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Abstract
A complex action can be described as the composition of a set of elementary movements. While both kinematic and
dynamic elements have been proposed to compose complex actions, the structure of movement decomposition and its
neural representation remain unknown. Here, we examined movement decomposition by modeling the temporal dynamics
of neural populations in the primary motor cortex of macaque monkeys performing forelimb reaching movements. Using a
hidden Markov model, we found that global transitions in the neural population activity are associated with a consistent
segmentation of the behavioral output into acceleration and deceleration epochs with directional selectivity. Single cells
exhibited modulation of firing rates between the kinematic epochs, with abrupt changes in spiking activity timed with the
identified transitions. These results reveal distinct encoding of acceleration and deceleration phases at the level of M1, and
point to a specific pattern of movement decomposition that arises from the underlying neural activity. A similar approach
can be used to probe the structure of movement decomposition in different brain regions, possibly controlling different
temporal scales, to reveal the hierarchical structure of movement composition.
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Introduction
Compositionality and serial processing play a key role in our
interaction with the environment. We listen to a speech by
effortlessly grouping phonemes into words, and detect
objects by grouping points into lines, and lines into shapes.
Principles of compositionality are also used in acting on the
environment, since writing one’s name or performing a dance
move involves the concatenation of several movement ele-
ments. Yet, the structure of movement composition and the
underlying neural dynamics are not well understood, posing
a problem for the analysis of complex movements, as well as
for attempts to mimic human movement using artificial
devices. Identifying movement segments and their represen-
tation in the motor cortex are thus necessary steps towards a
complete understanding of the manner by which a goal-
directed action is translated into the final output movement
(Doeringer and Hogan 1998; d’Avella et al. 2003; Mussa-Ivaldi

and Solla 2004; Flash and Hochner 2005; Hatsopoulos et al.
2007; Giszter 2015).

Previous studies have proposed different models for the
serial and parallel processing of action composition, both at the
kinematic level such as the superposition of short strokes char-
acterized by bell-shaped speed profiles (Abend et al. 1982;
Viviani and Terzuolo 1982; Miall et al. 1986; Flash and Henis
1991; Milner 1992; Doeringer and Hogan 1998; Krebs et al. 1999;
Hatsopoulos et al. 2007; Polyakov et al. 2009), and at the dynam-
ics level, such as the summation of spatio-temporal patterns of
muscle activities (Mussa-Ivaldi et al. 1994; Giszter and Kargo
2000; Kargo and Giszter 2000; d’Avella et al. 2003; Cheung et al.
2005; d’Avella and Bizzi 2005; Overduin et al. 2012, 2015). The
proposed compositional elements are hypothesized to be more
complex than an instantaneous single muscle activation, and
are frequently described as generating temporally extended
elements that combine the activities of different muscles and
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joints. An important step towards supporting this hypothesis
was made by studies employing long-duration intracortical
microstimulation (ICMS), which demonstrated that transient
activation of M1 neurons evoked complex time-dependent
movements, involving multiple muscles across one or more
joints (Graziano et al. 2002; Overduin et al. 2012).

A dynamical system perspective focusing on the ensemble
activity of neural populations offers a framework that may pro-
vide a better understanding of the neural processes underlying
the observed evoked responses (Abeles et al. 1995; Churchland
et al. 2012; Shenoy et al. 2013). In this framework, the ensemble
activity in the motor cortex is thought to facilitate the executed
movement by shifting from a state of spontaneous activity to a
state associated with the intended action. Once the population
reaches the intended state, or pattern of activity, the ensemble
dynamics elicit the generation of the corresponding movement.
By tracing the population dynamics, previous studies have
identified transitions between epochs of movement prepara-
tion and execution, and have distinguished between prepara-
tory states associated with different intended actions (Abeles
et al. 1995; Kemere et al. 2008; Churchland et al. 2010; Afshar
et al. 2011; Petreska et al. 2011).

Here, we sought to identify the temporal structure of move-
ment decomposition by targeting the dynamics of the associated
neural population activity. We hypothesized that transitions in
the population activity may not only distinguish between global
epochs of movement preparation and execution, but further
reveal transitions between movement segments, allowing an
estimation of the composing elements directly from the under-
lying neural activity. To identify state transitions in the popula-
tion activity, we modeled the firing patterns of dozens of
neurons in M1 of non-human primates, recorded during the exe-
cution of arm movements in a random target pursuit (RTP) task
and in a center-out reaching task, using a hidden Markov model
(HMM). The underlying assumption of an HMM is that a time-
evolving low-dimensional hidden state (e.g., neural state) is indi-
rectly observed through a noisy signal (e.g., firing of neurons)
(Rabiner 1989; Abeles et al. 1995; Kemere et al. 2008; Polyakov et al.
2009; Escola et al. 2011). Modeling the population activity using an
HMM enabled us to estimate the structure of movement decompo-
sition solely from the neural activity in M1, in an unsupervised
manner, without any assumptions on the encoded movement
parameters and without predefining a specific duration for the
composing elements. The identified neural segmentation revealed
distinct epochs of movement, consistently decomposing the move-
ment into acceleration and deceleration phases executed towards
specific directions in the workspace. These findings provide new
insights regarding the temporal structure of movement decompo-
sition and its underlying neural representation.

Methods
Behavioral Task

The experiments were performed on two male rhesus macaques
(“RJ” and “RS”, ages 9 and 6, respectively). The manner in which
the data were collected and handled was previously described in
Hatsopoulos et al. (2007), and is further discussed below. Subjects
were trained to move a cursor appearing on a horizontal screen
above the monkey’s hand location toward targets projected onto
the screen. The monkey’s arm was attached to a two-joint exo-
skeletal robotic arm (BKIN Technologies, Inc.). The shoulder joint
was abducted by 90°, such that the shoulder and elbow flexion
and extension movements were made in the horizontal plane.

The shoulder and elbow joint angles were sampled at 500Hz by
the robotic arm’s motor encoders. The X and Y positions of the
hand were computed using forward kinematics calculations.

Random Target Pursuit Task
The monkeys performed a random target pursuit (RTP) task, in
which a sequence of 7 targets appeared on the projection surface
(Fig. 1A). At any one time, a single target appeared at a pseudo-
random location in the workspace, and the monkey was required
to move toward it. As soon as the cursor reached the target, the tar-
get disappeared and a new target appeared at a new randomly
selected location. After reaching the seventh target the monkey
was rewarded with a drop of water. We only analyzed successful
trials, in which the monkey reached 7 targets in a reasonable time
(≤8 s) and did not stop for more than 500ms, and discarded trials
in which X and Y were outside the workspace boundaries or trials
in which the monkey’s speed exceeded the average speed +3SD, to
avoid excessive noise that may reflect erroneous measurements.

