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Abstract

Objectives. Malaria, caused by Plasmodium infection, remains a
major global health problem. Monocytes are integral to the
immune response, yet their transcriptional and functional
responses in primary Plasmodium falciparum infection and in
clinical malaria are poorly understood. Methods. The
transcriptional and functional profiles of monocytes were
examined in controlled human malaria infection with
P. falciparum blood stages and in children and adults with acute
malaria. Monocyte gene expression and functional phenotypes
were examined by RNA sequencing and flow cytometry at peak
infection and compared to pre-infection or at convalescence in
acute malaria. Results. In subpatent primary infection, the
monocyte transcriptional profile was dominated by an interferon
(IFN) molecular signature. Pathways enriched included type I IFN
signalling, innate immune response and cytokine-mediated
signalling. Monocytes increased TNF and IL-12 production upon
in vitro toll-like receptor stimulation and increased IL-10
production upon in vitro parasite restimulation. Longitudinal
phenotypic analyses revealed sustained significant changes in the
composition of monocytes following infection, with increased
CD14+CD16� and decreased CD14�CD16+ subsets. In acute malaria,
monocyte CD64/FccRI expression was significantly increased in
children and adults, while HLA-DR remained stable. Although
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children and adults showed a similar pattern of differentially
expressed genes, the number and magnitude of gene expression
change were greater in children. Conclusions. Monocyte activation
during subpatent malaria is driven by an IFN molecular signature
with robust activation of genes enriched in pathogen detection,
phagocytosis, antimicrobial activity and antigen presentation. The
greater magnitude of transcriptional changes in children with
acute malaria suggests monocyte phenotypes may change with
age or exposure.

Keywords: CHMI, interferon, malaria, monocytes, Plasmodium
falciparum, RNA sequencing

INTRODUCTION

Malaria remains an important global disease, with
an estimated 228 million cases and 405 000 deaths
in 2018, the majority caused by Plasmodium
falciparum.1 Upon transmission, Plasmodium
parasites firstly infect hepatocytes to mature and
multiply before release into the bloodstream and
immediate infection of red blood cells (RBCs).
Blood-stage infection is characterised by cycles of
asexual replication leading to RBC rupture and
periodic malaria symptoms. Despite recent gains
in reducing the burden of malaria, progress has
stagnated in the last 3–5 years, with morbidity
rising in several highly endemic countries.1 In
areas of unstable malaria transmission, morbidity
and mortality affect adults as well as children.

Innate and adaptive immune responses mediate
both tolerogenic and antiparasitic protective
mechanisms that can result in reduced clinical
symptoms in future reinfections,2 yet acquisition
of clinical immunity is complex and incompletely
understood. Monocytes are integral to innate
immune responses and may modulate adaptive
immune responses during malaria.3,4 An increased
understanding of monocyte activation and
function in subpatent Plasmodium infection may
aid the development of strategies to enhance
protective responses to improve the morbidity and
mortality of malaria and assist in vaccine
development.

Monocytes express a broad range of pattern
recognition receptors, including toll-like receptors
(TLR),5 as well as receptors for the detection and
phagocytosis of opsonised or non-opsonised
parasites or infected RBC.6-8 Besides parasite
detection and phagocytosis, monocytes are major
producers of predominantly inflammatory
cytokines in malaria, including TNF and IL-12;

these assist immune control of Plasmodium
infection,9,10 but also contribute to the clinical
symptoms of malaria.11,12

