ventral areas, e.g., Hasson et al. 2002, Wandell
et al. 2007). Are visual representations in PPC indeed highly simi-
lar to those in OTC or do they still differ in significant ways?

Using fMRI and multivoxel pattern analysis (Haxby et al.
2001; Kriegeskorte et al. 2008), here, we examined object cate-
gory representations in a number of independently defined
human OTC and PPC regions (Fig. 2). In OTC, we included early
visual areas V1–V4 and areas involved in visual object proces-
sing in lateral occipitotemporal (LOT) and ventral occipitotem-
poral (VOT) regions. LOT and VOT loosely correspond to the
location of lateral occipital (LO) and posterior fusiform (pFs)
areas (Malach et al. 1995; Grill‐Spector et al. 1998) but extend
further into the temporal cortex in our effort to include as
many object selective voxels as possible in OTC regions.
Reponses in these regions have previously been shown to cor-
relate with successful visual object detection and identification
(Grill-Spector et al. 2000; Williams et al. 2007) and lesions to
these areas have been linked to visual object agnosia (Goodale
et al. 1991; Farah 2004). In PPC, we included regions previously
shown to exhibit robust visual encoding along the IPS.
Specifically, we included topographic regions V3A, V3B, and
IPS0-4 along the IPS (Sereno et al. 1995; Swisher et al. 2007;
Silver and Kastner 2009) and 2 functionally defined object selec-
tive regions with one located at the inferior and one at the
superior part of IPS (henceforth referred to inferior IPS and
superior IPS, respectively, for simplicity). Inferior IPS has previ-
ously been shown to be involved in visual object selection and
individuation while superior IPS is associated with visual repre-
sentation and VWM storage (Xu and Chun 2006, 2009; Xu and
Jeong 2015; Jeong and Xu 2016; Bettencourt and Xu 2016; see
also Todd and Marois 2004).

Across 7 experiments, we observed robust object categorical
representations in both human OTC and PPC, consistent with
prior reports. Critically, using representational similarity analy-
sis (Kriegeskorte and Kievit 2013) and a bottom-up data-driven
approach, we found a large separation between these brain
regions in the representational space, with occipitotemporal
regions arranging hierarchically along one pathway (the OTC
pathway) and posterior parietal regions along an orthogonal
pathway (the PPC pathway). This 2-pathway distinction was
independently replicated 10 times and accounted for 58–81% of
the total variance of the region-wise differences in visual repre-
sentations. Visual information processing thus differs between
OTC and PPC despite the existence of rich visual representations
in both. The separation between OTC and PPC was not driven by
differences in tolerance to changes in low-level visual features,
as similar amount of tolerance was seen in both higher occipito-
temporal and posterior parietal regions. Neither was it driven by
an increasingly rich object category-based representation land-
scape along the OTC pathway, as the 2-pathway distinction was
equally strong for natural object categories varying in various
category features (such as animate/inanimate, action/nonaction,
small/large) as well as artificial object categories in which none
of these differences existed. Finally, the 2-pathway distinction
was not driven by PPC showing greater representations of task
relevant features than OTC (Bracci et al. 2017; Vaziri-Pashkam
and Xu 2017), as the presence of the 2 pathways for object shape

representation was unaffected by whether or not object shape
was task relevant.

Although previous research has characterized posterior
brain regions in visual processing according to the well-known
ventral-what and dorsal-where/how distinction (Mishkin et al.
1983; Goodale and Milner 1992), our 2-pathway structure differs
from this characterization in one significant aspect: both of our
2 pathways contain rich nonspatial visual representations.
Thus, it may not be the contents of visual presentation, but
rather the neural coding schemes used to form representations,
that differ significantly between how OTC and PPC process
visual information.

Materials and Methods
Participants

Seven healthy human participants (P1–P7, 4 females) with nor-
mal or corrected to normal visual acuity, all right-handed, and
aged between 18 and 35 took part in the experiments. Each
main experiment was performed in a separate session lasting
between 1.5 and 2h. Each participant also completed 2 addi-
tional sessions for topographic mapping and functional locali-
zers. All participants gave their informed consent before the
experiments and received payment for their participation. The
experiments were approved by the Committee on the Use of
Human Subjects at Harvard University.

Experimental Design and Procedures
Main Experiments

A summary of the main experiments is presented in Table 1. It
includes the list of participants and the stimuli and the task(s)
used in each experiment.

Experiment 1: Testing Original and Controlled Images
In this experiment, we used black and white images from 8
object categories (faces, bodies, houses, cats, elephants, cars,
chairs, and scissors) and modified them to occupy roughly the
same area on the screen (Fig. 1A). For each object category, we
selected 10 exemplar images that varied in identity, pose and
viewing angle to minimize the low-level similarities among
them. All images were placed on a dark gray square (subtended
9.13° × 9.13°) and displayed on a light gray background. In the
original image condition, the original images were shown. In
the controlled image condition, we equalized image contrast,
luminance and spatial frequency across all the categories using
the shine toolbox (Willenbockel et al. 2010, see Fig. 1B).
Participants fixated at a central red dot (0.46° in diameter)
throughout the experiment. Eye-movements were monitored
in all the fMRI experiments using SR-research Eyelink 1000 to
ensure proper fixation.

During the experiment, blocks of images were shown. Each
block contained a random sequential presentation of 10 exem-
plars from the same object category. Each image was presented
for 200ms followed by a 600ms blank interval between the
images (Fig. 1C). Participants detected a one-back repetition of
the exact same image by pressing a key on an MRI-compatible
button-box. Two image repetitions occurred randomly in each
image block. Each experimental run contained 16 blocks, 1 for
each of the 8 categories in each image condition (original or
controlled). The order of the 8 object categories and the 2 image
conditions were counterbalanced across runs and participants.
Each block lasted 8 s and followed by an 8-s fixation period.
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There was an additional 8-s fixation period at the beginning of
the run. Each participant completed one scan session with 16
runs for this experiment, with each run lasting 4min 24 s.

Experiment 2: Testing Position Tolerance
In this experiment, we used the controlled images from
Experiment 1 at a smaller size (subtended 5.7° × 5.7°). Images
were centered at 3.08° above the fixation in half of the 16 blocks
and the same distance below the fixation in the other half of the
blocks. The order of the 8 object categories and the 2 positions
were counterbalanced across runs and participants. Other
details of the experiment were identical to that of Experiment 1.

Experiment 3: Testing Size Tolerance
In this experiment, we used the controlled images form
Experiment 1, shown at fixation at either a small size (4.6° × 4.6°)
or a large size (11.4° × 11.4°). Half of the 16 blocks contained
small images and the other half, large images. The presentation

order of the 8 object categories and the 2 sizes were counterba-
lanced across runs and participants. Other details of the experi-
ment were identical to that of Experiment 1.

