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Abstract
Human brain anatomical and resting-state functional connectivity have been comprehensively portrayed using MRI, which are
termed anatomical and functional connectomes. A systematic examination of tasks modulated whole brain functional
connectivity, which we term as task connectome, is still lacking. We analyzed 6 block-designed and 1 event-related designed
functional MRI data, and examined whole-brain task modulated connectivity in various task domains, including emotion,
reward, language, relation, social cognition, working memory, and inhibition. By using psychophysiological interaction between
pairs of regions from the whole brain, we identified statistically significant task modulated connectivity in 4 tasks between their
experimental and respective control conditions. Taskmodulated connectivity was found not only between regions that were
activated during the task but also regions that were not activated or deactivated, suggesting a broader involvement of brain
regions in a task than indicated by simple regional activations. Decreased functional connectivity was observed in all the 4 tasks
and sometimes reduced connectivity was even between regions that were both activated during the task. This suggests that brain
regions that are activated together do not necessarily work together. The current study demonstrates the comprehensive task
connectomes of 4 tasks, and suggested complex relationships between regional activations and connectivity changes.
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Introduction
The concept of the human connectome has been proposed as the
comprehensively mapping of structural connections among neu-
rons or brain regions at different scales (Sporns et al. 2005). The
human connectome on themacroscale refers to whitematter con-
nection matrices among brain regions (Hagmann et al. 2008). The
functional connectome, on the other hand has typically based on
resting-state functional MRI (fMRI) (Biswal et al. 1995) to examine
functional connectivity matrices among brain regions (Biswal
et al. 2010). Both approaches have significantly advanced our
understandings of brain organizations (Salvador et al. 2005; van
den Heuvel and Sporns 2011; Yeo et al. 2011). Recently, there is
an increasing awareness on the importance of the dynamics of
functional connectivity (Hutchison et al. 2013), which may be an
important component toward an understanding of brain functions

in different cognitive and affective processes (Bullmore and
Sporns 2012; Park and Friston 2013). Even though the dynamics of
functional connectivity can be observed in resting-state, different
task demands may be critical factors that modulate the fluctua-
tions of functional connectivity. Therefore, examining compre-
hensive matrices of task modulated functional connectivity in
different task contexts may provide critical information on brain
functional integration. Using the terminology of connectome, we
have termed such comprehensive mapping as “task connectome”
(Di et al. 2017).

Several methods have been developed to study taskmodulated
functional connectivity on fMRI data, most importantly psycho-
physiological interaction (PPI) (Friston et al. 1997) and beta series
correlations (BSC) (Rissman et al. 2004). Earlier implementation of
these methods typically adopted a seed-based approach with
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predefined regions of interest (ROIs), which limits a study to only
focus on specific regions and tasks. Recently, several meta-
analyses have been performed to pool studies with different seed
regions and task domains to examine how different tasks may
modulate connectivity between different brain systems (Smith
et al. 2016; Di et al. 2017). Alternatively, studies could adopt a ROI-
based approach to study pair-wise connectivity among ROIs
(Fornito et al. 2011, 2012; Gerchen et al. 2014; Di et al. 2017). This
approach can avoid a priori hypothesis on the involvement of cer-
tain brain regions, but most of the studies so far have focused on
one or 2 specific tasks. Until recently, researchers have started to
examine whole brain task connectivity in different task conditions
either using a continuous task design (Krienen et al. 2014) or
concatenated task conditions from block-designed tasks (Cole
et al. 2014). An important finding from this line of studies is that
whole brain connectivity patterns during different task conditions
are very similar to what have been observed in resting-state (Cole
et al. 2014; Krienen et al. 2014). Though, these prior studies did not
contrast between well-controlled experimental conditions, and
therefore not possible to infer involvements of specific connec-
tions in certain cognitive or affective processes.

In the current study, we sought to portray the task modulated
connectivity matrices across ROIs that sampled the whole brain
during different task domains. To achieve this, we leveraged
large-scale open-access fMRI datasets of the Human Connectome
Project (HCP) (Barch et al. 2013) and UCLA Consortium for
Neuropsychiatric Phenomics LA5c Study (Poldrack et al. 2016).
For each of the 7 tasks analyzed, there are an experimental and
a corresponding control condition, which enabled us to examine
task modulated connectivity between 2 well-controlled condi-
tions. We applied whole brain PPI analysis (Di et al. 2017) to
obtain task modulated connectivity matrices across ROIs for
each task. This enabled us to examine the relationships between
task modulated connectivity and their regional activation levels.
One straightforward prediction is that increased connectivity in
a task will usually take place between regions that are (co)acti-
vated during the task. Alternatively, it is possible that there are
broader involvements of brain regions that communicate with
each other at different levels, even though they do not show
altered regional activations. This predicts that there might be
regions that are not activated during a task that will show task
modulated connectivity with other brain regions.

Materials and Methods
Experimental Design

The current analysis included fMRI data from 7 separate tasks,
which were designed in either blocked or event-related fashion.