Three distinct subsets of monocytes are
identified by differential expression of the LPS
receptor (CD14) and FccRIII (CD16), and are
defined as classical (CD14+CD16�), intermediate
(CD14+CD16+) and non-classical (CD14�CD16+)
monocytes.13 These subsets have differing
capacities to mediate innate and adaptive
immune responses.13,14 Classical monocytes mount
a highly inflammatory response following
exposure to bacterial TLR ligands,14 while non-
classical monocytes respond to viral antigens15

and intermediate monocytes are the most
proficient at antibody-mediated phagocytosis of
P. falciparum.8,16 Plasmodium infection can
change the composition of circulating monocytes.
In children with asymptomatic17 or uncomplicated
malaria,16 and in malaria in pregnancy,18 CD16+

intermediate/non-classical monocytes increase
proportionally in the peripheral blood. However,
there is a lack of information regarding
prospective changes to monocyte composition
during primary blood-stage infection and acute
malaria in non-immune adults. Recent whole-
blood transcriptional analysis suggests that
monocytes may have an anti-inflammatory role in
antimalarial immunity.19 Genetically susceptible
Mossi groups in Mali lack transcriptionally active
monocytes while, relatively resistant Fulani
populations have transcriptionally active
monocytes (but not T cells, B cells or NK cells)
during P. falciparum infection20, highlighting the
importance of monocytes in protective immune
responses.

Here, we investigate the transcriptional,
functional and phenotypic changes in monocytes
during an experimental blood-stage P. falciparum
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infection in malaria-naive healthy subjects and
during an episode of clinical malaria in children
and adults residing in a malaria-endemic region.
We specifically isolated monocytes for
transcriptome analysis by RNA sequencing, to
determine monocyte gene expression during
subpatent and clinical malaria. In primary
infection, we focus on blood-stage only infection,
allowing us to examine how P. falciparum
infection affects monocyte responses independent
of the liver stage. Furthermore, our study design
allows us to do paired analyses, as each patient’s
baseline or convalescence sample served as their
own control.

RESULTS

Monocyte gene expression during primary
P. falciparum infection

To determine the immune pathways and genes
activated early during a primary P. falciparum
blood-stage infection, we performed a paired
transcriptome analysis of isolated monocytes via
RNA sequencing. Blood monocytes were isolated
from five volunteers at baseline immediately prior
to intravenous infection with P. falciparum blood
stages and on day 8 post-infection allowing each
individual’s baseline sample to act as their own
control (Figure 1a and b). On day 8 post-infection,
when the infection was still subpatent, 509
differentially expressed genes (DEGs, FDR < 0.05)
were identified, of which 71% (360) were
upregulated (Figure 1c, Supplementary table 1).

Using IPA (Ingenuity Pathway Analysis), we
identified DEG enrichment of canonical pathways,
including IFN signalling, communication between
innate and adaptive immune cells (including
CD40), antigen presentation, neuroinflammation
signalling (including CCL2, CD40, CXCR10),
triggering receptor expressed on myeloid cells-1
(TREM-1) signalling, role of pattern recognition
receptors in recognition of bacteria and viruses
(including TLR1, TLR7, TLR8), activation of IRF by
cytosolic pattern recognition receptors,
phagosome formation [including FCGR1A (CD64)],
FccR-mediated phagocytosis and production of
reactive oxygen (RO) species [including CYBB, the
gene for NADPH oxidase 2 (NOX2) and NCF1,
another subunit of NADPH oxidase] (Figure 2a
and c). STRING analysis revealed similar GO (Gene
Ontology) biological pathways relating to innate
immune response (including TLR1, TLR7, TLR8),

cytokine-mediated signalling, type I IFN signalling,
regulation of immune system process, cell surface
signalling (including FCGR1A, the gene for the
high-affinity Fc-gamma receptor CD64; CD36, a
receptor involved in non-opsonised phagocytosis;
and inflammatory chemotactic cytokines CXCL9,
CXCL10), IFN-c-mediated signalling, signal
transduction, regulation of innate immune
response [including CD40 and signal transduction
(including chemokine CCL2 (MCP-1) and its
receptor CCR2)] (Figure 2c, Supplementary figure
1).