Experiment 4: Comparing Natural and Artificial Object Categories
In this experiment, we used both natural and artificial shape cate-
gories. The natural categories were the same 8 categories used in
Experiment 1. We used the original images from these categories.
The artificial categories were 9 categories of computer-generated
3D shapes (10 images per category) adopted from Op de Beeck
et al. (2008) and shown in random orientations to increase image
variation within a category (Fig. 5A). All stimuli were modified to
occupy roughly the same spatial extent, placed on a dark gray
square (subtended 9.13° × 9.13°), and displayed on a light gray
background. Each run of the experiment contained 17 8-s blocks,
one for each of the 8 natural categories and one for each of the 9
artificial categories. An 8-s fixation period was presented between
the stimulus blocks and at the beginning of the run. Each

Table 1 A summary of all the experiments, including the list of participants and the stimuli and the task(s) used

Participants Stimulus set Task

Experiment 1 P1–P6 8 Natural object categories shown both in original and
controlled format

Shape 1-back

Experiment 2 P1–P7 8 Natural object categories in original format shown either
above or below fixation

Shape 1-back

Experiment 3 P1–P7 8 Natural object categories in original format shown in either
small or large size

Shape 1-back

Experiment 4 P1–P5, P7 8 Natural object categories and 9 artificial object categories
both shown in original format

Shape 1-back

Experiment 5 P1–P7 8 Natural object categories shown in original format with both
the object and background colored

Shape 1-back or color 1-back, depending
on the instructions

Experiment 6 P1–P7 8 Natural object categories shown in original format with
colored dots overlaid on top of the object

Shape 1-back or color 1-back, depending
on the instructions

Experiment 7 P1–P7 8 Natural object categories shown in original format with only
the object colored

Shape 1-back or color 1-back, depending
on the instructions

Figure 1. Stimuli and paradigm used in Experiment 1. (A) The 8 natural object categories used. Each category contained 10 different exemplars varying in identity,

pose, and viewing angle to minimize the low-level image similarities among them. (B) Example images showing the original version (left) and the controlled version

(right) of the same image. (C) An illustration of the block design paradigm used. Participants performed a one-back repetition detection task on the images.
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participant completed 18 experimental runs. The order of the
object categories was counterbalanced across runs and partici-
pants. Each run lasted 4min 40 s.

Experiments 5, 6, and 7: Testing Task Modulations
Some data of these 3 task experiments were reported in a pre-
vious publication (Vaziri-Pashkam and Xu 2017). The analysis
reported here, however, have not been published before.
Details of these 3 task experiments are reproduced here for the
readers’ convenience.

The original images from the 8 natural categories as used in
Experiment 1 were used in the 3 task experiments here. In
Experiment 5, the objects were covered with a semitransparent
colored square subtending 9.24° of visual angle (Fig. 7), making
both the object and the background surrounding the object col-
ored. In Experiment 6, a set of 30 semitransparent colored dots,
each with a diameter subtending 0.93° of visual angle, were placed
on top of the object, covering the same spatial extent as the object.
In Experiment 7, the objects were fully colored, making color an
integrated feature of the object. On each trial, the color of the
image was selected from a list of 10 different colors (blue, red, light
green, yellow, cyan, magenta, orange, dark green, purple, and
brown). Participants were instructed to view the images while fix-
ating. In half of the runs participants performed a one-back repeti-
tion detection on the object shape (similar to the tasks in the
previous experiments), and in the other half they ignored the
shape and detected a one-back repetition of the color.

Each experimental run consisted of 1 practice block at the
beginning of the run and 8 experimental blocks with 1 for each
of the 8 object categories. The stimuli from the practice block
were chosen randomly from 1 of the 8 categories and data from
the practice block were removed from further analysis. Each
block lasted 8 s. There was a 2-s fixation period at the beginning
of the run and an 8-s fixation period after each stimulus block.
The presentation order of the object categories was counterba-
lanced across runs for each task. Task changed every other run
with the order reversed halfway through the session. Each partic-
ipant completed one session of 32 runs, with 16 runs for each of
the 2 tasks in each experiment. Each run lasted 2min 26 s.

Localizer Experiments

All the localizer experiments conducted here used previously
established protocols and the details of these protocols are
reproduced here for the reader’s convenience.

Topographic Visual Regions
These regions were mapped with flashing checkerboards using
standard techniques (Sereno et al. 1995; Swisher et al. 2007)
with parameters optimized following Swisher et al. (2007) to
reveal maps in parietal cortex. Specifically, a polar angle wedge
with an arc of 72° swept across the entire screen (23.4 × 17.5° of
visual angle). The wedge had a sweep period of 55.467 s, flashed
at 4 Hz, and swept for 12 cycles in each run (for more details,
see Swisher et al. 2007). Participants completed 4–6 runs, each
lasting 11min 56 s. The task varied slightly across participants.
All participants were asked to detect a dimming in the visual
display. For some participants, the dimming occurred only at
fixation, for some it occurred only within the polar angle
wedge, and for others, it could occur in both locations, commis-
erate with the various methodologies used in the literature
(Bressler and Silver 2010; Swisher et al. 2007). No differences
were observed in the maps obtained through each of these
methods.

Superior IPS
To identify the superior IPS ROI previously shown to be
involved in VSTM storage (Todd and Marois 2004; Xu and Chun
2006), we followed the procedures development by Xu and
Chun (2006) and implemented by Xu and Jeong (2015). In an
event-related object VSTM experiment, participants viewed in
the sample display, a brief presentation of 1–4 everyday objects,
and after a short delay, judged whether a new probe object in
the test display matched the category of the object shown in
the same position as in the sample display. A match occurred
in 50% of the trials. Gray-scaled photographs of objects from 4
categories (shoes, bikes, guitars, and couches) were used.
Objects could appear above, below, to the left, or to the right of
the central fixation. Object locations were marked by white
rectangular placeholders that were always visible during the
trial. The placeholders subtended 4.5° × 3.6° and were 4.0° away
from the fixation (center to center). The entire display sub-
tended 12.5° × 11.8°. Each trial lasted 6 s and contained the fol-
lowing: fixation (1 000ms), sample display (200ms), delay
(1 000ms), test display/response (2500ms), and feedback (1 300
ms). With a counterbalanced trial history design (Todd and
Marois 2004; Xu and Chun 2006), each run contained 15 trials
for each set size and 15 fixation trials in which only the fixation
dot was present for 6 s. Two filler trials, which were excluded
from the analysis, were added at the beginning and end of each
run, respectively, for practice and trial history balancing pur-
poses. Participants were tested with 2 runs, each lasting 8min.

Inferior IPS
Following the procedure developed by Xu and Chun (2006) and
implemented by Xu and Jeong (2015), participants viewed blocks
of objects and noise images. The object images were similar to the
images in the superior IPS localizer, except that in all trials, 4
images were presented on the display. The noise images were
generated by phase-scrambling the entire object images. Each
block lasted 16 s and contained 20 images, each appearing for
500ms followed by a 300ms blank display. Participants were
asked to detect the direction of a slight spatial jitter (either hori-
zontal or vertical), which occurred randomly once in every 10
images. Each run contained 8 object blocks and 8 noise blocks.
Each participant was tested with 2 or 3 runs, each lasting 4min
40 s.

Lateral and Ventral Occipitotemporal Regions (VOT and LOT)
To identify LOT and VOT ROIs, following Kourtzi and Kanwisher
(2000), participants viewed blocks of face, scene, object and
scrambled object images (all subtended approximately 12.0° ×
12.0°). The images were photographs of gray-scaled male and
female faces, common objects (e.g., cars, tools, and chairs),
indoor and outdoor scenes, and phase-scrambled versions of the
common objects. Participants monitored a slight spatial jitter
which occurred randomly once in every 10 images. Each run
contained 4 blocks of each of scenes, faces, objects, and phase-
scrambled objects. Each block lasted 16 s and contained 20
unique images, with each appearing for 750ms and followed by
a 50ms blank display. Besides the stimulus blocks, 8-s fixation
blocks were included at the beginning, middle, and end of each
run. Each participant was tested with 2 or 3 runs, each lasting
4min 40 s.