For each task, there was 1 experimental condition, 1 correspond-
ing control condition, and a baseline condition. We are interested
in the differences between the experimental and corresponding
control conditions, both in terms of local activations and connec-
tivity. The 6 of the 7 tasks were derived from the HCP project
(Barch et al. 2013), including the emotion processing, gambling,
language, relation processing, social cognition, and working mem-
ory tasks, all of which were blocked designed. These tasks were
designed to activate different parts of the brain, and therefore
were ideal for the purpose of the current study tomap task modu-
lated connectivity in different brain systems. The motor task was
not included, because it contrasts finger movement versus toe
movement, which is not expected to modulate whole brain level
connectivity. The experimental and control conditions of the 6
tasks are outlined in Table 1. For the language task, the stimuli of
language understanding and arithmetic problems were both deliv-
ered auditorily. While for all the other tasks, the stimuli were
delivered visually. All the tasks required some sorts of responses
from the subjects. For the emotion, gambling, and relational tasks,
the subjects were required to make response for each trial in both
the experimental and control conditions. The subjects were only
required to response to the target trials (either 2-back or 0-back) in
the working memory task. And for the language and social cogni-
tion task, the subjects have to only respond to a simple question
at the end of each block for both conditions. More information
about the task designs can be found in (Barch et al. 2013).

An event-related designed stop signal task from the UCLA
Consortium for Neuropsychiatric Phenomics LA5c Study (Poldrack
et al. 2016) was also used for this study. We included this dataset
to add an event-related designed task, which is complementary to
the HCP data. During the task, the subjects were asked to indicate
the direction of an arrow (left or right) presented in the screen. For
one-fourth of the trials, there was a 500Hz tone, that is, the stop
signal, being presented shortly after the arrow, where the subjects
have to withdraw their motor response. There were 128 trials in
total, with 96 Go trials and 32 Stop trials. The trials were designed
in a fast event-related fashion, with mean intertrial interval of
2.5 s (range from 2 to 5.5 s). More information about the task
designs can be found in (Poldrack et al. 2016).

Subjects and MRI Acquisition Parameters

Data From HCP
We analyzed a sample of 100 unrelated subjects (54 females) from
HCP dataset. Overall, 17 subjects fell within the age range between
22 and 25 years, 40 subjects fell between 26 and 30 years, 42 sub-
jects fell between 31 and 35 years, and one subject was older than
36 years. All the subjects were scanned for the 6 tasks. After elimi-
nating subjects with large head motions during each task, there

Table 1 Summary of task conditions in the 7 tasks included in the current study. The first 6 tasks were derived from Human Connectome
Project (HCP), while the last stop signal task was derived from UCLA Consortium for Neuropsychiatric Phenomics LA5c Study. Please note
that the repetition time (RT) is 720ms for the HCP data, and 2000ms for the UCLA data

Task n # of
images

Design Experimental condition Total
length

Control condition Total
length

Stimuli modality

Emotion 94 176 × 2 Blocked Emotional face judgment 108 s Shape judgment 108 s Visual
Gambling 94 253 × 2 Blocked Mostly reward 112 s Mostly loss 112 s Visual
Language 97 316 × 2 Blocked Language understanding 206 s Arithmetic task 236 s Auditory
Relational 94 232 × 2 Blocked Relational judgment 96 s Matching judgment 96 s Visual
Social cognition 93 274 × 2 Blocked Social interaction 115 s Random movement 115 s Visual
Working memory 94 405 × 2 Blocked 2 back 220 s 0 back 220 s Visual
Stop signal 114 184 Event-related Stop trial 32 trials Go trial 96 trials Visual/Auditory
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were 93–97 subjects remaining for different tasks (Table 1). We cal-
culated framewise displacement for translation and rotation sepa-
rately (Di and Biswal 2015), and large head motion for a task was
defined as maximum framewise displacement greater than 2mm
or 2° in either the translation or rotation direction or in either of
the 2 runs of each task. The MRI data were scanned using
Siemen’s standard 32-channel head coil. Each task was scanned
for 2 fMRI runs, with variable lengths for different tasks. For each
task, one run was acquired with right-to-left phase encoding, and
the other run with left-to-right phase encoding. The scanning
parameters for the fMRI were: repetition time (TR) = 720ms; echo
time (TE) = 33.1ms; flip angle (FA) = 52°; field of view (FOV) = 208 ×
180mm2; slice number = 72; voxel size = 2.0mm isotropic; multi-
band factor = 8. The scanning parameters for the T1 weighted MRI
were: TR = 2400ms; TE = 2.14ms; FA = 8°; FOV = 224 × 224; voxel
size = 0.7 isotropic.

Data From UCLA Consortium for Neuropsychiatric Phenomics
LA5c Study
The stop signal task dataset was obtained from the OpenfMRI
database, with accession number ds000030. After removing sub-
jects with missing files and large head motions (see above), fMRI
data from a total of 114 healthy subjects were included (52
females). The mean age of the subjects was 31.1 years (range from
21 to 50 years). The MRI data were scanned using 1 of 2 Siemens
scanners with 32-channel head coils. The task was scanned in a
single run. The fMRI data were collected using a T2*-weighted
echoplanar imaging (EPI) sequence with the following parameters:
TR = 2000ms, TE = 30ms, FA = 90°, matrix 64 × 64, FOV = 192mm;
slice thickness = 4mm, slice number = 34. 184 fMRI images were
acquired for each subject. The parameters for the T1 weighted
structural image were the following: TR = 1900ms, TE = 2.26ms,
FOV = 250mm,matrix = 256 × 256, sagittal plane, slice thickness =
1mm, slice number = 176.