Using IPA, we further identified predicted
upstream regulators of the DEGs (Figure 2b), with
predicted upstream activation of IFN-related
genes (including IFN-a, IFN-c, IRF7, IFNA2, IRF1,
IFNL1, IFNB1, IRF3, IFNaR, STAT1), and other
inflammatory cytokines (TNF, IL1B, IL6), pattern
recognition receptors (TLR3 and TLR9), and TNF
superfamily member CD40LG (CD40 ligand)
(Figure 2b). Upstream regulators predicted as
inhibited included mitogen-activated protein
kinase 1 (MAPK1), prostaglandin E2 receptor 4
(PTGER4), suppressor of cytokine signalling 1
(SOCS1) and interleukin 1 receptor antagonist
(IL1RN), and tripartite-motif protein 24 (TRIM24),
the negative regulator of p53 stability.21 Increased
TP53 along with increased p53 gene expression in
monocytes has recently been identified to
attenuate malaria-induced inflammation.19

Across all identified pathways, the magnitude
of response varied across participants (Figure 2c),
consistent with the known heterogeneity of
immune responses to primary Plasmodium
infection in adults.22 However, overall, the
monocyte transcriptional profile during subpatent
P. falciparum blood-stage infection is dominated
by an IFN-driven signature accompanied by
pathways relating to pathogen detection,
phagocytosis, antimicrobial activity and antigen
presentation.

Monocytes have an activated phenotype
after a primary infection

TLR1, TLR7 and TLR8 signalling pathways were
enriched in monocytes during primary
P. falciparum infection (Figure 2). To assess
whether these transcriptional changes resulted in
functional changes to TLR responsiveness,
monocyte cytokine production was measured
following stimulation with TLR agonists and
P. falciparum-infected RBCs (Figure 3a). TLR
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responsiveness was assessed on total CD14+

monocytes because surface expression of CD16
(FccRIII) is rapidly lost during short-term culture
and stimulation.23 In response to TLR1/2 (PamCys2)
or TLR4 (LPS) stimulation, monocytes produced a
strong TNF and moderate IL-12 response
(Figure 3b), which increased at peak infection. In
response to TLR7 (imiquimod) stimulation,
monocytes had a modest TNF response, which
significantly increased at peak infection
(Figure 3b). TLR agonists induced low IL-10
cytokine production which did not change

following infection (Figure 3b). Increased
expression of SLAMF7 on monocytes indicates
activation specifically by TLR triggering.24

Consistent with increased slamf7 gene expression
(Figure 5c) and increased TLR responsiveness
(Figure 3b), phenotypic expression of SLAMF7 was
also increased at peak infection on classical
monocytes (Figure 3c).

Monocyte responsiveness to pRBC in vitro
stimulation at baseline and at peak infection was
also assessed. Prior to infection, pRBC stimulation
resulted in low but detectable parasite-specific
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Figure 1. Cohort and RNA sequencing workflow. (a) Schematic of IBSM clinical trial cohort (grey) and acute clinical malaria trial cohorts with

children (dark red) and adults (dark red). Monocytes were isolated by negative selection MACS separation and bulk-RNAseq performed.

Alongside, RNAseq monocyte number and activation were assessed by flow cytometry. (b) Total gene expression changes for IBSM, child and

adult clinical cohorts, line indicates FDR < 0.05. (c) Total differentially expressed gene (DEG) numbers for the three cohorts, red indicates

increased expression and blue indicates reduced expression. conval, convalescence (day 28); DEGs, differentially expressed genes; FC, fold change;

FDR, false discovery rate; IBSM, induced blood-stage malaria; PBMCs, peripheral blood mononuclear cells; Pf, P. falciparum.

Figure 2. Transcriptional profile of monocytes after primary P. falciparum infection (IBSM cohort). (a) Canonical pathway analysis performed by

IPA (Ingenuity Pathway Analysis), Benjamini–Hochberg-adjusted significant pathways are shown, bar colour indicates activation z-score