Center-out Task
We also analyzed recordings from a center-out task, performed
by monkey RS, which involved movements from a center target
to one of 8 peripherally positioned targets (7 cm distance). On
each trial, one of the 8 targets was pseudorandomly selected. The
task consisted of two epochs: (1) a fixed instruction period of
1000ms during which the monkey was required to hold its hand
over the center target, and one of the 8 peripherally positioned
final targets appeared, and (2) a “go” period during which the tar-
get began to blink, informing the monkey to begin moving to the
target. As we were interested in the neural activity underlying
movement execution, we analyzed the neural activation starting
from the “go” signal until 100ms past the point where the speed
decreased below 15% of the maximal speed of each trial.

All of the surgical and behavioral procedures were approved
by the University of Chicago Institutional Animal Care and Use
Committee and conform to the principles outlined in the Guide
for the Care and Use of Laboratory Animals (NIH publication no.
86-23, revised 1985).

Neural Data Acquisition

A silicon-based electrode array composed of 100 electrodes
(1.0mm electrode length; 400 μm inter-electrode separation)
was implanted in the arm area of the primary motor cortex
(M1) of each monkey. During a recording session, signals from
up to 96 electrodes were amplified (gain, 5000), bandpass fil-
tered between 0.3Hz and 7.5 kHz, and recorded digitally (14-bit) at
30 kHz per channel using a Cerebus acquisition system (BlackRock
Microsystems, Salt Lake City, UT). Only waveforms (1.6ms in
duration) that crossed a threshold were stored and spike-sorted
using Offline Sorter (Plexon, Inc., Dallas, TX). A single recording
session from each monkey was analyzed in this study from the
RTP task, with 54 and 100 simultaneously recorded units from M1
of RJ and RS, respectively, and a single recording session from the
center-out task with 141 units from M1 of RS.

Neural Data Segmentation Using a Hidden Markov
Model

Data Preprocessing
Spikes were binned by summing the number of spikes of each
single unit within non-overlapping 50ms windows. We refer to
the ensemble activation at each time point as an “activation pat-
tern”, denoted as: = ( … )O O O O, , ,t t t t

N1 2 where Ot
n is an integer
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variable, corresponding to the number of spikes observed in the
nth neuron at time-step t, and N is the number of neurons. For
each recording session, about 75% of the trials were defined as a
training set (251/334 trials for RJ in the RTP task, 569/758 for RS
in the RTP task, 293/391 for RS in the center-out task), whereas
the rest of the trials were used as an independent test set.

Hidden Markov Model (HMM)
Recorded spike trains were modeled using a hidden Markov
model, a method frequently used in speech and hand gesture

recognition (Rabiner 1989). An HMM describes a system that
transitions between distinct states, related by a Markov pro-
cess. The states are hidden and can only be observed through
the observations that are a probabilistic process of the hidden
states. Here, the model regards the recorded spike trains as
observations, dependent on the hidden states that are assumed
to reflect global changes in cortical activity (Abeles et al. 1995).
Formally, assuming there are M possible states ∈ { … }S M1, 2, ,t ,
the Markovian property implies that the hidden process is fully
described by the transition probabilities ( = | = ) =−P S i S j At t ji1

[ ×M M matrix], and an initial distribution π( = ) =P S i i1 [column
vector of length M]. The dependence between the hidden states
and the observable output (emissions) is captured by a conditional
distribution, ( | = ) = ( )O OP S i Bt t i t , where { } ≡ { } =O Ot t

T
1 represents

the sequence of observations. In this work, we employed a homo-
geneous discrete time Markov chain, and defined the emissions
as an ensemble of N emission-units = ( … )O O O, ,t t t

N1 that repre-
sent the N recorded neurons (Fig. 1B). We assume that emission
units (neurons) are independent given a state, and that each unit
may obtain one of = … ( − )k K0, 1, , 1 possible values (i.e., spike-
counts). Namely, each unit ( )n is described by its own distribution

( = | = ) = ( )P O k S i B kt
n

t i
n [ ×M K matrix], and the full emission

probability is captured by matrix B such that ( ) = ∏ ( )=OB B O .i t i
n

t
n

n 1
N

Thus, an HMM is fully described by the set of distributions
λ π= { }BA, , . Note that in this implementation of HMM the distri-
butions are non-parametric, liberating the model from any
assumptions regarding the behavior of individual units.

Training & Decoding
A separate HMM was trained for each of the 3 analyzed record-
ing sessions using the observed spike trains from trials in the
training sets. Training of the models was done using the
Baum–Welch algorithm, an iterative expectation-maximization
algorithm for finding the maximum likelihood estimate of the
model parameters given the sequence of observations, widely
used for HMM training (Baum and Petrie 1966). The Baum–

Welch algorithm makes use of the forward–backward proce-
dure, which yields the likelihood of the observation sequence
{ }O given the model parameters λ: | λ({ } )OP . The standard for-
ward–backward algorithm is designed for models with a single
emission node, i.e., a conditional distribution of a single unit

( )B Oi
n

t
n . To account for multiple emission nodes we replaced this

distribution with the full emission distribution ( )OB ti . A known
drawback of the Baum–Welch algorithm is its sensitivity to initial
conditions, especially for models with a large number of para-
meters such as in our case. To address this issue the algorithm
was incorporated in a simulated-annealing regime (Paul 1985). On
each iteration, a small perturbation of the parameters was gener-
ated and the new parameters were considered as candidates for
replacing the current parameters. The perturbation was ran-
dom, with a tendency to increase the transition matrix’s
diagonal values, reflecting a preference for “persistent” states
and smooth dynamics. Specifically, a perturbation was gener-
ated by randomly selecting half of the matrix rows, and for
each selected row i, choosing a single column j, according to
the distribution ( )P j s.t. ( = )=P j i 0.5, ( ≠ )= ( − )P j i M0.5/ 1 .
Transition probabilities in the resulting matrix indices were then
each increased by a random factor, followed by a normalization
of the rest of the transition probabilities in the same row, such
that each row will still sum to 1. Next, the difference between the
log-likelihoods of the original and the candidate parameters was
computed: λ λΔ = ( ) − ( )LL LL LL cand . The candidate parameters
were then accepted with probability λ λ( ← ) = ( )β− ΔP min e ,1LL

cand t ,

t
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Figure 1. Experimental paradigm and illustration of HMM analysis. (A) Top: An

example of a single behavioral trial in the RTP task. In each successful trial the

monkey passed through 7 targets that appeared sequentially at pseudo-random

locations in the workspace. Filled circles represent the target locations, first tar-

get is colored in red. Bottom: illustration of spike trains for 3 neurons, recorded

during the behavioral task. (B) HMMmodeling and training:Ot
n is a variable corre-

sponding to the observed spike-count within time bin t , for the nth neuron.