FMRI Data Preprocessing

For the HCP data, we adopted the minimally preprocessed data
(Glasser et al. 2013) for our analysis. The data have gone through
spatial artifact/distortion correction, cross-modal registration, and
spatial normalization to MNI (Montreal Neurological Institute)
space. Therefore, we did not perform further preprocessing on the
HCP data. We note that the preprocessed data were not spatially
smoothed, which was not a necessary step in this study because
the primary analyses were ROI-based.

The fMRI data preprocessing for the UCLA data were per-
formed using SPM 12 (v6685; http://www.fil.ion.ucl.ac.uk/spm/) in
MATLAB 8.2 environment (https://www.mathworks.com/). The T1
weighted anatomical image for each subject was firstly segmented
into gray matter, white matter, cerebrospinal fluid, and other tis-
sues with reference to tissue probabilistic maps in MNI space, and
the deformation field maps were obtained. The first 2 fMRI images
of each subject were discarded. The remaining 182 images were
realigned to adjust head motion, and coregistered to the ana-
tomical image. Then the deformation field maps were used to
normalize all the functional images into MNI space. During the
normalization the images were resampled with a voxel resolu-
tion of 3 × 3 × 3mm3, and spatially smoothed by using a Gaussian
kernel of 8mm full width at half maximum.

Regions of Interest

The choice of ROIs needs to consider the tradeoff between
spatial coverage, spatial resolution, and the problem of multiple

comparisons. We chose the Dosenbach’s 160 ROIs, which are
functionally representative to sample the whole brain (Dosenbach
et al. 2010). The 160 ROIs were assigned into 6 functional modules:
(1) cerebellar, (2) cingulo-opercular, (3) default mode, (4) frontopar-
ietal, (5) occipital, and (6) sensorimotor modules. Because this ROI
system does not include critical subcortical structures that are
involved in emotional processing, we additionally included 4 ROIs
of the bilateral amygdala and parahippocampus in our analysis
(Di et al. 2013). As a result, 164 ROIs were used in the whole brain
analysis. The ROIs were defined as spheres, with a radius of 8mm.

Task Activation Analysis and Time Series Extraction

All fMRI data analyses were also performed using SPM 12 (v6685)
in MATLAB 8.2 environment. We first performed voxel-wise gen-
eral linear model (GLM) analysis to examine task activations and
extract ROI time series for each task. For all the HCP tasks except-
ing the language task, there were 2 regressors representing the
experimental and control conditions in the GLM, leaving the fixa-
tion condition as an implicit baseline. For the language task, how-
ever, there is no implicit baseline. We therefore only modeled the
language condition as a regressor in the GLM. The task regressors
were calculated by convolving a box-car function of the task
design with the canonical hemodynamic response function (HRF)
in SPM. After model estimation, a contrast was defined for each
task to obtain task related activations for the experimental condi-
tion compared with the respective control condition. For the lan-
guage task, a simple contrast of 1 for the language regressor was
used. For each task and each of the 164 ROIs, the first eigenvariate
was extracted for each task run using SPM’s volume of interest
function. When extracting time series, effects of no interest, for
example, low frequency drifts and constant baseline were
adjusted. We additionally regress out 24 headmotion regressors (6
rigid-body transformations, their one time-point lag, and all their
correspondent squared time series) to minimize the effects of
headmotion on subsequent analyses (Friston et al. 1996).

For the stop signal task, similar GLM model was built for each
subject to obtain task activations. Two separate regressors were
defined to reflect the effects of the Go and Stop trials, respectively.
The trial variables were convolved with HRF to form blood-oxygen-
level dependent (BOLD) level regressors. A total of 24 head motion
regressors were also included in the GLM model of the stop signal
task. After model estimation, the contrast between the Stop and Go
conditions was defined for each subject. The first eigenvariate of
each of the 164 ROIs was extracted after adjusting for head motion
effects, low frequency drifts, and constant baseline.

In addition to the voxel-wise analysis, we also performed ROI-
wise analysis to compare the regional activation results with later
PPI results. Similar GLMs as in the voxel-wise analysis but without
effects of no-interest were applied to the ROI time series, because
the effects of no-interest have already been removed during the
time series extraction. The beta estimates of modeled effects and
contrasts of interest were then calculated. Group level one sample
t test on the contrast values of each task was performed for each
ROI. There were 164 comparisons (ROIs) for each task. So that we
adopted false discovery rate (FDR) of P < 0.05 to correct for the total
164 comparisons. The ROIs were labeled as significantly activated,
significantly deactivated, or not activated based on the FDR cor-
rected P value for each task.