(blue = reduced, white = 0 or no score and red = increased). (b) Predicted upstream regulators induced analysis performed using IPA, and red

bars indicate activated, blue bars indicate inhibited, Benjamini–Hochberg-adjusted P-values. (c) Normalised gene expression of genes involved in

enriched pathways represented in heat maps. Each column is one volunteer at ‘peak infection’ and ‘baseline’ (before infection). Red indicates

increased gene expression, and blue indicates reduced gene expression. For all analyses, DEG input FDR < 0.01, n = 5 paired samples. DEGs,

differentially expressed genes; FC, fold change; FDR, false discovery rate.
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TNF and IL-10 production [P = 0.06 and 0.03 for
pRBC versus uninfected RBC (uRBC), respectively;
Supplementary figure 2]. At peak infection, IL-10
production increased (P = 0.06), with a significant
increase in TNF/IL-10 co-production in response to
pRBC restimulation (P = 0.04) (Figure 3d). There
was no IL-12 production detected in response to
pRBC or uRBC stimulation (data not shown).

Taken together, these data suggest that during
a subpatent P. falciparum blood-stage infection,
monocytes responded to TLR stimulation with
increased inflammatory cytokine production,
while they co-produced regulatory cytokines in
response to restimulation with P. falciparum
parasites, that is increased IL-10 producers,
suggesting that during subpatent P. falciparum

malaria monocytes develop a regulatory capacity,
potentially to minimise tissue damage following
chronic activation.25

Phenotypic changes to monocyte subsets
persist after parasite clearance

To determine whether the transcriptional changes
we identified translated to phenotypic changes in
monocytes, we assessed monocyte subsets
(Figure 4a) for cell surface marker expression,
prior to, during and after infection by flow
cytometry. Despite monocyte subset frequency
normally being tightly regulated,14 during a
primary subpatent P. falciparum infection, classical
(CD14+CD16�) monocyte frequency increased
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Figure 3. Monocytes increase cytokine production upon TLR stimulation during subpatent primary P. falciparum infection (IBSM cohort). (a)

Representative gating of monocytes in whole-blood intracellular cytokine assay. Monocytes were identified as lineage (CD3, CD19 and CD56)�,
CD14+. Intracellular cytokine production by monocytes (IL-12, TNF and IL-10) in three conditions: no stimulation, TLR4 and pRBC stimulation. (b)

Longitudinal monocyte responsiveness to TLR1/2 (Pam3CSK4/HKLM), TLR4 (LPS) or TLR7 (imiquimod) stimulation during IBSM, left plot; IL-12

production, middle plot; TNF production, right plot; IL-10 production. (c) Confirmation of SLAMF7 gene expression by flow cytometry on

monocyte subsets: classical (blue), intermediate (green) and non-classical (red), monocyte subset gating in Figure 4. The Friedman test was used

to compare longitudinal data. (d) Monocyte cytokine production in response to uRBC or pRBC stimulation, left plot; TNF single producers, middle

plot; IL-10 single producers, right plot; TNF/IL-10 co-producers. Boxplot lower and upper hinges represent first and third quartiles with median

line indicated across the box. Whisker lines correspond to highest and lowest values no further than 1.5 interquartile range from the hinges,

whereas dot points beyond whisker lines are outliers. The Wilcoxon matched-pairs sign-rank test was used to compare paired data. Tests were

two-tailed and considered significant if P-values < 0.05, n = 6 paired samples. FSC, forward scatter; pRBC, parasitised RBC; SSC, side scatter;

TLR, toll-like receptor; uRBC, uninfected RBC.
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significantly on day 15 and remained significantly
elevated at 45 days after infection (Figure 4b),
whereas non-classical (CD14dimCD16+) monocytes
showed a corresponding decrease (Figure 4b). This
increase in classical monocytes was also observed
when classical monocytes were enumerated to all
live PBMCs (Supplementary figure 3).