MRI Methods
MRI data were collected using a Siemens MAGNETOM Trio, A
Tim System 3T scanner, with a 32-channel receiver array head
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coil. Participants lay on their back inside the MRI scanner and
viewed the back-projected LCD with a mirror mounted inside
the head coil. The display had a refresh rate of 60 Hz and spa-
tial resolution of 1024 × 768. An Apple Macbook Pro laptop was
used to present the stimuli and collect the motor responses.
For topographic mapping, the stimuli were presented using
VisionEgg (Straw 2008). All other stimuli were presented with
Matlab running Psychtoolbox extensions (Brainard 1997).

Each participant completed 8–9 MRI scan sessions to obtain
data for the high-resolution anatomical scans, topographic
maps, functional ROIs and experimental scans. Using standard
parameters, a T1-weighted high-resolution (1.0 × 1.0 × 1.3mm3)
anatomical image was obtained for surface reconstruction. For
all the fMRI scans, a T2*-weighted gradient echo pulse
sequence was used. For the experimental scans, 33 axial slices
parallel to the AC-PC line (3mm thick, 3 × 3mm2 in-plane reso-
lution with 20% skip) were used to cover the whole brain (TR =
2 s, TE = 29ms, flip angle = 90°, matrix = 64 × 64). For the LOT/
VOT and inferior IPS localizer scans 30–31 axial slices parallel
to the AC-PC line (3mm thick, 3 × 3mm2 in-plane resolution
with no skip) were used to cover occipital, temporal and parts
of parietal and frontal lobes (TR = 2 s, TE = 30ms, flip angle =
90°, matrix = 72 × 72). For the superior IPS localizer scans, 24
axial slices parallel to the AC-PC line (5mm thick, 3 × 3mm2 in-
plane resolution with no skip) were used to cover most of the
brain with priority given to parietal and occipital cortices (TR =
1.5 s, TE = 29ms, flip angle = 90°, matrix = 72 × 72). For topo-
graphic mapping 42 slices (3mm thick, 3.125 × 3.125mm2 in-
plane resolution with no skip) just off parallel to the AC-PC line
were collected to cover the whole brain (TR = 2.6 s, TE = 30ms,
flip angle = 90°, matrix = 64 × 64). Different slice prescriptions
were used here for the different localizers to be consistent with
the parameters used in our previous studies. Because the loca-
lizer data were projected into the volume view and then onto
individual participants’ flattened cortical surface, the exact
slice prescriptions used had minimal impact on the final
results.

Data Analysis
FMRI data were analyzed using FreeSurfer (surfer.nmr.mgh.har-
vard.edu), FsFast (Dale et al. 1999), and in-house MATLAB
codes. LibSVM software (Chang and Lin 2011) was used for the
MVPA support vector machine analysis. FMRI data preproces-
sing included 3D motion correction, slice timing correction and
linear and quadratic trend removal.

ROI Definitions

Topographic Maps
Following the procedures described in Swisher et al. (2007) and
by examining phase reversals in the polar angle maps, we identi-
fied topographic areas in occipital and parietal cortices including
V1, V2, V3, V4, V3A, V3B, IPS0, IPS1, IPS2, IPS3, and IPS4 in each
participant (Fig. 2A). Activations from IPS3 and IPS4 were in gen-
eral less robust than those from other IPS regions. Consequently,
the localization of these 2 IPS ROIs was less reliable. Nonetheless,
we decided to include these 2 ROIs here to have a more extensive
coverage of the PPC regions along the IPS.

Superior IPS
To identify this ROI (Fig. 2B) fMRI data from the superior IPS
localizer was analyzed using a linear regression analysis to

determine voxels whose responses correlated with a given par-
ticipant’s behavioral VWM capacity estimated using Cowan’s K
(Cowan 2001). In a parametric design, each stimulus presenta-
tion was weighted by the estimated Cowan’s K for that set size.
After convolving the stimulus presentation boxcars (lasting 6 s)
with a hemodynamic response function, a linear regression with
2 parameters (a slope and an intercept) was fitted to the data
from each voxel. Superior IPS was defined as a region in parietal
cortex showing significantly positive slope in the regression anal-
ysis overlapping or near the Talairach coordinates previously
reported for this region (Todd and Marois 2004). As in Vaziri-
Pashkam and Xu (2017), we defined superior IPS initially with a
threshold of P < 0.001 (uncorrected). However, for 5 participants,
this produced an ROI that contained too few voxels for MVPA
decoding. We therefore used P < 0.001 (uncorrected) in 2 partici-
pants and relaxed the threshold to 0.05 in 3 or 0.1 in 2 partici-
pants to obtain a reasonably large superior IPS with at least 100
voxels across hemispheres. The resulting ROIs on average had
234 voxels across all the participants.

Inferior IPS
This ROI (Fig. 2B) was defined as a cluster of continuous voxels
in the inferior part of IPS that responded more (P < 0.001 uncor-
rected) to the original than to the scrambled object images in
the inferior IPS localizer and did not overlap with the superior
IPS ROI.

LOT and VOT
These 2 ROIs (Fig. 2C,D) were defined as a cluster of continuous
voxels in the lateral and ventral occipital cortex, respectively,
that responded more (P < 0.001 uncorrected) to the original than
to the scrambled object images. LOT and VOT loosely correspond
to the location of LO and pFs (Malach et al. 1995; Grill‐Spector
et al. 1998; Kourtzi and Kanwisher 2000) but extend further into
the temporal cortex in an effort to include as many object selec-
tive voxel as possible in OTC regions. The LOT and VOT ROIs
from all the participants are shown in Supplemental Figure S1.

MVPA Classification Analysis

In Experiment 1 in which natural object categories were shown
in both natural and controlled images, to determine whether
object category information is present in our ROIs, we per-
formed MVPA decoding using a support vector machine (SVM)
classifier. To generate fMRI response patterns for each condi-
tion in each run, we first convolved the 8-s stimulus presenta-
tion boxcars with a hemodynamic response function. We then
conducted a general linear model analysis with 16 factors (2
image formats × 8 object categories) to extract beta value for
each condition in each voxel in each ROI. This was done sepa-
rately for each run. We then normalized the beta values across
all voxels in a given ROI in a given run using z-score transfor-
mation to remove amplitude differences between runs, condi-
tions and ROIs. Following Kamitani and Tong (2005), to
discriminate between the fMRI response patterns elicited by
the different object categories, within each image format (origi-
nal or controlled), pairwise category decoding was performed
with SVM analysis using a leave-one-out cross-validation pro-
cedure. As pattern decoding to a large extent depends on the
total number of voxels in an ROI, to equate the number of vox-
els in different ROIs to facilitate comparisons across ROIs, the
75 most informative voxels were selected from each ROI using
a t-test analysis (Mitchell et al. 2004). Specifically, during each
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SVM training and testing iteration, the 75 voxels with the low-
est P values for discriminating between the 2 conditions of
interest were selected from the training data. An SVM was then
trained and tested only on these voxels. It is noteworthy, how-
ever, that the results remained very much the same in all
experiments when we included all voxels from each ROI in the
analysis. We have included sample results from Experiment 1
in Supplemental Figure S2. Nevertheless, to avoid potential
confounds due to differences in voxel numbers, to increase
power and to obtain the best decoding each brain region could
accomplish, we decided to still select the 75 best voxels in our
analyses for all subsequent experiments.