Observables at each time point are assumed to be dependent on a hidden

state St , according to the distribution |( )P O Sn . The dynamics of the states is

governed by the transition probability ( |+P S St t1 ). Training of the model yields

an estimation of these distributions from the observed spike trains. (C) Decoding:

Using the trained model, the sequence of hidden states is inferred for an inde-

pendent test trial by calculating the probability for each hidden state at each

time-bin for a given set of spike trains (each color represents a different state). A

deterministic sequence of states is then constructed by associating each time bin

with the most probable state at that time point (color-coded digits represent the

sequence of decoded hidden states). Consecutive bins that are associated with the

same state make up a segment (segmented line at the bottom). (D) Movement seg-

mentation: The resulting neural segmentation is used to segment the behavioral

data, taking into account a lag of 100ms. The line trace shows a section of the

movement path corresponding to the dashed line in A-top, colored according to

the illustrated segmentation in C. (E) Example of the state probabilities assessed

for a single RTP trial. Each color represents a single neural state. Note the domi-

nance of a single state in most time points and the sharp transitions between

dominant states. Data from RJ.
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βt being the inverse of the temperature, governed by the anneal-
ing process. The number of states used to construct the models
was determined by repeating the process for a range of possible
values (2–15 states) and calculating the cross-validated log likeli-
hood calculated on the test set. We also calculated a moderate
version of the Akaike information criterion (AIC), penalizing the
log likelihood for an increasing number of free parameters in the
transition matrix (AIC was calculated as: = −K LLAIC 2 2 , where K
is the number of free parameters in the transition matrix and LL
is the log-likelihood of the model on the test set). For each mon-
key, we selected the number of states that maximized the log-
likelihood before it reached a plateau, which also corresponded to
a similar range of number of states that minimized the AIC mea-
sure (see Supplementary Fig. 6). For the center-out session, the
number of states was taken to be the same as obtained for RS in
the RTP session, which resulted in 7 meaningful states and one
empty state (training the model on a higher number of states
resulted in further empty states). It should be emphasized that
the exact number of obtained states is not thought to reflect a
closed set of elementary building blocks, and may vary depending
on the nature of the behavioral task, while the obtained segmen-
tation is assumed to reflect global changes in the dynamics of the
population activity underlying the execution of movement.

The trained models were subsequently used to infer the
sequence of hidden states of trials in the test sets (“decoding”).
We employed the forward–backward algorithm to estimate the
probability that the system was at a certain hidden state at
each time-bin given the observed spike trains and the model
parameters: λ( | { } )OP S ,t . To obtain a deterministic sequence of
states, each bin was associated with the single most probable
state at that bin, | λ{ }= ( = )s P S i Oargmax ,t i t . A time-bin at which
a state change occurred (t such that ≠ −s st t 1) defined the begin-
ning of a new neural segment, each such segment had a single
hidden state associated with it (Fig. 1C). Bins that were associated
with a state that lasted for only one time step or had a probability
lower than 60% were discarded and replaced by the last state
(this corresponded to <10% of the bins in each dataset; these bins
were not included in the analyses performed on the extracted
segments).

Movement Segmentation

Kinematic data were smoothed via a fourth-order Butterworth
low pass filter with 6Hz cut-off. To examine movement decompo-
sition, the kinematic data was then segmented according to the
obtained neural segmentation, and each single neural segment
defined a corresponding movement segment, taking into account
a lag of 100ms between the neural activation and the kinematic
output (Fig. 1D) (Schwartz 1994; Paninski, Fellows, et al. 2004). Note
that the entire training of the HMM and the subsequent decoding
of the neural states did not depend on the chosen lag.

Assessing Behavioral Relevance of Neural Segmentation in the RTP
Task
We first assessed whether the neural segmentation parsed the
kinematic output in behaviorally relevant points. Using the
neural segmentation to parse the movements executed during
the RTP task yielded a decomposition that coincided with spe-
cific time points of the kinematic output. Namely, neural state
transitions occurred in close proximity to minima and maxima
points of the tangential velocity of the end-effector. To test
whether the transition points between neural states indeed
corresponded to speed extrema in the movement, we first

computed the correlation between the number of neural state
transitions and the number of speed extrema across trials. The
resulting correlation values were compared to null distributions
of correlation values, created by shuffling the labels of the trials
103 times. In each shuffle, we calculated the correlation on ran-
dom pairings between the number of speed extrema and the
number of state transitions. As the number of state transitions
and speed extrema may be affected by the length of the trial,
we next examined whether the time points of neural state
transitions could predict the time points of speed extrema.
This was accomplished by calculating precision and recall mea-
surements, which are a better estimate of model predictions in
the case of sparse events (instead of the often-used ROC
curves), as is the case of speed extrema in a whole trial. To cal-
culate these measurements, we first paired points of speed
extrema and points of state transitions in each trial using a
cost-based metric originally proposed by Victor and Purpura
(1996) to compare between two spike trains. In short, this
method aligns the time points of two vectors by minimizing an
estimated cost. This includes a cost of 1 for each instance
which should be inserted or deleted, and a cost of q*t for each
shift in time of a single instance. Two time points are coupled
together only if the cost of the time shift between them is smal-
ler than the cost of insertion and deletion. We used q = 20, cor-
responding to two time bins, i.e., 100ms. The mean absolute
distance between matched points was 0.039 s ± 0.026 SD for
RJ and 0.041 s ± 0.026 SD for RS, and the distributions of
signed distances were centered on zero, suggesting that there
was no bias between the time points of neural state transi-
tions and the speed extrema. This was confirmed by using a
lag of 50ms or 150ms, which gave a higher mean absolute
distance and skewed distributions in either direction
(Supplementary Fig. 1). Note that the timing of state transi-
tions is limited by the resolution of binned spikes. We
regarded matched pairs as true positives, any state transition
that was not matched to a speed extremum was considered
as a false positive, and any non-matched speed extremum
was considered as a false negative. For each trial we then
calculated the precision as #

# + #
 true positives

 true positives  false positives
, and the

recall as #
# + #

 true positives
 true positives  false negatives

. In a perfect prediction, both

the precision and recall would be equal to one, suggesting that
the state transitions predicted all speed extrema, and did not
falsely predict any event. We compared these resulting mea-
surements with null distributions, created by placing the neural
state transitions at random times within the trial, calculating
the above-mentioned measures, and repeating the process 103

times (possible times were taken according to the resolution of
the binned spikes).