We further measured cell surface marker
expression relating to activated pathways. CC-
chemokine receptor 2 (CCR2) gene expression was
significantly increased in isolated monocytes at
day 8 of blood-stage infection. In accordance with

the literature,26,27 we observed CCR2 cell surface
expression predominantly on classical monocytes,
with a significant increase from day 15, which
remained elevated at day 45 (Figure 4c). In line
with the increased CD40 gene expression
following P. falciparum infection, we observed
increased CD40 cell surface expression on all three
monocyte subsets, with expression also remaining
significantly elevated 45 days after infection
(Figure 4f). This increase was especially prominent
on intermediate (CD14+CD16+) and non-classical
(CD14dimCD16+) monocytes. CD40 is a member of
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Figure 4. Differential activation of monocyte subsets during subpatent primary P. falciparum infection (IBSM cohort). (a) Fresh whole-blood

gating strategy for total monocyte subsets. Subsets were identified as lineage (CD3, CD19 and CD56)�, HLA-DR+ and differential expression of

CD14+ and CD16+. Classical (CD14+ CD16�), blue; intermediate (CD14+ CD16+), green; and non-classical (CD14dimCD16+), red. (b) The

proportion of monocyte subsets within the total monocyte population: classical (blue), intermediate (green) and non-classical (red). Confirmation

of genes differentially expressed in Figure 2 by flow cytometry, (c) CCR2 percent gated, (d) HLA-DR MFI, (e) CD86 percent gated, (f) CD40 MFI,

(g) CD36 percent gated, (h) CD64/FcyRI MFI and (i) CD32/FcyRII percent gated. Boxplot lower and upper hinges represent first and third

quartiles with median line indicated across the box. Whisker lines correspond to highest and lowest values no further than 1.5 interquartile range

from the hinges, whereas dot points beyond whisker lines are outliers. The Friedman test was used to compare longitudinal data. Tests were

two-tailed and considered significant if P-values < 0.05, n = 8 paired samples. FSC, forward scatter; MFI, median fluorescence intensity; SSC, side

scatter.
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the TNF receptor family, and increased expression
of CD40 on monocytes is reported to increase
monocyte pro-inflammatory cytokine production
and expression of other co-stimulatory
receptors.28 The increase in CD40 was not
accompanied by an increase in co-stimulatory
molecule CD86 or HLA-DR expression (Figure 4d
and e).

We also assessed expression of CD36 which
mediates non-opsonic phagocytosis of parasites29

and CD64/FccRI and CD32/FccRII which are
involved in opsonic phagocytosis.8 CD36 was
differentially expressed across monocyte subsets,
with classical monocytes expressing high levels of
CD36, followed by intermediate monocytes, while
< 10% of non-classical monocytes expressed CD36
(Figure 4g). On classical monocytes, CD36
expression increased further by day 15 post-
infection. Classical and intermediate monocytes
predominantly expressed CD64/FccRI (Figure 4h).
CD32/FccRII expression was increased on classical
monocytes but decreased on non-classical
monocytes, with significant changes observed at
day 45 post-infection (Figure 4i).

Taken together, these data indicate that the
transcriptional changes observed during
subpatent primary P. falciparum infection
(Figures 1 and 2) result in multiple sustained
changes to the composition and phenotypes of
monocytes, suggestive of changes to innate
immune effector mechanisms, antigen capture
and cell migration pathways which are
maintained after parasite clearance.

Monocyte gene expression following
naturally acquired acute uncomplicated
malaria

Following the investigation of monocyte
responses during a first P. falciparum blood-stage
infection in previously malaria-naive adult

volunteers, we next isolated monocytes from ten
adults and eight children living in malaria-
endemic Papua who presented to the clinic with
acute P. falciparum malaria and again 28 days
after malaria treatment and successful parasite
clearance (Figure 1a, Table 1). Lowland Papua is
an area of perennial, unstable malaria
transmission, where both children and adults are
susceptible to symptomatic malaria because of
incomplete development of immunity.