PPI Analysis

There are 2 ways to calculate the PPI terms. The conventional way
is to directly multiply the BOLD level psychological variable (a task
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design variable convolves with the HRF) with the time series of a
region (Friston et al. 1997). Alternatively, the time series of a region
is first deconvolved with the HRF to represent the time series at
the neuronal level, and the PPI term is calculated bymultiplication
of the deconvolved time series with the task design variable. The
PPI term is then convolved back with the HRF to represent a pre-
diction variable at the BOLD level (Gitelman et al. 2003). The later
approach is better for properly dealing with the asynchrony of
task design and observed BOLD response. However, the deconvo-
lution may not work well due to intersubject and inter-regional
variability of hemodynamic responses, and PPI results in block-
designed data were very similar when using the 2 methods (Di
and Biswal 2017). Therefore, for the block-designed HCP tasks, we
used the direct way to calculate PPI term by performing a
point-by-point multiplication between box-car convolved psy-
chological function and the time series of a ROI. For each task
and each ROI, PPI terms were calculated for the experimental
and control conditions, separately. New GLM models were then
built, with one regressor of the time series of a ROI, 2 regressors
of task conditions, 2 regressors of PPIs, and 1 constant term.
The contrasts of interest were the differences in PPI effects
between the 2 conditions.

For the event-related designed task, however, deconvolution is
necessary. The time series of a ROI was first deconvolved with the
HRF, and point-by-point multiplied with the psychological design
variable. The PPI terms of the Go and Stop trials were calculated
separately with the corresponding psychological variables. The
neuronal level PPI terms were convolved with the HRF to repre-
sent the BOLD level predictors of PPI effects. Similar GLM models
were built to examine PPI effects, with 1 regressor of the time
series of a ROI, 2 regressors of task conditions, 2 regressors of PPIs,
and 1 constant term. The contrasts of interest were the differences
in PPI effects between the Stop and Go conditions.

The PPI effects were calculated between each pair of the 164
ROIs, which resulted in a 164 × 164 matrix for each task and each
subject. The contrast matrix for each subject was symmetrized
(Supplementary material in Di et al. 2017), and one sample t-test
across subjects were performed at each pair of ROIs. For each task,
there are in total 13 366 connections to be tested (164 × 163/2). FDR
correction was used for each task at P < 0.05 to deal with the mul-
tiple comparison problem.

The thresholded matrices of positive or negative PPI effects
can be treated as network graphs, where the 164 ROIs represent
the nodes and PPI effects represent the edges of a graph. From the
graph-theory point of view, we can calculate degree of a node as
the number of significant PPI effects this node has. We defined
increased or decreased hubs of a task as the nodes with increased
or decreased degree higher than the averaged degree plus one
standard deviation of degree across all the 164 nodes, respectively.
We also identified the giant component of each graph, which
represents the largest connected subnetwork of a graph. The
network layout of the giant component of increased graph of
each task was visualized using Gephi (https://gephi.org/), Yifan
Hu’s algorithm was used for the layout, which combines a
force-directed model to spatialize the nodes and reduce edge
crossing and uses a multilevel algorithm to reduce the com-
plexity (Hu 2005).

Crossmethod Validation of PPI Results

In addition to PPI analysis, we performed other similar methods
to cross validate the task modulated connectivity results. For the
block-designed tasks from the HCP dataset, we calculated
Spearman’s rank correlation coefficients of concatenated time

series of each condition across the 164 ROIs after removing
the first 6 s of data from each block to account for transient
hemodynamic effects (Di et al. 2017). The correlation matrices
were transformed into Fisher’s z matrices, and then com-
pared between the 2 task conditions in each task. This resulted
in a 164 × 164 matrix of correlation differences for each task. The
same FDR correction was used at P < 0.05 to account for multiple
comparisons.

For the event-related stop signal task, we obtained an activa-
tion map for each trial (beta map), and calculate the correlations
of trial-by-trial variabilities among the 164 ROIs for the Go and
Stop conditions, and then compared the differences of the BSCs
between the conditions (Rissman et al. 2004). We used the single-
trial versus all-other-trials approach (Mumford et al. 2012). To
define the GLM model of a trial, 2 regressors were included in the
model, one representing the trial of interest and the other repre-
senting all other trials. With additional 24 head motion regressors
and constant, there were in total 27 regressors in the model
(Supplementary Fig. S1). One GLM model was used to obtain one
beta image for a specific trial. After estimating beta maps for dif-
ferent trials, mean beta values of each ROI were extracted to form
beta series for each subject. The beta series from all the 164 ROIs
were grouped into 2 sets representing the Go and Stop conditions,
and Spearman’s rank correlation coefficients were calculated
among the 164 ROIs. The 2 correlation matrices from the 2 condi-
tions were transformed into Fisher’s z matrices. At each element
of the matrix, a paired t-test was performed between the 2 condi-
tions across subjects. The same FDR correction was used at P <
0.05. All the codes for the data analysis in the current analysis are
available from osf.io/dka6g.