Next, we examined whether the obtained neural states were
characterized by specific kinematic features. Specifically, we
extracted the movement segments corresponding to each of
the states and calculated different movement parameters for
each of the segments, including the mean direction, speed, tan-
gential acceleration, and Euclidean length. We then performed
one-way ANOVA for the different kinematic parameters to test
for a consistent difference between the segments correspond-
ing to the different states. We also ran a sign test for the mean
acceleration within each state, examining the distribution of
average acceleration values of the segments corresponding to
each state. For visualization purposes, speed profiles of the seg-
ments corresponding to each state were normalized both in
time and in amplitude, and resampled to enable the calculation
of the average speed profile across segments.
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Segmentation of Center-out Reaching Movements
We conducted similar analyses on the center-out dataset to
characterize the relation between the obtained neural segmen-
tation and the kinematic output. Here too, the identified transi-
tions between neural states occurred in proximity to extrema
points of the speed profile. To verify this observation, we calcu-
lated the distances between time points of peak speed in the
reaching movements and the nearest neural state transition.
We also assessed the number of segments obtained during the
initial bell-shaped speed profile, between the point at which
the speed first exceeded 15% of maximal speed in that trial and
the first minimum point following peak speed, to specifically
address the first speed bump and avoid possible additional sub-
movements near the target.

Simulations of Instantaneous Encoding of Kinematic
Parameters

To test whether the obtained segmentation could emerge from
previously proposed models of instantaneous encoding of kine-
matic parameters (Georgopoulos et al. 1982; Schwartz and
Moran 2000), we used the center-out dataset and simulated
populations of spiking neurons tuned for velocity and accelera-
tion. We tested 6 models that incorporated tuning for: (1) move-
ment direction; (2) movement direction gain modulated by
speed; (3) direction of the acceleration vector; (4) direction of
the acceleration vector gain modulated by the magnitude of the
acceleration vector; (5) both movement direction and direction
of the acceleration vector; or (6) both movement direction and
direction of the acceleration vector, each gain modulated by
the magnitude of the corresponding vector:

1. τ θ θ( − ) = + ( ( ) − )fr t B B tcosi i i v v pd0 1 i

2. τ θ θ( − ) = + ⃗ ( ) ( ( ) − )fr t B B v t tcosi i i v v pd0 1 i

3. τ θ θ( − ) = + ( ( ) − )fr t B B tcosi i i a apd0 1 i

4. τ θ θ( − ) = + ⃗ ( ) ( ( ) − )fr t B B a t tcosi i i a apd0 1 i

5. τ θ θ θ θ( − ) = + ( ( ) − ) + ( ( ) − )fr t B B t B tcos cosi i i v v pd i a apd0 1 2i i

6. τ θ θ( − ) = + ⃗ ( ) ( ( ) − ) +fr t B B v t tcosi i i v v pd0 1 i

θ θ⃗ ( ) ( ( ) − )B a t tcosi a apd2 i

where fri is the instantaneous firing rate of neuron i, τ is the
time lag between neural activity and kinematic output (taken
to be 100ms), B i0 is the baseline firing rate, B i1 and B i2 are modu-
lation depths, ⃗ ( )v t and ⃗ ( )a t represent the magnitude of the
velocity and acceleration vectors, respectively, θv and θa are the
directions of the velocity and acceleration vectors, and θv pdi

and θapdi are the preferred velocity and acceleration angles of
neuron i. For each simulation, we first extracted the corre-
sponding β values and preferred directions from the actual
data by performing a regression analysis per each neuron.
Next, we simulated the spike trains of each neuron i according
to the recorded kinematics (with =dt 2 ms). For each time step
a random threshold xth was chosen from a uniform distribu-
tion, and compared to the estimated probability of a spike

( ) = ·p fr dtspikei i

If ( ) >p xspikei th, a spike occurred, otherwise no spike
occurred. The simulated units showed similar average firing
rates and standard deviations to the actual data. We then used
the simulated spike trains as the original recorded ones, and
performed training and testing of the HMM as described in the
previous sections.

Neural Activity within HMM States

Single Cell Activation and Correspondence to Neural States
We then turned to characterize the neural activity underlying
the obtained segmentation. We first assessed the mean firing
rate of each neuron per neural state. Mean firing rates were
standardized by subtracting the mean and dividing by the stan-
dard deviation of each cell. The resulting z-score values were
used to examine the modulation of single cells’ firing rates
across the obtained states and to evaluate whether each state
was characterized by a unique set of active neurons or whether
single cells were active in multiple states.

Next, we examined the firing rates of single units at a higher
temporal resolution and asked whether a consistent modula-
tion could be observed at time points of transitions between
states across multiple cells. To test this, we extracted the time
points of transitions between states, for pairs of states that
showed a probability higher than 0.05 of transition (i.e., for
transitioning from state i to state j, >A 0.05ij ). Then, we took
spike trains from each neuron in a 300ms time window around
the extracted transition points using 5ms bins and smoothed
the firing trains using a 15ms box-car moving average. We
aligned the firing patterns to the time of transition, and aver-
aged across the instances to yield a mean firing pattern per
neuron per state-pair. For this analysis we used all the trials,
including the trials from the training set, in order to average
across as many instances as possible. To test whether single
cells showed a modulation in their firing patterns that corre-
sponded to the state transition, we fitted a regression tree to
each mean firing pattern described above, constrained to a sin-
gle partition. This yielded a piece-wise constant model that
divided the mean firing rate into two sub-divisions at a specific
time point, similar to a step function. For each neuron we then
took the state-pair transition which showed the highest good-
ness of fit with the fitted regression tree, and extracted the
time point of the corresponding step. Note that such a step
may occur at any time point within the 300ms time window.
Examining the time of the obtained steps can suggest whether
indeed single cells showed a consistent change in firing rate
that corresponded to the time of state transition, and provide
an estimate of the percentage of cells that are involved in the
transitions obtained from the HMM. As a control, we performed
the same analysis on firing patterns aligned to the middle point
of each state, such that averaging across multiple instances
would still be meaningful (i.e., averaging the neural activity
across instances associated with the execution of similar move-
ments). This enabled us to examine whether a consistent modu-
lation at the level of single cells is unique to the time points of
state transitions, or whether it could also be found during the
states themselves. As a second control, we generated random
transitions within each trial according to the distribution of
states’ durations, obtained from the original models, and con-
ducted similar analyses to those described above. We repeated
this process for 50 iterations, with random transitions generated
each time. This enabled us to assess whether similar modula-
tions may occur by chance, when averaging the firing rate of a
single neuron across random time points.

Finally, we tested whether a significant modulation occurred
in the activities of single cells between epochs of acceleration
and deceleration, regardless of the obtained neural segmenta-
tion. To accomplish this, we examined spike trains recorded
during the center-out task, and summed the number of spikes
per neuron that occurred during time-windows of 150ms
before and after the point of peak speed minus a lag of 100ms,
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per trial. We then performed a t-test for paired samples for
each neuron to test for a significant difference between the
acceleration and deceleration epochs.