After calculating the SVM accuracies, within each image for-
mat, we averaged the decoding accuracy for each pair of object
categories (28 total pairs) to determine the average category
decoding accuracy in a given ROI. All subsequent experiments
were analyzed using the same procedure.

When results from each participant were combined to per-
form group-level statistical analyses, all P values reported were
corrected for multiple comparisons using Benjamini–Hochberg
procedure for false discovery rate (FDR) controlled at q < 0.05
(Benjamini and Hochberg 1995). In the analysis of the 15 ROIs,
the correction was applied to 15 comparisons, and in the analy-
sis of the 3 representative regions, the correction was applied
to 3 comparisons.

Representational Similarity Analysis

To visualize how similarities between object categories were
captured by a given brain region, we performed multidimen-
sional scaling (MDS) analysis (Shepard 1980). MDS takes as input
either distance measures or correlation measures. From the
group average pairwise category decoding accuracy, we con-
structed an 8 by 8 category-wise similarity matrix with the diag-
onal being 0.5 and the other values ranging from around 0.5 to 1.
To turn these values into distance measures that started from 0
in order to perform MDS, we subtracted 0.5 from all cell values to
obtain a similarity matrix with the diagonal set to zero. To avoid
negative values (as distance measures cannot be negative), we
replaced all values below zero with zero. We then projected the
first 2 dimensions of the modified category-wise similarity
matrix for a given brain region onto a 2D space with the distance
between the categories denoting their relative representational
similarities to each other in that brain region.

To determine the extent to which object category represen-
tations in one brain region were similar to those in another
region, we correlated the unmodified category-wise similarity
matrices (i.e., without subtracting 0.5 from the diagonal and
replacing the values bellow zero to zero) for each pair of brain
regions to form a region-wise similarity matrix. This was done
by concatenating all the off-diagonal values of the unmodified

Figure 2. Inflated brain surface from a representative participant showing the ROIs examined. (A) Topographic ROIs in occipital and parietal cortices. (B) Superior IPS

and inferior IPS ROIs, with white outlines showing the overlap between these 2 parietal ROIs and parietal topographic ROIs. (C) LOT and VOT ROIs.
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category-wise similarity matrix for a given brain region to cre-
ate an object category similarity vector for that region and then
correlating these vectors between every pair of brain regions.
The region-wise similarity matrix was first calculated for each
participant and then averaged across participants to obtain the
group level region-wise similarity matrix.

To calculate the split-half reliability of the region-wise simi-
larity matrix, we divided the participants into 2 groups and cor-
related the region-wise similarity matrices between the 2
groups as a measure of reliability. This reliability measure was
obtained for all possible split-half divisions and averaged to
generate the final reliability measure. To determine the signifi-
cance of this reliability measure, we obtained the bootstrapped
null distribution of reliability by randomly shuffling the labels
in the correlation matrix separately for the 2 split half groups
and calculating the reliability for 10 000 random samples.

To visualize the representational similarity of the different
brain regions, using the correlational values in the region-wise
similarity matrix as input to MDS, we projected the first 2
dimensions of the region-wise similarity matrix onto a 2D
space with the distance between the regions denoting their rel-
ative similarities to each other. We then fit 2 regression lines
using least square error, with one line passing through the
positions of the OTC regions V1, V2, V3, V4, LOT, and VOT; and
the other positions of the PPC regions V3A, V3B, IPS0-4, inferior,
and superior IPS.

To determine the amount of variance captured by the first 2
dimensions of the region-wise similarity matrix as depicted in
the 2D MDS plots and that captured by the 2 regressions lines
fitted to the occipitotemporal and posterior parietal regions on
the 2D MDS plots, we first obtained the Euclidean distances
between brain regions on the 2D MDS plots (2D-distance) and
the Euclidean distance between brain regions based on the pre-
dicted positions on the 2 regression lines in the MDS plots
(Line-distance). We then calculated the squared correlation (r2)
between the 2D distances and the original region-wise similar-
ity matrix to determine the amount of variance explained by
the first 2 dimensions. Likewise, we calculated the r2 between
the 2D-distances and the Line-distances to determine the
amount of variance explained by the 2 regression lines on the
2D MDS plot. To determine how much of the total variance in
the region-wise similarity matrix is explained by the 2 regres-
sion lines, we calculated the r2 between the line distances and
the original region-wise similarity matrix.

In addition to line fitting in 2D, we also performed line fit-
ting in higher-dimensional space, with the number of dimen-
sions ranging from 2 to Nmax. Nmax included all the dimensions
with positive eigenvalues as determined by MDS and varied
between 12 and 14 across the 7 experiments. Nmax-dimensional
space could account for close to 100% of the total variance of
the region-wise correlation matrix (see Supplemental Fig. S4).
We calculated the amount of total variance explained by each
higher-dimensional space and that by the 2 fitted lines in that
space using r2 as described above.

Within and Cross Position and Size Change Decoding

In Experiments 2 and 3, to determine whether object category
representations in each region were tolerant to changes in
position and size, we performed a generalization analysis and
calculated cross-position and cross-size changes in decoding
accuracy. To examine position tolerance in neural representa-
tions, we trained the classifier to discriminate 2 object catego-
ries at one location and then tested the classifier’s performance

in discriminating the same 2 object categories at the other loca-
tion. We repeated the same procedure for every pair of objects
(28 pairs) and averaged the results across participants to deter-
mine the amount of position tolerance for each ROI. We also
compared the amount of cross-position decoding with that
from within-position decoding in which training and testing
were done with object categories shown at the same position
as described earlier. The same analysis was applied for testing
size tolerance.

Results
A 2-Pathway Characterization of Visual Object
Representation in OTC and PPC

To compare visual object representations in OTC and PPC, in
Experiment 1 we showed human participants images from 8
object categories (i.e., faces, houses, bodies, cats, elephants, cars,
chairs, and scissors, see Fig. 1A). These categories were chosen as
they covered a good range of natural object categories encoun-
tered in our everyday visual environment and are the typical cate-
gories used in previous investigations of object category
representations in OTC (Haxby et al. 2001; Kriegeskorte et al. 2008).
Participants viewed blocks of images containing different exem-
plars from the same category and detected the presence of an
immediate repetition of the same exemplar (Fig. 1C). We exam-
ined fMRI response patterns in topographically defined regions in
occipital cortex (V1–V4) and along the IPS including V3A, V3B, and
IPS0-4 (Sereno et al. 1995; Swisher et al. 2007; Silver and Kastner
2009, see Fig. 2A). We also examined functionally defined object-
selective regions. In PPC, we selected 2 parietal regions previously
shown to be involved in object selection and encoding, with one
located in the inferior and one in the superior part of IPS (hence-
forward referred to as inferior and superior IPS, respectively; Xu
and Chun 2006, 2009; see also Todd and Marois 2004, see Fig. 2B).
In OTC, we selected regions in LOT overlapping with LO (Malach
et al. 1995; Grill‐Spector et al. 1998, see Fig. 2C) and VOT, overlap-
ping with pFs (Grill‐Spector et al. 1998, see Fig. 2D), whose
responses were shown to be correlated with successful visual
object detection and identification (Grill-Spector et al. 2000;
Williams et al. 2007) and whose lesions have been linked to visual
object agnosia (Goodale et al. 1991; Farah 2004).