Results
Task Activations

We first performed activation analysis for each task to identify
ROIs that showed task activations and deactivations during the
task condition compared with their respective control condition.
Figure 1 outlines task activations of the 4 tasks that later showed
significant PPI effects. The activations of the language, social cog-
nition, and working memory tasks basically replicated the results
of Barch et al. (2013). For the stop signal task, the Stop condition
showed increased activations compared with the Go condition in
inhibition related regions such as the anterior cingulate cortex,
bilateral insula, and bilateral dorsolateral prefrontal cortex (Schall
et al. 2017). The superior temporal lobe was also activated, which
is reasonable because the stop signal was delivered auditorily.
In contrast, decreased activations were observed in many
regions including the sensorimotor cortex, probably because
apparent motor response was withdrawn in the Stop condition.
The ROI-based activation results for all the 7 tasks are reported
in Supplementary Figure S2.

Psychophysiological Interactions

The PPI analysis revealed that 4 tasks, including the language,
social cognition, working memory, and stop signal tasks, showed
statistically significant task modulated connectivity at P < 0.05 of
FDR correction. Figure 2 illustrates the raw and thresholdedmatri-
ces of the PPI effects across the 164 ROIs for the 4 tasks. For refer-
ence to the baseline functional connectivity, we also show the
main effects of the seed time series in the PPI models on the top
row of Figure 2. For each task, both increased and decreased con-
nectivity in the task condition compared with its respective con-
trol condition were found. The ROIs in the matrices are organized
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into 7 functional modules. Therefore, it can be seen that there are
rectangle like effects in the matrices which represent similar
effects within a functional module or between 2 modules. The
task modulated connectivity of the language task seemed to
involve in many different brain systems. While the other 3 tasks
showed task related connectivity in specific brain systems.
Increased connectivity in the social cognition task mainly took
place between the default mode module and other modules,
including the cingulo-opercular, frontoparietal, occipital, and
sensorimotor modules. Increased connectivity in the working
memory task mainly took place between the sensorimotor mod-
ule to both the frontoparietal and occipital modules. In contrast,
decreased connectivity in the working memory task mainly took
place between the default mode and frontoparietal modules,
and between the frontoparietal and occipital modules. Lastly,
increased connectivity in the stop signal task mainly took place
between the default mode module and other modules including
the cingulo-opercular, frontoparietal, occipital, and sensorimotor
modules, and between the frontoparietal module and other
modules such as the cingulo-opercular and occipital modules.

To better illustrate the spatial distributions of task modu-
lated connectivity, we plotted the connections with increased
or decreased connectivity on a brain model using BrainNet
Viewer (Xia et al. 2013). For the language task, widespread con-
nections have been observed showing increased or decreased
functional connectivity during the language condition compared
with the math condition (Fig. 3). There were in total 1 323 signifi-
cant positive effects. Except for 2 effects, all other effects formed a
giant component covering 141 ROIs. Although we can observe
increased connectivity between task activated regions that are
directly related to language processing, for example, the left infe-
rior frontal regions and superior temporal regions, the majority of
increased connectivity actually took place between task deacti-
vated regions. The hubs of increased connectivity were also
mostly deactivated during the language condition (Supplementary

Table S1 for a full list of the hub regions). Conversely, there were
in total 460 significant negative PPI effects. Except for 2 effects, all
other effects formed a giant component covering 120 ROIs. It is
noteworthy that many task positive regions, for example, the
bilateral temporal lobe regions, showed reduced connectivity with
task negative regions.

For the social cognition task, we observed widespread connec-
tions (325) that showed increased connectivity (Fig. 4). Except for 2
effects, all other effects formed a giant component covering 108
ROIs. Increased connectivity mainly occurred between posterior
brain regions, for example, between the visual and parietal
regions, and between anterior and posterior brain regions, for
example, between the parietal and frontal regions. It is notewor-
thy that a number of regions that are not activated during the task
(green regions), especially the prefrontal cortex regions, showed
increased connectivity with the parietal and visual regions, sug-
gesting a broad involvement of the prefrontal cortex in the theory
of mind task even though their activation level did change. Many
of the frontal and parietal regions that were not activated during
the social interaction condition were the hubs of increased con-
nectivity (see also Supplementary Table S2). In contrast, 69 con-
nections showed decreased connectivity. Except for 2 effects, all
other effects formed a giant component covering 37 ROIs. A
majority of reduced connectivity were taken place between bilat-
eral occipital or temporal regions and between occipital and sen-
sorimotor regions, many of which were activated during the social
interaction condition (red regions).

For the working memory task, we observed 66 connections
that showed increased connectivity (Fig. 5). Except for 9 effects,
the others formed a giant component covering 44 ROIs. Again,
although there were a small number of task positive regions that
showed increased connectivity, the majority of increased connec-
tivity was between task negative regions or no activation regions.
The hubs of decreased connectivity were in the sensorimotor
regions which were deactivated or not activated during the 2-back

Figure 1. ROI-wise (region of interest) activations in the 4 tasks that later showed significant psychophysiological interactions (PPI) effects. Red and blue regions indi-

cate increased and decreased activations during the task condition compared with the respective control condition at P < 0.05 of FDR (false discovery rate) correction.
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condition (Supplementary Table S3). In contrast, 179 connections
showed decreased connectivity. Except for 2 effects, the remaining
effects formed a giant component covering 51 regions. Reduced

connectivity was mainly between visual regions to frontal or pari-
etal regions. It is noteworthy that a large number of reduced con-
nectivity also occurred between the frontal and parietal regions