Population Activity and Collective Neural Dynamics Within States
The neural activity associated with the obtained segmentation
was further examined at the population level. As a visual inspec-
tion of the population activity is challenging due to the large
number of recorded cells, we performed a principal component
analysis (PCA) on the firing rates of the recorded neurons and
projected the activity patterns onto a low-dimensional space
using the first 3 principal components (Cunningham and Yu
2014). This enabled us to visually examine whether the activ-
ity patterns associated with each state corresponded to a con-
sistent and unique representation at the population level. The
principal components were computed on smoothed neural
data, in which the binned activity (using 10ms bins) of each
unit was filtered separately using a Gaussian with 30ms SD.
Further smoothing was only performed for visualization pur-
poses. Although PCA does not take into account any temporal
dependencies as the HMM does, the different principal compo-
nents may reflect certain dependencies between the neurons
that may dissociate between the identified states.

Furthermore, the low-dimensional projection enabled us to
visually track the evolution of the time-dependent neural activ-
ity within each trial and each neural segment. Although the
model we used assumes a relatively simple structure, in which
the population activity remains constant within a state, this
does not have to be the case. Previous studies have shown that
different epochs of movement, such as preparation versus exe-
cution, identified using an HMM (Abeles et al. 1995; Kemere
et al. 2008), encompass further characteristic temporal struc-
ture (Afshar et al. 2011; Churchland et al. 2012). Thus, we exam-
ined whether each neural state was associated with a
characteristic path that was not captured by the HMM. To test
this, we computed the pair-wise distances in the high-
dimensional space between pairs of segments associated with
the same neural state. Specifically, we extracted segments that
were at least 150ms long and linearly resampled each segment
to T = 20 uniformly spaced points. Then, we calculated the dis-
tance between the ith and jth segments of state s according to:

τ τ= ∑ ( ) − ( )=d t tij
s

t
T

i
s

j
s

1 , where T is the number of uniformly
spaced points, τi

s is a matrix of size ×T number of neurons cor-
responding to the activity patterns associated with segment i,
and · denotes the L2 norm. The mean distance per state is
given by ̅ = 〈 〉d ds

ij
s . To compare the obtained average distances

to null distributions, we shuffled the binned spike counts of
each segment such that any temporal information would be
lost, and conducted the same analysis as described above. This
was repeated for 500 iterations to create a null distribution per
state. If the firing patterns within a neural segment are merely
noise within a certain subspace or around an average pattern
of activity, two independent segments should not necessarily
share a similar neural trajectory, and a temporal shuffle should
not affect the distribution of distances calculated between pairs
of segments. This enabled us to examine the existence of any
further temporal structure in the population activity within the
identified states and to better characterize the underlying pop-
ulation activity.

Results
Movement kinematics and the simultaneous activity of neural
populations in M1 of two macaque monkeys were recorded

during the performance of a random-target pursuit (RTP) task
and a center-out reaching task. We segmented the neural activ-
ity by identifying sequences of neural states using a hidden
Markov model and used the neural segmentation to parse the
kinematic output (Fig. 1). This enabled us to examine the struc-
ture of movement decomposition solely from the underlying
neural activity in an unsupervised manner without imposing
assumptions regarding the encoded movement features, the
nature of the segmentation, or the duration of the composing
elements.

Segmentation of Neural Activity Reveals Distinct
Kinematic Epochs in the RTP Task

Decoding the sequences of neural states in the RTP task
resulted in neural segments characterized by a single dominant
hidden state that lasted for a few time points (mean segment
duration 260 ± 140ms SD and 240 ± 170ms, for RJ and RS,
respectively), with sharp transitions between dominant states
marking the beginning of a new neural segment (Fig. 1E).

We first assessed the relation between the resulting neural
segmentation and the kinematic output by examining whether
transitions in the neural population activity segmented the
movement in behaviorally relevant points. We found that tran-
sitions between the neural states repeatedly occurred in close
proximity to points of minima and maxima of the tangential
velocity (i.e., speed) of the end effector, segmenting the contin-
uous movement into acceleration and deceleration phases, evi-
dent at the level of single trials (Fig. 2A,B). The number of
transitions between neural states and the number of move-
ment speed extrema were highly correlated across trials, with a
linear fit close to the diagonal line, suggesting that the number
of neural state transitions was similar to the number of move-
ment speed extrema within individual trials. These correlation
values were significantly higher compared to null distributions,
created by shuffling the number of state transitions across
trials, such that each trial’s number of speed extrema was
paired with a different trial’s number of state transitions (RJ R =
0.89, P < 0.001; RS R = 0.66, P < 0.001, randomization tests,
Fig. 2C). We further tested whether the specific timing of the
neural state transitions was predictive of points of speed
extrema. This was accomplished by pairing time points of neu-
ral state transitions with time points of speed extrema (see

Methods), and calculating precision ( )#
# + #

 true positives
 true positives  false positives

and recall ( )#
# + #

ves true positi
 true positives  false negatives

measures. The resulting

precision and recall measures were significantly higher than
those obtained from null datasets, created by placing the HMM
transitions of each trial at random time points within the trial
(RJ mean precision from actual dataset – 0.73 ± 0.011 SEM, mean
recall – 0.73 ± 0.012 SEM; RS mean precision – 0.64 ± 0.007 SEM,
mean recall – 0.7 ± 0.008 SEM, P < 0.001 for both precision and
recall measures in both monkeys, randomization tests, Fig. 2D).

As there is a strong coupling between instantaneous tangen-
tial velocity and path curvature (Abend et al. 1982; Lacquaniti
et al. 1983; Flash and Hogan 1985), we assessed whether the
obtained neural segmentation specifically occurred at points of
high curvature, i.e., at changes of movement direction. As can be
seen in Supplementary Figure 2A, neural state transitions that
co-occurred with minima points of the speed profile were also
associated with curvature maxima. However, neural transitions
also occurred along straight segments (i.e., →curvature 0), at
points of speed maxima. Consistently, the number of neural
transition points was higher than the number of curvature
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maxima across trials (Supplementary Fig. 2B), suggesting that
global changes of the population dynamics are not solely related
to changes in movement direction, but are more tightly coupled
to maxima and minima of the tangential velocity.