To examine the representation of object categories in OTC
and PPC, we first z-normalized fMRI response patterns to
remove response amplitude differences across categories and
brain regions. Using linear SVM classifiers (Kamitani and Tong
2005; Pereira et al. 2009), we performed pairwise category
decoding and averaged the accuracies across all pairs to obtain
the average decoding accuracy in each ROI and for each partici-
pant. Consistent with prior reports, we found robust and dis-
tinctive object representations in both OTC and PPC such that
the average category decoding accuracy was significantly above
chance in all the ROIs examined (ts > 6.09, Ps < 0.01, corrected
for multiple comparisons using Benjamini–Hochberg procedure
with FDR set at q < 0.05; this applies to all subsequence pair-
wise t-tests; see dark bars in Fig. 3A).

To compare the similarities of the visual representations
among regions in OTC and PPC, we performed representational
similarity analyses (Kriegeskorte and Kievit 2013). From the
pairwise category classification accuracies, we first constructed
a representational similarity matrix for the 8 object categories
in each brain region. We then correlated the similarity matrices
for each pair of brain regions to determine the extent to which
object representations in one region were similar to those in
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another region. The resulting region-wise similarity matrix
(Fig. 3B, left panel) on average had a split half reliability of 0.68,
significantly higher than chance (bootstrapped null distribution
95% CI [−0.26,0.28]). To summarize this matrix and to better
visualize the similarities across brain regions, we performed
dimensionality reduction using a MDS analysis (Shepard 1980).
Figure 3C (left panel), depicts the first 2 dimensions that
explained 83% of the variance. Although both OTC and PPC
contain object category representations, strikingly, they were
separated from each other in the MDS plot (Fig. 3C, left panel).

Specifically, brain regions seemed to be organized systemati-
cally into 2 pathways, with the occipitotemporal regions lining
up hierarchically in an OTC pathway and the posterior parietal
regions lining up hierarchically in a roughly orthogonal PPC
pathway. To quantify this observation, we fit 2 straight lines to
the points on the MDS plot. One line was fit to the OTC regions
V1, V2, V3, V4, LOT, and VOT, and the other to the PPC regions
V3A, V3B, IPS0-4, inferior IPS, and superior IPS (the light and
dark gray lines in the left panel of Fig. 3C, left, respectively).
These lines explained 95% of the variance of the positions of the

Figure 3. Results of Experiment 1. (A) fMRI decoding accuracies for the original and controlled stimuli. The left vertical dashed line separates OTC ROIs from PPC ROIs

and the right vertical dashed line separates functionally defined PPC ROIs from topographically defined PPC ROIs. Error bars indicate standard errors of the means.

Chance level performance equals 0.5. Asterisks show corrected p values (***P < 0.001, **P < 0.01, *P < 0.05, †P < 0.1). (B) The region-wise similarity matrix for the original

(left panel) and controlled (right panel) images. Each cell of the matrix depicts the correlation of 2 ROIs in how similar their representations for the 8 natural catego-

ries are. Lighter colors show higher correlations. (C) Results of the MDS analysis on the region-wise similarity matrices for the original (left panel) and controlled (right

panel) images. The emergence of a 2-pathway structure is prominent in both images. A total least square regression line through the OTC regions (the light gray line)

and another through the PPC regions (the dark gray line) were able to account for 79% and 61% of the total amount of variance of the region-wise differences in visual

object representation for the original and the controlled object images, respectively. No systematic difference was observed whether original or controlled object

images were used.
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regions on the 2D MDS plot and 79% of the variance of the full
region-wise correlation matrix. Thus, with a bottom-up data-driven
approach, we unveiled an information-driven 2-pathway represen-
tation of visual object information in posterior brain regions despite
the existence of robust visual object representations in both OTC
and PPC.

We also examined the contribution of the dorsal and ventral
parts of V1–V3 separately and found that the 2 parts for each of
these 3 visual areas are located right next to each other on the
OTC axis in the MDS plots (see Supplemental Fig. S3).

The Contribution of Tolerance to Low-Level Feature
Changes

Is the presence of the 2-pathway distinction caused by OTC
containing progressively higher-level visual object representa-
tions from posterior to anterior regions whereas PPC containing
relatively lower-level sensory information? When we equalized
the overall luminance, contrast, average spatial frequency, and
orientation of the images from the 8 object categories in the
controlled condition of Experiment 1 (Willenbockel et al. 2010,
see Fig. 1B controlled image), we again observed significant cat-
egory decoding in all the regions examined (see Light bars in
Fig. 3A, ts > 3.75, Ps < 0.05, corrected). The decoding accuracy
was marginally higher for the original than controlled images
in V1, V2, V3a, and LOT (ts > 3.3, Ps < 0.08, corrected) but
showed no difference for the other regions examined (ts < 2.6,
Ps > 0.1, corrected). Critically, the region-wise similarity matrix
and MDS plot remained qualitatively similar for the controlled
images (Fig. 3C,D, right panels). The region-wise similarity
matrix had the split half reliability of 0.6 (bootstrapped null dis-
tribution 95% CI [−0.30,0.32]), the 2 dimensions in the MDS plot
for these controlled images explained 70% of the overall vari-
ance. The 2 fitted lines in the MDS plot explained 95% of the
variance in the 2-dimensions and 61% of the full region-wise
correlation matrix. Moreover, the region-wise similarity matri-
ces for the original and controlled images were highly corre-
lated (r = 0.84, bootstrapped null distribution 95% CI [−0.28,
0.33]). The 2-pathway structure was thus present regardless of
whether or not low-level image differences between the catego-
ries were equated.

To further compare the sensitivity of higher OTC and PPC
regions to changes in low-level features, in Experiments 2 and
3 we examined whether visual representations in these regions
differ in their tolerance to changes in position and size of the
stimuli, respectively. While previous human fMRI adaptation
studies have found comparable tolerance to size and viewpoint
changes between these regions using relatively simple stimuli
(Sawamura et al. 2005; Konen and Kastner 2008), whether fMRI
decoding could reveal a similar effect has not been tested.
Moreover, conflicting results exist regarding position and size
tolerance in parietal visual representations in monkey neuro-
physiology studies (Sereno and Maunsell 1998; Janssen et al.
2008), leaving open the possibility that difference in position
tolerance may account for a representational difference between
higher OTC and PPC regions. To examine tolerance to changes in
position, in Experiment 2, we presented images either above or
below fixation and trained our classifier to discriminate object
categories presented at one position and tested it on the catego-
ries shown at either the same or a different position. With the
exception of V1, V2, and IPS 4 which showed only within-
position object category decoding (ts > 4.6, Ps < 0.01, corrected)
but no cross-position object category decoding, (ts < 2.1, Ps > 0.1,
corrected), all other ROIs showed both within- and cross-position

object category decoding (ts > 2.7, Ps < 0.05, corrected, see
Fig. 4A). All examined regions also showed higher within- than
cross-position decoding (ts > 3.73, Ps < 0.01, corrected, see
Fig. 4A). To compare the amount of position tolerance in early
visual and higher occipitotemporal and posterior parietal regions,
we focused on 3 representative regions V1, VOT, and superior
IPS. Our goal here was not to compare each region with every
other region, but to show whether similar tolerance for position
change existed between higher OTC and PPC regions. Given the
hierarchical arrangement of PPC regions, we selected superior
IPS as it was a higher PPC region than inferior IPS. Our quick
visual inspection indicated that VOT showed more tolerance
than LOT. Thus, to make a fair comparison between higher
regions in PPC and VTC, VOT instead of LOT was chosen. The
amount of decoding drop was larger in V1 than in either VOT or
superior IPS (ts > 6.3, Ps < 0.001, corrected). Critically, there was
no difference between VOT and superior IPS (t[6] = 1.32, P = 0.96,
corrected). Higher-level occipitotemporal and posterior parietal
regions thus showed comparable amounts of tolerance to
changes in position, with both being greater than that in early
visual area V1.