Figure 2. Whole brain task-independent connectivity (top row) and task modulated connectivity (middle and bottom rows) matrices for the language, social cognition,

working memory, and stop signal tasks across 164 regions of interest. The upper 2 rows showed unthresholded matrices. The displayed range for each matrix was

adjusted for each matrix, and was assured to be positive and negative symmetrical. The bottom row showed thresholded matrices of task modulated connectivity at

P < 0.05 of FDR (false discovery rate) correction. Yellow and blue elements in the matrices indicate increased and decreased connectivity between each task and its

corresponding control conditions. The color bars on the top and right side of each matrix represent 7 functional brain modules: (1) cerebellar, (2) cingulo-opercular, (3)

default mode, (4) frontoparietal, (5) occipital, (6), sensorimotor, and (7) emotional modules.

Figure 3. Increased (red lines) and decreased (blue lines) functional connectivity in the language task (story comprehension vs. arithmetic operation). Significant con-

nectivity was identified at P < 0.05 with false discovery rate (FDR) correction. The lower left and right panels show the hubs of the increased and decreased connectiv-

ity networks, respectively. Region colors represent activated (red), deactivated (blue), and no significant activations (green) during the task compared with control

conditions.
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that were activated during the 2-back condition and have strong
implications in supporting workingmemory (Owen et al. 2005).

Lastly for the stop signal task, we observed widespread con-
nections (899) that showed increased connectivity, which formed
a single giant component covering 142 ROIs (Fig. 6). Increased con-
nectivity involved not only task positive regions such as the bilat-
eral temporal regions, bilateral dorsolateral frontal regions, and
anterior cingulate regions, but also task negative and no activation
regions. In contrast, 71 connections showed decreased connectiv-
ity, which were mainly between task negative regions. The hub
regions of decreased connectivity were mainly from the default
mode network (Supplementary Table S4).

Connectivity Differences and Local Activations

We have shown widespread connectivity modulations which
go beyond task activated regions in most of the tasks. But task
modulated connectivity between only the regions that are acti-
vated during a task is more relevant to existing theories of dif-
ferent cognitive functions. Therefore, we displayed task modulated
connectivity between only the task activated regions for each
task (Fig. 7). It does show some effects that are consistent with
current views of brain functions. For example, the language task
increased functional connectivity between the left lateral frontal
region to the left parietal and superior temporal regions (Fig. 7A).

However, in some cases, there is even reduced connectivity
between the task activated regions. For example, although bilat-
eral frontoparietal regions were activated during the working
memory task, functional connectivity between these frontal and
parietal regions were mainly reduced (Fig. 7C).

To better illustrate the relationship between regional activa-
tions and task modulated connectivity, we used circular plots to
display the task modulated connections with the ROIs sorted
based on their levels of activations (Fig. 8, upper rows). The
increased and decreased connectivity did not show clear pat-
terns that are associated with regional task activations, espe-
cially for the increased connectivity. It was particularly true for
the language, social cognition, and stop signal tasks. For the reduce
connectivity, there was a pattern that many connectivity were
between one task activated region and one task deactivated
region. However, there were also reductions in connectivity that
was between one region that was not activated by the task and
the other region that was either activated or deactivated during
the same task. We next plotted the giant components of the task
increased connectivity graphs of the 4 tasks in the bottom row of
Figure 8. For all the tasks, we observed intermixed connectivity
between task positive, task negative, and no activation regions.
The task positive regions along did not show clear community
structures. Instead, they seemed to show increased connectivity
to all the 3 types of regions.

Figure 4. Increased (red lines) and decreased (blue lines) functional connectivity in the social cognition task (social interaction vs. random movement). Significant

connectivity was identified at P < 0.05 with false discovery rate (FDR) correction. The lower left and right panels show the hubs of the increased and decreased con-

nectivity networks, respectively. Region colors represent activated (red), deactivated (blue), and no significant activations (green) during the task compared with con-

trol conditions.

Figure 5. Increased (red lines) and decreased (blue lines) functional connectivity in the working memory task (2-back vs. 0-back). Significant connectivity was identi-

fied at P < 0.05 with false discovery rate (FDR) correction. The lower left and right panels show the hubs of the increased and decreased connectivity networks, respec-

tively. Region colors represent activated (red), deactivated (blue), and no significant activations (green) during the task compared with control conditions.
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Validations of the PPI Results

Direct comparisons of correlation differences for the 3 block-
designed tasks with significant PPI results demonstrate similar
patterns of task modulated connectivity (Supplementary Fig. S3).
The correlations of task modulated connectivity matrices between
PPI and correlation differences ranged from 0.64 to 0.87, suggesting
crossmethods consistency of task modulated connectivity effects.

To validate the PPI results of the event-related designed
stop signal task, we performed BSC analysis on the same data.
Significant BSC differences between the Stop and Go conditions
could be observed when using the single-trial versus all-other-
trials method (Fig. 9A). The matrix was similar to those obtained
in the PPI analysis (Fig. 2). However, the number of significant
effects reduced. The correlation between the PPI matrix and
BSC differential matrix yielded a correlation of 0.73 (Fig. 9B),
which also suggested cross methods consistency of task modu-
lated connectivity effects.