We next examined the movement segments associated with
each of the neural states. In both monkeys, each neural state
was coupled with either accelerating or decelerating movement
segments that occurred between successive speed extrema,
executed towards a specific direction within the workspace.
Hence, a single neural state corresponded, for example, to
accelerating movement segments executed from left to right.
The top panels in Figure 3 and Supplementary Figure 3 show
the apparent directional selectivity within each state (one-way
ANOVA for movement direction RJ – F(4 1225) = 317, P < 0.001;
RS F(7 3721) = 264, P < 0.001). The bottom panels in Figure 3 and
Supplementary Figure 3 show the mean normalized speed pro-
file across segments for each neural state, emphasizing the
accelerating or decelerating shape within each state (one-way
ANOVA for mean tangential acceleration across states RJ – F(4
1225) = 172, P < 0.001; RS – F(7 3721) = 309, P < 0.001; sign-test
for mean tangential acceleration showed P < 0.001, for all states
in both datasets, except for state 3 in RS).

Notably, the neural states did not show a consistent selectiv-
ity to the magnitude of movement speed or movement ampli-
tude. Figure 4A and B shows an example RTP trial, in which two
strokes of movement were coupled with similar neural states,
although they were executed with considerably different mean
speeds and amplitudes. This non-selectivity was observed
across trials, as can be seen in Figure 4C and D showing the dis-
tributions of speeds and amplitudes of the movement segments
associated with each state. A non-selectivity of the neural states
for position was also evident, yet as the workspace was rela-
tively small this property was not further examined.

Center-out Reaching Movements Present a Similar
Decomposition

A similar decomposition of the kinematic output was found in
the center-out reaching movements. Mean segment duration
was similar to that obtained in the RTP task, yet slightly shorter

(200 ± 110ms SD). Transitions between neural states occurred
in proximity to speed extrema, and the neural states were asso-
ciated with either accelerating or decelerating segments cou-
pled with directional selectivity (one-way ANOVA for
movement direction F(6 303) = 27, P < 0.001; one-way ANOVA
for mean tangential acceleration across states F(6 303) = 85, P <
0.001; sign-test for mean tangential acceleration showed P <
0.001 for all states; Figure 5A–C). The majority of the bell-
shaped speed profiles within the single reaches (bounded by
the point at which the speed first exceed 15% of maximal speed
and the first speed minimum point following peak speed) were
segmented into two epochs (Fig. 5D). The mean absolute dis-
tance between peak speed and the nearest neural transition
was 0.06 s, and the distribution of signed distances distributed
approximately normal and was centered on zero (Fig. 5E).
These results confirm the findings observed in the RTP task
and demonstrate generalizability of the results across the
tasks. Taken together, these findings indicate that transitions
in the population activity repeatedly distinguish between
epochs of acceleration and deceleration with a dependence on
movement direction, within both sequential target pursuit
movements and single center-out reaching movements.

Instantaneous Tuning for Kinematic Features Does not
Explain the Observed Segmentation

As the observed segmentation is not directly predicted by pre-
viously proposed models of instantaneous directionally tuned
neurons (Georgopoulos et al. 1982; Schwartz and Moran 2000),
we tested whether it could emerge indirectly from such a
model. To accomplish this, we used the center-out dataset and
simulated a population of neurons coding for instantaneous
direction or velocity. Specifically, we fitted a cosine function to
each neuron’s firing rate to determine their preferred direc-
tions, simulated Poisson spike trains according to the obtained
cosine functions and the instantaneous kinematics, and mod-
eled the simulated spike trains using an HMM. As expected,
performing the HMM analyses on the simulated population of
neurons tuned to movement direction/velocity did not result in
segmentation of the kinematic output into epochs of
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acceleration/deceleration. Performing a similar analysis using
models that incorporated tuning for movement acceleration or
a combination of velocity and acceleration showed a closer seg-
mentation to the actual data, yet still did not capture the con-
sistent segmentation we observed (Supplementary Fig. 4A). The
average absolute distance between peak speed and the nearest
neural transition was smaller in the actual data compared with
the distances derived from the simulated populations, and the dis-
tribution of signed distances across trials was narrower
(Supplementary Fig. 4B). These findings suggest that the neural
state transitions were consistently closer to peak speed in the
actual data than in the simulated populations. These observa-
tions were made across training and decoding of each simulated
population using a range of 4–10 hidden states, with 5 iterations of
model training per number of hidden states, implying that the tun-
ing models we used were not sufficient to explain the decomposi-
tion we observed.

Modulation in the Activity of Single Cells Between
Identified Epochs

We then turned to characterize the neural activity underlying
the obtained segmentation. Figure 6A presents example spike
trains of the recorded cells during a single RTP trial, colored
according to the decoded states. The mean firing rate of each
unit was computed during each state, and standardized to indi-
cate whether the cell fired above or below its mean in standard
deviation units (Fig. 6B). Most units were active in multiple
states, suggesting that each state was not represented by a
completely separate ensemble of neurons.

Next, we inspected the activity of single units at a higher
temporal resolution around time points of transition between
states and examined the percentage of cells which showed a
consistent modulation in the activity near these time points.
This was accomplished by extracting spike trains of individual
cells around transitions between specific state-pairs and aver-
aging across instances associated with the same state-pair.
Figure 6C shows single neurons that displayed a clear abrupt
change in their firing rate at the time of transition between a

specific pair of states. These single examples were not unique
and a similar pattern of activity was found in multiple cells in
all 3 datasets. We further fitted a regression tree to each such
mean firing pattern constrained to a single partition, resulting
in a step-like function. For each neuron, we took the state-pair
transition which showed the highest goodness of fit with the
fitted regression tree and extracted the time point of the
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corresponding step (goodness of fit was assessed according to
the correlation values between the fitted regression tree and
the mean firing rate, correlation values across neurons within
each dataset were: RJ RTP task – mean R2 = 0.78 ± 0.15 SD; RS
RTP task – mean R2 = 0.82 ± 0.09 SD; RS center-out task – mean
R2 = 0.57 ± 0.17 SD). Figure 6D shows histograms of the
extracted step-times across the different neurons. In all data-
sets there was an evident peak in the histogram at time zero –

corresponding to the time of transition between states.
Specifically, 66%, 50% and 25% of the cells from RJ in the RTP
task, RS in the RTP task, and RS in the center-out task, respec-
tively, were fitted with a step function in which the step
occurred less than 10ms around the point of transition. This
does not mean to imply that all of these units specifically

exhibited a step-like change in activity, but that a consistent
modulation in activity was coupled with the transition between
states across many cells within each dataset. As a control, we
did the same analysis on firing patterns aligned to the middle
point of each state. The R2 values obtained per neuron when
aligning the firing patterns to the state transition points were
statistically higher than the R2 values obtained in the control
analyses (P < 0.001 for each of the datasets, t-tests for depen-
dent samples). Furthermore, the control analyses did not yield
any evident peak, as apparent in the histograms presented in
Figure 6E. Similarly, using randomly generated state transitions
resulted in a poor fit of the regression trees and no evident
peaks in the corresponding histograms (Supplementary Fig. 5).
These results demonstrate that the segmentation obtained by
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the model resulted from a consistent modulation in the firing
patterns across many cells, and imply that further segmenta-
tion, e.g., at the middle point of states, may not be as evident in
the neural activity.