Similar results were found for size tolerance in Experiment
3 (Fig. 4B). With the exception of V1 which showed only within-
size (t[6] = 6.87, P < 0.001, corrected) but no cross-size object
category decoding (t[6] = 0.17, P = 0.87, corrected), both types of
decoding was significant in all the other regions examined (ts >
2.57, Ps < 0.05, corrected). All regions also showed higher
within- than cross-size decoding (ts > 2.7, Ps < 0.05, corrected).
Among the 3 representative regions, the amount of decoding
drop was similar for superior IPS and VOT (t[6] = 0.06, P = 0.96,
corrected), with both being smaller than that for V1 (ts > 5.47,
Ps < 0.01, corrected). Object representations in both higher occi-
pitotemporal and posterior parietal regions thus showed simi-
lar tolerance to changes in position and size, indicative of the
existence of more abstract object representations as opposed to
low-level visual representations in these regions.

MDS analyses of the region-wise similarity matrix from these 2
experiments again revealed the existence of a 2-pathway struc-
ture, with the MDS plots remaining qualitatively similar to those
observed in Experiment 1 regardless of whether the cross-posi-
tion/size or the within-position/size classification matrices were
used to calculate region-wise similarities (Fig. 4C,D). The split-half
reliability of the within and cross classification matrices were 0.67
and 0.61 for the position and 0.67 and 0.65 for the size experi-
ments (bootstrapped null distribution 95% CI upper bound of 0.33
across all the conditions). The correlations of the region-wise simi-
larity matrices between the within- and cross-classifications were
high and at 0.78 and 0.85 (bootstrapped null distribution 95% CI of
[−0.25, 0.34] and [−0.23, 0.27]) for the size and position experi-
ments, respectively. The 2 dimensions of the MDS explained (for
within-/cross-classification) 80/73% and 67/84% of the variance of
the full correlation matrix in the position and size experiments,
respectively. The 2 lines explained 96/94% and 92/97% of the vari-
ance of the 2D MDS and 77/69% and 64/81% of the variance of
the full correlation matrix for the position and size experiments,
respectively. These results not only reaffirmed the existence of
the 2-pathway structure observed in Experiment 1 but also indi-
cated that the 2-pathway structure remains stable across varia-
tions in the position and size of objects.

The Contribution of Special Natural Object Categories

Higher OTC regions contain areas with selectivity for special
natural object categories and features such as faces, body parts,
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Figure 4. Results of Experiments 2 and 3. (A) Comparing within- and cross-position object category decoding in Experiment 2. The dark grey bars show category

decoding performance when the classifier was trained and tested on object categories shown at the same position and the light grey bars show category decoding

performance when the classifier was trained at one position and tested at the other position. (B) Comparing within- and cross-size object category decoding in

Experiment 3. The dark and light grey bars show category decoding performance for within- and cross-size category decoding, respectively. The left vertical dashed

line separates OTC regions from PPC regions and the right vertical dashed lines separate PPC functionally defined regions from PPC topographically defined regions.

Error bars indicate standard errors of the means. The horizontal dashed line represents chance level performance at 0.5. Asterisks show corrected P values (***P <

0.001, **P < 0.01, *P < 0.05, †P < 0.1). (C) MDS plots of the region-wise similarity matrices for Experiment 2 for within-position (left panel) and cross-position (right panel)

decoding. The 2-pathway structure (i.e., the light and dark gray total least square regression lines through the OTC and PPC regions, respectively) accounted for 77%

and 69% of the total amount of variance in region-wise differences in visual object representation for the 2 types of decoding, respectively. (D) MDS plots of the

region-wise similarity matrices for Experiment 3 for within-size (left panel) and cross-size (right panel) decoding. The 2-pathway structure accounted for 64% and

81% of the total amount of variance in region-wise differences in visual object representation for the 2 types of decoding, respectively. Overall, the 2-pathway struc-

ture remains stable across variations in the position and size of objects.
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scenes, animacy, and size (Kanwisher et al. 1997; Epstein and
Kanwisher 1998; Chao et al. 1999; Downing et al. 2001;
Kriegeskorte et al. 2008; Martin and Weisberg 2003; Konkle and
Oliva 2012; Konkle and Caramazza 2013). Perhaps, the emer-
gence of this progressively rich natural object landscape along
OTC shaped the representational structure of the OTC pathway,
making it distinct from that of the PPC pathway. To examine
this possibility, in Experiment 4, participants viewed in the same
test session 9 novel shape categories adopted from Op de Beeck
et al. (2008, see Fig. 5A) as well as the 8 natural object categories
used earlier. There was an overall significant decoding for both
categories in all the regions examined (ts > 4.57, Ps < 0.01, cor-
rected). Except for IPS1–4 where no difference was found (ts <
2.22, Ps > 0.09, corrected), decoding was lower for the artificial
than the natural categories in all the other regions examined (ts
> 3.26, Ps < 0.05, corrected), likely reflecting a greater similarity
among the artificial than the natural categories (Fig. 5B).

Despite this difference in decoding, the 2-pathway structure
was present in the representational structures of both types of
categories (Fig. 5C). The region-wise correlation matrices for the
artificial and natural categories had a split half reliability of
0.54 (bootstrapped null distribution 95% CI [−0.22,0.24]) and 0.66
(bootstrapped null distribution 95% CI [−0.25,0.26]) across partici-
pants, respectively, and were highly correlated (r = 0.81, boot-
strapped null distribution 95% CI [−0.21, 0.26]). The 2 dimensions

in the MDS plots explained 79% and 71% of the total variance,
the 2 fitted straight lines (Fig. 5C) explained 84% and 89% of the
variance of the 2D space, and 64% and 64% of the variance of the
full correlation matrix for the artificial and natural stimuli,
respectively. Thus, the emergence of the 2-pathway structure in
the representational space was not a result of the special natural
object categories used.

The presence of the 2-pathway structure indicates that object
representations differ between PPC and OTC. Affirming this find-
ing, in MDS plots depicting the representational structure of the
8 natural object categories and the 9 artificial object categories in
the 3 representative brain regions (i.e., V1, VOT, and superior IPS,
see Fig. 6), the distribution of the categories appeared to differ
among these 3 brain regions. Given that we did not systemati-
cally manipulate feature similarity among the different catego-
ries used, it is difficult to draw firm conclusions regarding the
exact neural representation schemes used in each region. Future
studies are needed to decipher the precise neural representa-
tional differences among PPC, VTC and early visual regions.