Discussion
By leveraging large-scale task fMRI datasets from HCP and UCLA
projects, the current analysis demonstrated that it is possible to
derive whole brain task-modulated connectomes between 2
well-controlled task conditions during both block-designed and
event-related designed tasks. The patterns of task modulated

connectivity in different tasks shed new lights to large-scale
functional integrations of the brain. First, task modulated con-
nectivity was widespread, far beyond the regions that were typi-
cally activated during the tasks. There was no clear relationship
between the level of activations of regions and increased or
decreased functional connectivity between them. Second, reduced
connectivity could be observed between 2 task activated regions,
challenging the notion that task coactivations represent taskmod-
ulated connectivity.

Existing models of brain functional integration in a certain task
typically focus on the regions that are activated during the task.
However, the current data suggest that for some tasks there were
regions that were not activated during the task contrast showed
increased connectivity with other brain regions. One typical exam-
ple is the social cognition task, where its brain theories usually
focus on the bilateral temporoparietal junction and medial pre-
frontal cortex (Castelli et al. 2000; Schurz et al. 2014). Although the
bilateral frontal regions have been activated during the social vs.
random contrast, the activations tuned out to be restricted (Fig.
1B). The PPI analysis demonstrated widespread prefrontal regions
that were not activated during the task showed significant func-
tional connectivity increase with posterior brain regions (Fig. 4).
Further examinations confirmed that the baseline task-free con-
nectivity was mainly positive between the prefrontal regions with
posterior regions, suggesting increased positive functional integra-
tion in the social interaction condition compared with the random

Figure 6. Increased (red lines) and decreased (blue lines) functional connectivity in the stop signal task (Stop trial vs. Go trial). Significant connectivity was identified

at P < 0.05 with false discovery rate (FDR) correction. The lower left and right panels show the hubs of the increased and decreased connectivity networks, respec-

tively. Region colors represent activated (red), deactivated (blue), and no significant activations (green) during the task compared with control conditions.

Figure 7. Increased (red lines) and decreased (blue lines) connectivity only among the task activated regions in each task.
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movement condition. One explanation may be that the activa-
tions of these prefrontal regions keep at a high level in both the
social interaction and random movement conditions, so that the
direct comparisons of activations could not show differences. On
the other hand, information integration between the prefrontal
regions and posterior regions did increase during the social inter-
action condition compared with the random movement condi-
tion. Because of the nature of the regression-based analysis, it is
difficult to infer the direction of the information integration. It is
plausible that the prefrontal regions serve as a top-down mod-
ulator to posterior regions such as the superior temporal sulcus
(STS) and temporoparietal junction (TPJ) which are directly
involved in mentalizing (Frith and Frith 2006). Alternatively, it
is also possible that the prefrontal regions receive information

from posterior regions, but do not actively modulate the poste-
rior regions. Studies using both brain lesion (Shamay-Tsoory
and Aharon-Peretz 2007) and transcranial magnetic stimula-
tion (TMS) (Kalbe et al. 2010) methods have suggested that the
dorsolateral prefrontal cortex is responsible for cognitive the-
ory of mind. The current data provide a connectivity based
model that could explain the involvement of dorsolateral pre-
frontal cortex in theory of mind processing.

Another interesting observation of the current results is that
coactivated regions do not necessarily imply an increased connectiv-
ity between them. There may be decreased functional connectivity
between 2 positively activated regions. A clear example is the
working memory task, where the bilateral frontoparietal regions
have been strongly linked to the working memory process

Figure 8. Relationships between the task modulated connectivity and regional activation levels. The upper 2 rows show circular plots of increased (red) and decreased

(blue) connectivity in different tasks. The regions along the circle were ordered based on their activations in each task, and were colored based on their statistical sig-

nificance levels. The bottom row illustrates the network layouts of the first giant component of increased connectivity network using Yifan Hu’s algorithm. Node col-

ors in the network layout represent the activation levels in each task.

Figure 9. Beta series correlation (BSC) differences using the single-trial versus all-other-trials method (A) in the stop signal task, and the relationship between the

results from psychophysiological interaction (PPI) and BSC differences (B).
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(Owen et al. 2005). There was, however, mainly decreased con-
nectivity among the frontoparietal regions in the current work-
ing memory task (Fig. 7C). It is noteworthy that the baseline
connectivity among the frontoparietal regions were positive,
confirming that there were reduced functional integration in the
2-back condition than the 0-back condition. This suggests that
even though these regions are activated together, they are not
working more together during the 2-back condition than during
the 0-back condition. The decreased connectivity may suggest
inhibitory process between the frontal and parietal regions. An
alternative explanationmay be that the increased and decreased
functional connectivity may relate to different oscillation mech-
anisms at different frequency band. For example, an electroen-
cephalogram study has suggested that increased working
memory load is associated with increased functional connectiv-
ity in theta band and reduced connectivity in alpha band. Therefore,
different frequency oscillations may give rise to different func-
tional connectivity modulations, so that may result in either
increased or decreased connectivity as measured from BOLD sig-
nals. A broader implication of the reduced connectivity is that
coactivations of 2 regions in a task do not necessarily imply an
increased connectivity between these 2 regions. This is consistent
with our previous observations of reduced connectivity between
visual areas in a visual checkerboard task (Di et al. 2015). Although
coactivation patters were highly correlated with functional net-
works and resting-state connectivity (Toro et al. 2008; Smith et al.
2009; Di et al. 2013), the associations between coactivation and
task related connectivity differences are rather loose. Practically,
the coactivations pattern has been widely used as meta-analytic
connectivity modeling (Robinson et al. 2009) to study task related
functional connectivity and networks. But one should be cautious
about the interpretation of coactivation based results, because it
cannot imply task modulated connectivity.