Finally, we tested whether there was a significant difference
in the firing rates of single cells between behavioral epochs of
acceleration and deceleration, regardless of the obtained neural
segmentation. This was accomplished by comparing between
the number of spikes that occurred during the acceleration
phase and during the deceleration phase of the center-out
reaching movements, per neuron. We found that 47% of the
neurons showed a statistically significant difference between
the sum of spikes during these epochs (pooling together all
trials, t-test for paired samples, P < 0.05). Most of the neurons
that exhibited a modulation in activity showed an increase in
activity during either the acceleration phase or the deceleration
phase (see Fig. 6F left). However, a subset of the neurons showed
an increase in activity during acceleration when the reach was
directed in a certain direction, and an increase in activity during
deceleration when the reach was directed in the opposite direc-
tion (see Fig. 6F right). The latter type of neurons may not result
in a statistically significant difference between the two epochs
when pooling together all trials, suggesting that the actual per-
centage of neurons showing a significant modulation may be
even greater than assessed. Interestingly, the increase in activity
during one of the epochs seemed to be coupled in certain cases
with a strong silencing effect during the other epoch,
highlighting the difference between the two phases. Overall,
these findings demonstrate the differential involvement of
single cells during distinct phases of acceleration and deceler-
ation, and suggest that the obtained segmentation was associ-
ated with a modulation in the activity of many cells within
each dataset.

Population Activity Captures Different Subspaces and
Follows Consistent Temporal Trajectories

To examine the population activity that characterized the
obtained neural states we performed a principal component
analysis (PCA) on the firing patterns and visualized the popula-
tion activity in a reduced space (Cunningham and Yu 2014). As
expected, we found that the neural patterns associated with
each of the states clustered in different regions of the low-
dimensional space (Fig. 7A), demonstrating that each of the
neural states was associated with a distinct subspace of the
neural activity. Following evidence for specific population
dynamics associated with different behavioral epochs (Afshar
et al. 2011; Petreska et al. 2011; Churchland et al. 2012), we also
traced the time-dependent neural trajectories of single trials
(Fig. 7B). This revealed that different instances of a single neu-
ral state followed a similar neural trajectory, implying that the
population activity within a single state was not only constrained
to a specific subspace, but followed a certain time-dependent
propagation. Indeed, the pair-wise distances between neural tra-
jectories associated with the same state, calculated in the high-
dimensional space, were smaller than the distances obtained
using a temporal shuffle (see Methods) (RJ P < 0.05 for all states;
RS RTP task P < 0.05 for all states, RS center-out task P < 0.05 for

5 out of 7 states, randomization tests). Although a more elabo-
rate characterization of the population activity remains to be
explored in future studies (e.g., using state-dependent continu-
ous dynamics; Petreska et al. 2011), these results indicate that
the discrete states identified by the HMM may be further charac-
terized by specific dynamical regimes.

Discussion
Understanding movement compositionality and the underlying
neural processes has been a long-standing challenge. Here, we
examined the temporal structure of movement decomposition
using an unsupervised analysis of the associated neural popu-
lation activity, recorded from the primary motor cortex (M1) of
macaque monkeys while performing a random target pursuit
task (RTP) or a center-out task. Specifically, we used a hidden
Markov model to segment the neural activity into sequences of
neural states and examined how the neural segmentation was
related to the behavioral output. Our results show that the
obtained neural segmentation was strongly associated with a
decomposition of the movement into distinct phases of accel-
eration and deceleration combined with directional selectivity,
evident at the level of single trials in both sequential target pur-
suit movements and center-out reaching movements.

Emerging Neural Segmentation Reveals a Distinct
Decomposition of Movement

Transitions between neural segments systematically coincided
with minima and maxima points of the tangential velocity of the
end-effector, partitioning the movement into accelerating and
decelerating phases. Indeed, we were able to predict points of
speed extrema based on neural state transitions across trials in
both monkeys. Furthermore, each neural state was associated
with either accelerating or decelerating movement segments exe-
cuted towards a certain direction within the workspace (see Figs
2, 3, 5). Interestingly, the obtained neural states did not show
selectivity to movement speed and amplitude (see Fig. 4),
pointing to similarities in the neural activity preceding move-
ments executed with varying speeds and amplitudes (Messier
and Kalaska 1997; d’Avella et al. 2008; Kadmon Harpaz et al.
2014).

Parsing of movements at minima of the tangential velocity
(often associated with curvature maxima (Abend et al. 1982;
Flash and Hogan 1985)) has been proposed by multiple studies
that have put forth the concatenation or superposition of bell-
shaped speed profiles as a model for movement decomposition
(Flash and Henis 1991; Milner 1992; Doeringer and Hogan 1998;
Krebs et al. 1999). Segmentation at maxima of the tangential
velocity has been less frequent, yet suggested to occur at inflec-
tion points (Viviani 1986), at time points of minimal angular
velocity (Schwartz and Moran 1999), or at points of concatena-
tion between parabolic segments (Polyakov et al. 2009). Our
findings, however, demonstrate a consistent decomposition of
the bell-shaped speed profiles at both minima and maxima of
the tangential velocity, segmenting even simple straight reach-
ing movements into two epochs.

A decomposition of the bell-shaped speed profile into two
discrete epochs has been previously associated with muscle

See also Supplementary Figure 5. (F) Spike trains of two example neurons recorded during the center-out trials, aligned to peak speed minus 100ms lag (vertical line

in the middle of each panel). The panels are organized according to the direction of motion of each condition. The neuron displayed on the left showed an increase in

activity only during the acceleration phase, coupled with directional selectivity. The neuron displayed on the right showed an increase in activity during acceleration

and deceleration, depending on the direction of movement.

Movement Decomposition in the Primary Motor Cortex Kadmon Harpaz et al. | 1629



activations in single joint point-to-point movements, during
which the acceleration phase is generated by an initial agonist
burst, while breaking of the movement is related to the following
antagonist burst, hypothesized to be independently controlled
(Hoffman and Strick 1990). This implies that the segmentation
we observed may represent the temporal recruitment of muscle
synergies by M1, possibly organized downstream of M1 (Flament
and Hore 1988; Wessberg and Vallbo 1995; Sergio and Kalaska
1998; Kargo and Giszter 2000, 2008, d’Avella et al. 2003, 2008,
Cheung et al. 2005, 2009; Sergio et al. 2005; Yanai et al. 2008;
Overduin et al. 2015). Indeed, previous studies have shown that
the temporal organization of coordinated muscle activity occurs
upstream of the spinal cord in discrete time-steps (Cordo et al.
1993; Saltiel and Rossignol 2004a, 2004b). However, the relation
between the temporal recruitment of muscle groups and the
kinematic output in multi-joint movements is not fully under-
stood (Flanders et al. 1996). Thus, a single neural state may not
be simply associated with the activation of a group of muscles,
but may be coupled to the temporal context within the move-
ment, e.g., initiating the movement versus breaking it (Jin et al.
2014), or involvement during flexion versus extension (Griffin
et al. 2015). Although an examination of the muscle activation
patterns is required for a more elaborate understanding of the
relation between the obtained segmentation and muscle activ-
ity, our findings point to an intermediate level in the composi-
tionality of movements and may reflect a mapping from
kinematic elements to the required dynamic output (Yanai et al.
2008).