The Contribution of Task-Relevant Visual
Representation

PPC has long been associated with attention-related processing
(Corbetta and Shulman 2011; Ptak 2012; Shomstein and Gottlieb

Figure 5. Comparing natural and artificial object category representations in Experiment 4. (A) Sample images from the 9 artificial object categories. (B) fMRI decoding

accuracies for the natural and artificial object categories. The left vertical dashed line separates OTC regions from PPC regions and the right vertical dashed line sepa-

rates PPC functionally defined regions from PPC topographically defined regions. Error bars indicate standard errors of the means. Chance level performance equals

0.5. Asterisks show corrected P values (***P < 0.001, **P < 0.01, *P < 0.05, †P < 0.1). (C) MDS plots of the region-wise similarity matrices for the artificial (left panel) and

natural (right panel) object categories. The 2-pathway structure (i.e., the light and dark gray total least square regression lines through the OTC and PPC regions,

respectively) accounted for 64% and 64% of the total amount of variance in region-wise differences in visual object representation for the natural and artificial object

categories, respectively, with no systematic difference between the 2. The presence of the 2-pathway structure thus is not driven by the specific natural object catego-

ries used.
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2016) and shows greater representations of task and task-
relevant visual features than OTC (Xu and Jeong 2015; Bracci
et al. 2017; Jeong and Xu 2017; Vaziri-Pashkam and Xu 2017).
Could this difference contribute to the presence of the PPC
pathway in the representational space? In a previous study
(Vaziri-Pashkam and Xu 2017), with the same 8 categories of
natural objects, we presented colors along with object shapes
and manipulated in 3 experiments how color and shape were
integrated, from partially overlapping, to overlapping but on
separate objects, to being fully integrated (Fig. 7). We found
that object category representation was stronger when object
shape than color was task relevant, with this task effect being
greater in PPC than OTC but decreasing as task relevant and
irrelevant features became more integrated due to object-based
encoding. Here, we compared the brain region-wise similarity
matrices for the 2 tasks in these 3 experiments (referred to here
as Experiments 5–7), which were not examined in our previous
study. Regardless of the amount of task modulation in PPC, both
the region-wise similarity matrix and the 2-pathway separation
were stable across tasks in all 3 experiments. Specifically, the
correlations of the region-wise similarity matrices between the
shape and the color tasks were 0.79, 0.86, 0.74 (bootstrapped null
distribution 95% CI [−0.24,0.29], [−0.20,0.24], [−0.23, 0.28]) for
Experiments 5–7, respectively, indicating highly similar represen-
tational structures across the 2 tasks (the split-half reliability of
the similarity matrices were (shape/color task): 0.68/0.71, 0.53/
0.73, 0.69/0.68 for Experiments 5–7, respectively, with bootstrap-
ping null distribution 95% max CI upper bound being 0.27/0.3).
MDS and the 2-line regression analyses showed very similar
structure for the 2 tasks across the 3 experiments (Fig. 7). In
Experiment 5, the 2 dimensions in the MDS plots explained 65%
and 62% of the total variance of the region-wise similarity matrix
in the shape and the color tasks, respectively. These values were
66% and 78% in Experiment 6, and 68% and 68% in Experiment 7.

The 2 fitted lines (Fig. 7) explained 94% and 93% of the variance in
the 2D MDS space for the shape and the color tasks in Experiment
5. These values were 97% and 84% in Experiment 6, and 92% and
92% in Experiment 7. The 2 fitted lines explained 63% and 58% of
the total variance of the region-wise similarity matrix in the shape
and the color tasks in Experiment 5. These values were 65% and
63% in Experiment 6, and 61% and 63% in Experiment 7. Overall no
systematic variations were observed across experiments and tasks.
These results indicate that even-though object category represen-
tations are degraded when attention is diverted away from the
object shape (Vaziri-Pashkam and Xu 2017), the representational
structure within each brain region remains stable across tasks.

Line Fitting in Higher-Dimensional Space

Our main analyses in this series of experiments involved plot-
ting the first 2 dimensions of the region-wise similarity matrix
using MDS and then performing line fitting. Plotting the 2D
MDS space was convenient for visualization but might not have
been the best approach as line fitting in higher-dimensional
space could potentially capture more representational variance
among brain regions. To test this possibility, in addition to line
fitting in 2D MDS, we also performed line fitting in higher-
dimensional space with the maximal number of dimensions
included captured close to 100% of the total variance in the
region-wise similarity matrix. As shown in Supplemental
Figure S4, despite the increase in the amount of total variance
explained by adding more dimensions to MDS, the amount of
variance explained by the 2 lines did not steadily increase. On
the contrary, line fitting in 2D explained about the same or
greater amount of variance than line fitting in higher-
dimensional space. This suggests that the best-fit lines likely
intersected even in higher-dimension, and since 2 intersecting
lines defined a 2D space, our 2D MDS analysis was sufficient to

Figure 6. MDS plots depicting the representational structure of the 8 natural object categories and the 9 artificial object categories used in Experiment 4 in the 3 repre-

sentative brain regions, V1, VOT, and superior IPS. Consistent with the region-wise MDS plots shown in Figure 5, the representation structures for these object catego-

ries differ among these 3 brain regions.
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capture this surface. Adding additional dimensions was thus
unnecessary. These results affirm our main conclusion that a
2-pathway structure exists in the region-wise representational
similarity space.

Discussion
Recent studies have reported the existence of rich nonspatial
visual object representations in PPC, similar to those found in

OTC. Focusing on PPC regions along the IPS that have previ-
ously been shown to exhibit robust visual encoding, here we
showed that even though robust object category representa-
tions exist in both OTC and PPC regions, using a bottom-up
data-driven approach, there is still a large separation among
these regions in the representational space, with occipitotem-
poral regions lining up hierarchically along an OTC pathway
and posterior parietal regions lining up hierarchically along an
orthogonal PPC pathway. This information-driven 2-pathway

Figure 7. Results of the MDS analysis on the region-wise similarity matrices for the shape (left panels) and color (right panels) tasks in Experiments 5–7. The top, mid-

dle and bottom rows show the 3 color and shape manipulations, respectively, with color appearing on the object and background, on dots overlaying the objects, and

on the objects. The 2-pathway structure (i.e., the light and dark gray total least square regression lines through the OTC and PPC regions, respectively) accounted for

63% and 58%, respectively, of the amount of variance in the region-wise differences in visual object representation in the shape and color tasks in Experiment 5.

These values were 65% and 63% in Experiment 6, and 61% and 63% in Experiment 7. No systematic difference was observed across these 3 experiments and the 2

tasks. The 2-pathway structure thus remains stable across variations in the 2 tasks used here.
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representational structure was independently replicated 10
times in the present study (Figs 3C, 4C,D, 5C, 7), accounting for
58–81% of the total variance of region-wise differences in visual
representation. The presence of the 2 pathways was not driven by
a difference in tolerance to changes in features such as position
and size between higher OTC and PPC regions. The 2-pathway dis-
tinction was present for both natural and artificial object categories,
and was resilient to variations in task and attention.