We performed a paired analysis of
transcriptional changes in isolated monocytes via
RNA sequencing allowing each patient’s
convalescence sample to act as their own control.
Overall, children had more differentially expressed
genes at acute infection than adults
(children = 496, adults = 148, FDR < 0.05,
Figure 1b and c, Supplementary tables 2 and 3).
In children with acute malaria, more IPA canonical

Figure 5. Transcriptional profile of monocytes in children and adults with acute clinical malaria (clinical malaria cohort). (a) Canonical pathway

analysis performed by IPA, Benjamini–Hochberg-adjusted significant pathways are shown, and bar colour indicates activation z-score

(blue = reduced, white = 0 or no score and red = increased). (b) Canonical pathway analysis performed by IPA, Fisher’s exact test, significant

pathways are shown, and bar colour indicates activation z-score (blue = reduced, white = 0 or no score and red = increased). Normalised gene

expression of genes involved in enriched pathways represented in heat maps. Each column is one patient at ‘acute’ infection and ‘convalescence’,

28 days after treatment. Red indicates increased gene expression, and blue indicates reduced gene expression. (c) Child cohort and (d) adult

cohort. (e) Venn diagrams of DEGs in adult and child cohorts, red indicates increased gene expression and blue indicates reduced gene

expression, FDR < 0.05. (f) Scatter plot showing fold change in DEGs across both adult and child cohorts, FDR < 0.01. (g) Heat map of

normalised gene expression across child and adult acute malaria cohorts, FDR < 0.01, child cohort; n = 8 paired samples, adult cohort; n = 10

paired samples. conval, convalescence (day 28); DEGs, differentially expressed genes; FC, fold change; FDR, false discovery rate; Pf, P. falciparum.

Table 1. Characteristics of participants

Malaria-

naive

volunteers

(IBSM)

Malaria-

exposed

adults

(acute

malaria)

Malaria-

exposed

children

(acute

malaria) P-valuea

Number 19 15 8

Median age in

years [IQR]

23 [20–26] 30 [20–38] 11 [8–13]

Male, number

(%)

17 (89) 10 (66) 3 (38)

Median parasite

densityb

(parasites per

lL) [IQR]

10 [4–19] 2275

[788–

5712]

7377

[2965–

13 644]

0.03

IBSM, induced blood-stage malaria; IQR, interquartile range.
a

Mann–Whitney U-test compared malaria-exposed adults and malaria-

exposed children at presentation to clinic.
b

Determined by PCR for malaria-naive adults (IBSM) and by

microscopy for all other groups.
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pathways were predicted to be upregulated,
including actin-related pathways, integrin, CXCR4,
IL-8 signalling and Fcc receptor-mediated
phagocytosis in macrophages and monocytes
(Figure 5a), reflective of the larger number of
DEGs identified. As seen in subpatent primary
P. falciparum infection (Figure 2b), IPA-predicted
activated upstream regulators included IFN-c-
related gene products, including IFNG and STAT1
in children (Supplementary figure 4b); in adults,
IL-4, IL-6, the corresponding signal transducers
STAT6 and STAT3, and triggering receptor
expressed on myeloid cells-1 (TREM1)
(Supplementary figure 5b), a pathway activated in
subpatent primary infection (Figure 2a). In adults
with acute malaria, IPA canonical pathway
analysis identified upregulation of pathways
related to platelet-derived growth factor (PDGF)
signalling, acute-phase response signalling
[including HP, the gene for haptoglobin;
TNFRSF1B, the gene for TNF receptor 2 (TNFR2);
and mitogen-activated protein kinase kinase
kinase 1 (MAP3K1), a molecule involved in TNFR
signalling] and NF-jB signalling [including
MAP3K1, TNFRSF1B and PRKCB (protein kinase C
beta type)]. OAT, the gene for ornithine
aminotransferase, an enzyme involved in L-proline
metabolism from L-ornithine, was also
differentially expressed in adults, suggestive of
arginine degradation (Figure 5c).

As seen in experimental infection, STRING
analysis showed DEGs were enriched for immune
response pathways and more specifically,
pathways involved in leucocyte activation
[including Notch receptor ligand delta-like 1
(DLL1) in both adults and children, and SLAMF7
and FCER1G, the Fc receptor gamma chain
(FcRc)30 in children], regulation of immune
response, complement activation and cell surface
receptor signalling [including FCGR1A, the gene
for the high-affinity Fc-gamma receptor CD64,
and FCGR1B (CD64b) in children] (Supplementary
figures 4 and 5c,d). More pathways were enriched
in children when compared to adults (Figure 5a
and c, Supplementary figures 4a and 5a). Of the
DEGs, only 27 upregulated DEGs were shared
between children and adults (FDR < 0.05,
Figure 5e), including C1QA and C1QB encoding
C1q, the first component of the classical
complement pathway and DLL1.