Epoch-based and Population-dependent Encoding

Our results present a strong modulation in the neural activity of
the primary motor cortex between distinct epochs of accelera-
tion and deceleration. Single cells showed a significant change
in the firing rate between these epochs, with abrupt changes at
the time of transitions between neural states (see Fig. 6). These
results are not consistent with models suggesting a continuous
encoding of instantaneous direction or velocity of the end-
effector, which predict that a neuron tuned to the output

direction will be active throughout the entire reach
(Georgopoulos et al. 1982; Moran and Schwartz 1999), as was
also evident in the simulations we performed. Simulations using
models of instantaneous encoding that combined tuning for
both velocity and acceleration better captured the segmentation
we observed, yet still did not replicate the consistent modula-
tions found in the actual data (see Supplementary Fig. 4).
Although a different model of instantaneous encoding for
velocity and acceleration may lead to a better description of the
data (e.g., a non-linear relation between the two variables or
sharper tuning curves), previous studies have demonstrated
that expanded models incorporating instantaneous tuning for
multiple kinematic features were not sufficient to explain firing
patterns of cells in M1 (Paninski, Shoham, et al. 2004; Wu and
Hatsopoulos 2006; Hatsopoulos et al. 2007; Churchland et al.
2012). In a recent study, Suway et al. (2017) examined center-out
reaching movements and modeled the firing of neurons in M1
using a time-dependent directional tuning function. The authors
found discrete epochs within the reaching movements, which
were approximately timed with the epochs found in our study.
An epoch-based encoding is supported by evidence demon-
strating a dependence of the firing rates on kinematic para-
meters with multiple time delays (Paninski, Shoham, et al.
2004; Hatsopoulos et al. 2007), as well as by studies showing
that pair-wise correlations between the neurons change
abruptly between different behavioral epochs (Abeles et al.
1995; Vaadia et al. 1995; Elsayed et al. 2016). Our results sup-
port and extend these findings by identifying neural states
that are associated with distinct phases of the kinematic out-
put, and by demonstrating the modulation of single cells at
the transition between these movement phases.

Although the firing rates of single units demonstrated a
clear modulation in the transition between epochs, single cells
were active in multiple neural states, suggesting that the popu-
lation activity is required to distinguish between different
behavioral phases. This is in agreement with previous studies
which have shown that single units may be active in multiple
behavioral epochs, such as during preparation and execution,
but the overall population activity demonstrates distinct
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Figure 7. Neural population activity across neural states. (A) Neural activation of all trials projected onto a reduced space using PCA, show clusters of activations cor-

responding to the decoded neural states. (B) Neural trajectories of single RTP trials (from RJ and RS, left and middle panels respectively), or of two center-out trials

(RS, right panel), show that segments associated with the same neural state propagate in a similar path. Colors denote different neural states. Black dots represent

the beginning of a trial. Axes were rotated to capture best viewing angle of the 3D space.
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properties that differentiate between the epochs (Abeles et al.
1995; Elsayed et al. 2016). Visualizing the population activity in
a low-dimensional space verified the difference between the
states by revealing a clustered organization of the neural pat-
terns corresponding to each of the states in distinct subspaces
(see Fig. 7A). Furthermore, a neural state seemed to be charac-
terized by a specific temporal sequence of activations – a
unique neural trajectory, rather than a single point or random
cloud of points in the corresponding subspace (see Fig. 7B).
Recent work has demonstrated that the population activity
during reaching movements follows a specific neural trajectory,
namely characterized by rotational dynamics (Afshar et al.
2011; Churchland et al. 2012; Shenoy et al. 2013). As rotational
dynamics can originate from phase-locked and phase-shifted
oscillations, the breakdown of a single reaching movement
may represent neural ensembles activated with shifted phases
that facilitate the different kinematic epochs we observed
(Bruno et al. 2015). However, further work is needed in order to
fully characterize the population activity within the identified
states. Still, the findings presented here, along with previous
findings, imply that neural ensembles in the primary motor
cortex represent movement in a more epoch-based and
population-dependent encoding than previously hypothesized.

Conclusions
Studying movement segmentation by modeling the neuronal
activity with an HMM, enabled an unsupervised detection of
movement epochs at the CNS level, without imposing assump-
tions regarding the encoded movement features, the nature of
the segmentation, or the duration of the composing elements.
Analyzing datasets consisting of hundreds of trials, each differ-
ent from the others, with a large range of movement para-
meters, we were able to find a repeatable structure in the
population activity of neurons in M1. This structure accurately
predicted distinct temporally extended segments of the behav-
ioral output, which coincided with acceleration and decelera-
tion segments, evident at the level of single trials. These
findings provide new insight regarding the structure of move-
ment composition and emphasize the differential involvement
of the population activity in multiple epochs of the movement,
pointing to an encoding scheme that involves the control of
discrete phases of acceleration/deceleration at the level of M1.
A mechanism in which the neural activity transitions between
discrete states may underlie an intermittent control regime,
which is often hypothesized in the context of movement
decomposition (Craik 1947; Miall et al. 1986; Gawthrop et al.
2011; Karniel 2013). The intermittent commands that control
the transitions between the states may arrive either from other
brain regions (Matsumoto et al. 1999; Jin et al. 2014) or from
internal oscillations (Hall et al. 2014). It will be important, how-
ever, to test the segmentation of the neural activity in move-
ments that go beyond single point-to-point reaching and
sequential target pursuit movements in order to generalize the
conclusions of this work to other types of movements. Another
important follow-up would be to trace the generation of the
identified states during learning. Will any change occur in the
identified states during the appearance of chunked or co-
articulated movements? One hypothesis is that new states will
emerge. Another hypothesis is that the transitions between
existing states will be strengthened and occur more rapidly.
The methods presented here can be used to examine such
questions and possibly dissociate between these different
hypotheses. A similar approach can be used to probe the

segmentation of movement at different brain regions, possibly
controlling different temporal scales, and to reveal the struc-
ture of movement composition at different levels of the motor
hierarchy.
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Supplementary material is available at Cerebral Cortex online.
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