The current results demonstrated that reduced connectivity is
ubiquitous in different task conditions. It is reasonable, because
maintaining functional connectivity, especially long range con-
nectivity, is expensive in terms of energy consumption (Bullmore
and Sporns 2012). In addition, reduced connectivity may reflect
less interference from task unrelated regions, ensuring more effi-
cient communications among task related regions. Consistent
with this, whole brain level modulatory interactions (interactions
among 3 brain regions) are mainly negative, which may serve as
functional segregation between different functional modules (Di
and Biswal 2015). Of course, the connectivity differences reported
in the current study are relative changes of connectivity between
conditions, such that an alternative explanation of decreased
connectivity could be the increased connectivity in the control
task. For example, for the language task, there are more regions
that showed higher activation during the arithmetic task condi-
tion than the language task condition. Reduced functional con-
nectivity in the language task may be explained as increased
connectivity during the arithmetic task, especially between the
regions that involve arithmetic calculation, that is, bilateral fron-
toparietal regions.

When considering task modulated connectivity between
known brain systems, we found that the default mode network
and frontoparietal network were more likely to show task modu-
lated connectivity in all the 4 tasks (Fig. 2). The involvement of
the frontoparietal connectivity with other brain systems is not
surprising, and is consistent with the role of these regions in
flexible task controls (Cole et al. 2013). The task modulated con-
nectivity between the default mode network regions and other
brain systems is also consistent with a previous study showing

task-positive functional connectivity of the default mode net-
work in different task domains (Elton and Gao 2015). This line of
results suggests that the default mode network may be actively
involved in external-oriented tasks through interacting with
other brain systems.

The current analysis demonstrates the feasibility of using the
PPI framework to study whole-brain level task related connectiv-
ity, or task connectome. The results suggest limitations of the typ-
ically used PPI analysis strategy, that is, seed-based analysis,
because task modulated connectivity can occur beyond task acti-
vated regions. This highlights the importance of the task connec-
tomics approach, that is, examining whole brain task modulated
connectivity to obtain a more complete picture of brain connectiv-
ity modulations. A caveat of whole brain approach is that the
number of ROI pairs increases exponentially as the number of ROI
increases, therefore there will be severe multiple-comparison
problem as the number of ROIs increases. In addition, the effect
sizes for PPI are in general smaller than the main effects of task
activations (Di and Biswal 2017). Large sample size and enough
scan duration are needed for reliable whole brain level analysis. In
a recent study, we have shown very limited test–retest reliability
of task modulated connectivity in a simple checkerboard task (Di
and Biswal 2017). The scan durations of different task conditions
in the current analysis are also limited (Table 1), which prevents
us to explore the behavioral correlations of the PPI effects (Vul
et al. 2009; Dubois and Adolphs 2016). Lastly, the current analysis
examined PPI effects between each pair of ROIs. As a conse-
quence, the possibility that an observed PPI effect between 2
regions is mediated by a third region cannot be ruled out. The task
connectomematrix across all ROIs could be estimated at the same
time with some computational techniques such as regularization
(Smith et al. 2011; Di et al. 2017), which might be helpful to mini-
mize confounding influences of other regions.

Estimating task related connectivity in an event-related
designed task, especially fast event-related designed task, is still
challenging. The current analysis estimated taskmodulated connec-
tivity on the stop signal task by using both PPI and BSC approaches,
and found consistent task related connectivity between the 2
methods. Of course, properly modeling of single trial activation
(Mumford et al. 2012) is critical for the BSC method. And for the
current data, only the single-trial versus all-other-trials method
could yield similar results to the PPI analysis. However, in con-
trast to Cisler et al. (2014), we showed that there were more sta-
tistical significant effects using PPI analysis than using BSC
analysis, suggesting the advantage of PPI over BSC in terms of
statistical sensitivity. This may be due to the short intertrial
interval in the current task, so that reliable single-trial beta
maps were difficult to obtain. Anyway, the notion of the advan-
tage of BSC over PPI on event-related data (Cisler et al. 2014) is
still not clear, and warrants further investigations.

Conclusion
The current study demonstrated task connectomes across whole
brain ROIs in 4 of 7 tasks. These task connectomes suggest broader
involvement of brain regions than simple regional task activa-
tions, confirming the importance of studying whole brain task
connectomes. The increased and decreased functional connectiv-
ity can take place between activated, deactivated, or not activated
regions. There were no clear relationships between the task mod-
ulated connectivity and regional task activations. These results
may shed new light to brain models of these cognitive or affective
functions.
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