Overall, despite not sharing many significantly
deferentially expressed genes at FDR < 0.05, of
the genes significantly differentially expressed in

children with acute malaria, the direction of the
fold change of each individual gene was positively
correlated between children and adults (Figure 5f
and g), suggesting that the pattern of gene
changes is independent of age, but the
magnitude of changes may be reduced in adults
(Figure 5g).

Intermediate monocytes increased in
children with clinical malaria

In addition to transcriptional changes, we also
assessed monocyte subset phenotype in children
and adults with malaria and at convalescence
(Figure 6a). The proportion of intermediate
(CD14+CD16+) monocytes was significantly higher
in children during acute infection than
convalescence (P = 0.02; Figure 6b), while we
observed no significant changes in monocyte
subsets in adult patients. The increase in
intermediate monocytes in children during clinical
infection is consistent with previous findings in
uncomplicated malaria in Kenyan children,16

during asymptomatic infection,17 and in pregnant
woman.18 There were no statistically significant
changes in markers associated with antigen
presentation (HLA-DR, Figure 6c) or co-stimulatory
capacity (CD86, Supplementary figure 6).
However, consistent with transcriptional
upregulation of CD64/FccRI genes FCGR1A and
FCER1G (common FcRc chain) in children
(Figure 5b), CD64/FccRI cell surface expression on
monocyte subsets was increased in both children
and adults during malaria (Figure 6d). Expression
of the haemoglobin/haptoglobin scavenger
receptor CD163 on classical monocytes was
significantly increased in children, but not adults
with acute malaria (Figure 6e). While the CXCR4
signalling pathway was upregulated in children
with acute malaria (Supplementary figure 4a), we
saw no significant change in CXCR4 expression on
the cell surface (mobilises monocytes to bone
marrow) across any of the monocyte subsets
during acute malaria infection (Supplementary
figure 6). One predicted activated upstream
regulator in adults was IL-4 (Supplementary figure
5b). IL-4 can polarise monocytes towards
alternative activation and was recently associated
with nitric oxide insufficiency and disease
severity.31 However, no significant change in
monocyte surface expression of the mannose
receptor CD206, a marker of alternatively
activated monocytes,32 was observed in children
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or adults with uncomplicated acute malaria
(Supplementary figure 6c).

DISCUSSION

Here, we evaluated transcriptional, phenotypic
and functional monocyte responses in previously
malaria-naive volunteers undergoing their first
P. falciparum blood-stage infection. Our findings
show that overall monocytes are transcriptionally,
functionally and phenotypically activated during
subpatent P. falciparum infection independent of
Plasmodium liver stages. We identified robust
activation of genes enriched in pathogen
detection, phagocytosis, antimicrobial activity and
antigen presentation. During primary infection,
monocytes displayed heightened responsiveness
to TLR stimulation and increased IL-10 production
upon re-exposure to P. falciparum-infected RBCs.
Transcriptional activation resulted in
compositional and phenotypical changes to
monocyte subsets, suggesting altered migration,
antigen presentation and phagocytosis function.
In clinical malaria, the monocyte transcriptional
response to infection appeared independent of
age; despite more DEGs in children, the overall
direction of transcriptional change was similar
between adults and children. Together, these data
provide an extensive map as to how human
monocytes respond to P. falciparum infection and
indicate monocytes have multiple roles in
Plasmodium infection.