The presence of the 2 pathways in our results was unlikely to
have been driven by fMRI noise correlation between adjacent
brain regions. This is because areas V4 and V3A that are corti-
cally apart appear adjacent to each other in the representational
space (Fig. 3C, left panel), reflecting a shared representation likely
enabled by the recent rediscovery of the vertical occipital fascicu-
lus that directly connects these 2 regions (Yeatman et al. 2014;
Takemura et al. 2016). Neither could the 2-pathway distinction
be driven by higher category decoding accuracy in OTC than PPC
(Fig. 3A), as this difference would have been normalized during
the calculation of the correlations of the category representation
similarity matrices between brain regions. Moreover, even
though the overall decoding was lower and more similar among
the brain regions for the artificial object categories used, we still
observed a similar 2-pathway separation.

These results showed that whereas regions extending fur-
ther into OTC follow more or less a continuous visual informa-
tion representation trajectory from early visual areas, there is a
change in information representation along PPC regions, with
the most posterior parietal regions located away from both the
early visual and the ventral OTC regions in the region-wise
MDS plot. Thus, despite the presence of object representation
throughout posterior regions, the representations formed in
higher PPC regions are distinct from those in both early visual
and higher OTC regions.

Although OTC visual representations become progressively
more tolerant to changes in low-level visual features going from
posterior to anterior regions, a similar amount of tolerance to
position and size changes was seen in both higher OTC and PPC
regions (see also comparable tolerance to size and viewpoint
changes in an fMRI adaptation study from Konen and Kastner,
2008). This indicates that the distinction between the 2 pathways
observed here was not due to OTC representations becoming
progressively more abstract than that of PPC or representations
in PPC being more position bound than that of OTC.

There is an increasingly rich natural object category-based
representation going from posterior to anterior OTC, with higher
occipitotemporal regions showing selectivity for special natural
object categories and features such as faces, body parts, scenes,
animacy, and size (Chao et al. 1999; Downing et al. 2001; Epstein
and Kanwisher 1998; Kanwisher et al. 1997; Konkle and Oliva
2012; Konkle and Caramazza 2013; Kriegeskorte et al. 2008;
Martin and Weisberg 2003). Nonetheless, this does not seem to
have contributed to the results observed here, as the 2-pathway
distinction was preserved even when artificial object categories
were used. Thus, the 2-pathway distinction likely reflects a more
fundamental difference in the neural coding schemes used by
OTC and PPC, rather than preferences for special natural object
categories or features in OTC.

Although attention and task-relevant visual information
processing have been strongly associated with PPC (Toth and
Assad 2002; Stoet and Snyder 2004; Gottlieb 2007; Xu and Jeong
2015; Bracci et al. 2017; Jeong and Xu 2017; Vaziri-Pashkam and
Xu 2017), our task manipulation revealed that the 2-pathway
distinction is unchanged whether or not object shape was
attended and task relevant. It is unlikely that our task

manipulation was ineffective as task effects were readily pres-
ent in the overall object category decoding accuracy and a
number of other measures (Vaziri-Pashkam and Xu 2017). The
present set of studies addressed an orthogonal question regard-
ing the nature of representation and whether or not objects are
represented similarly in the 2 sets of brain regions. This is inde-
pendent of whether or not representations are modulated by
task to a similar or different extent in these regions. Thus, in
addition to PPC’s involvement in attention and task-relevant
visual information processing, the 2-pathway distinction sug-
gests that visual information is likely coded fundamentally dif-
ferently in PPC compared with that in OTC. That said, it would
be interesting for future studies to include tasks beyond visual
processing, such as action planning or semantic judgment, and
test whether the 2-pathway structure is still present in those
tasks. Given the necessity of visual processing preceding those
tasks, the 2-pathway structure would likely be present when-
ever the processing of visual information is required no matter
what the final goal/task may be. Further studies are needed to
verify this prediction.

Zachariou et al. (2016) recently reported that a position sen-
sitive region in parietal cortex could contribute to the configural
processing of facial features. However, face configural proces-
sing has also been reported in OTC (Liu et al. 2010; Zhang et al.
2015) and strong functional connectivity between OTC and PPC
was present in Zachariou et al. (2016). It is thus unlikely that
the 2-pathway distinction in the representational space
observed here is driven by the presence of configural proces-
sing in PPC but not OTC.

It has been argued that PPC processes visual input for action
preparation (Goodale and Milner 1992). Representations for
grasping actions and graspable objects, however, have typically
activated a region in anterior intraparietal (AIP) sulcus (Sakata
and Taira 1994; Binkofski et al. 1998; Chao and Martin 2000;
Culham et al. 2003; Martin and Weisberg 2003; Janssen and
Scherberger 2015), more anterior to the parietal regions exam-
ined here. Nevertheless, posterior IPS regions were thought to
provide input to AIP and mediate action planning between
early visual areas and AIP (Culham and Valyear 2006). Thus, it
could be argued that object features relevant for grasping or
action planning would be preferentially represented in PPC,
making representations differ between PPC and OTC. Along
this line, Fabbri et al. (2016) reported a mixed representation of
visual and motor properties of objects in PPC during grasping,
and Bracci and Op de Beeck (2016) suggested that PPC and OTC
differ in processing object action properties. However, our
experiment never required the planning of category-specific
action and the one-back task performed required identical
action planning across all the categories. Moreover, similar
results were observed for the artificial shape categories with no
prior stored action representation. In addition, the action-
biased PPC region reported by Bracci and Op de Beeck (2016)
was largely located in superior parietal lobule, likely corre-
sponding to the parietal reach region, and more medial than
the IPS visual regions examined here. Thus, a strictly action-
based account could not explain the 2-pathway separation
observed here.

Together with other recent findings, the presence of rich
nonspatial visual representation found in both OTC and PPC
argues against the original ventral-what and dorsal-where/how
2-pathway characterization of posterior brain regions (Mishkin
et al. 1983; Goodale and Milner 1992). Here using a bottom-up
information-driven approach, even for processing action-
independent nonspatial object information, we found a large
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separation between OTC and PPC regions. It is important to
keep in mind that regions on the 2 pathways described here
reflect the representational content of these regions, rather
than their anatomical locations on the cortex. Given the
numerous feedforward and feedback connections among brain
regions, anatomical locations may not accurately capture the
representational similarities of the different brain regions.

While the present results do not reveal the precise neural
coding schemes used in OTC and PPC that would account for
the representation difference in these regions, they neverthe-
less unveil the presence of the 2 pathways using an entirely
data-driven approach and rule out factors that do not contrib-
ute to the representation difference. These results lay impor-
tant foundations for future work that will continue the quest. A
recent development in neurophysiology studies have revealed
that while OTC neurons use a fixed-selectivity coding, prefron-
tal and PPC neurons can use a mixed-selectivity coding (Rigotti
et al. 2013; Parthasarathy et al. 2017; Zhang et al. 2017). The dif-
ference between fixed versus mixed-selectivity coding could
possibly contribute to the difference in neural coding schemes
in OTC and PPC. Alternatively, PPC neurons could be selective
for a different set of features compared with those in OTC.
Further work is needed to thoroughly investigate these
possibilities.

In summary, with a bottom-up information-driven approach,
the present results demonstrate that visual representations in
PPC are not mere copies of those in OTC and that visual infor-
mation is processed in 2 separate hierarchical pathways in the
human brain, reflecting different representational spaces for
visual information in PPC and OTC. Although more research is
needed to fully understand the precise neural coding schemes of
these 2 pathways, the separation of visual processing into these
2 pathways will serve as a useful framework to further our
understanding of visual information representation in posterior
brain regions.
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Supplementary material is available at Cerebral Cortex online.
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