The monocyte response during subpatent
primary P. falciparum was distinctively driven by a
strong IFN molecular signature, including type I
IFNs and gamma IFN, with the most activated
pathways being interferon signalling and TREM1
signalling. The same two pathways were the most
activated in a whole-blood RNA sequencing
analysis of healthy volunteers experiencing
symptomatic malaria following controlled
P. falciparum sporozoite infection.33 This strong
alignment with our findings in isolated monocytes
suggests blood monocytes are the key responders
during blood-stage malaria despite their relatively
small abundance amongst circulating white blood
cells. Furthermore, we now report this response as
activated at subpatent parasitaemia, independent
of Plasmodium liver stages. We observed a strong
inflammatory gene signature in isolated
monocytes during subpatent infection, including
increased CXCL10, CXCL9 and STAT1 gene
expression. In contrast, the strong transcriptional

response in monocytes we report here is absent in
plasmacytoid dendritic cells, which have minimal
gene expression changes within the same study
cohorts.34 These data extend previous research
detailing PBMC or whole-blood gene expression
profiles in malaria patients33,35-38 and are
consistent with existing knowledge on the
importance of monocytes in inflammatory
responses during malaria.19,20

In line with IFN-c having the highest activation
score of the predicted upstream regulators,
monocytes displayed a heightened responsiveness
to TLR ligands during subpatent infection. This is
in accordance with previous reports of PBMC
hyper-responsiveness to TLR ligation in febrile
malaria.39,40 In contrast, monocyte responsiveness
to restimulation with parasite-infected RBC is
skewed towards a regulatory phenotype with
increased IL-10 production, similar to our previous
reports for CD16+ dendritic cells (DCs).23 The
blunted inflammatory cytokine response to
parasite restimulation may be explained by the
enrichment of type I IFN signalling pathways, as
IL-6 production by monocytes is enhanced when
type I IFN receptor is blocked.41 During malaria,
type I IFN is produced by multiple cell types
including T cells, NK cells and monocytes.41 While
we did not evaluate monocyte cytokine
production in children with uncomplicated clinical
malaria, previous studies have demonstrated that
monocytes isolated from children with
uncomplicated malaria show increased IL-12, IL-6
and TNF cytokine production in response to TLR1/
2 or TLR4 stimulation.16 In contrast, a separate
study showed that monocytes from children with
severe malaria had an impaired ability to produce
inflammatory cytokines (TNF and IL-6) to in vitro
TLR agonists such as LPS.10 These differences in
TLR responsiveness suggest that TLR signalling is
influenced by parasite density and/or parasite
exposure.

Besides IFNs, the CD40/CD40 ligand axis may
contribute to monocyte activation following
Plasmodium infection, with CD40LG being
amongst the predicted activated upstream
regulators. CD40 is considered a marker of
monocyte activation, and CD40 ligation increases
monocyte production of inflammatory cytokines28

and prostaglandin E2.42 CD40 may further
contribute to monocyte interaction with activated
endothelial cell and assist extravasation.43 We
demonstrated upregulation of its ligand CD40 at
the protein level on all three monocyte subsets,
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with the greatest increase seen on non-classical
monocytes, a monocyte subset that proportionally
declined in the circulation over time. Whether this
decline is related to extravasation or sequestration
remains to be determined.

Predicted inhibited upstream regulators of
monocyte gene expression in subpatent primary
infection included MAPK1, IL1RN and TRIM24,
which overlapped with regulators predicted to be
inhibited in malaria-naive volunteers experiencing
symptomatic malaria following P. falciparum
sporozoite infection.33 TRIM24 targets p53
degradation,21 a molecule recently reported to
play a role in clinical immunity, as p53 is
upregulated at RNA and protein level in
asymptomatic P. falciparum carriers during the
malaria season in Mali.19 The congruent overlap
of upstream regulators between these studies
suggests these predicted inhibited upstream
regulators take effect early during blood-stage
infection, independent of P. falciparum liver
stages, and warrants further investigation into the
control (and timing) of upstream regulators.

Multiple lines of evidence suggest that during
malaria, monocytes also have important roles in
initiating adaptive responses.8,44,45 Previous studies
have shown that monocytes increase expression of
B-cell-activating factor (BAFF) during experimental
P. falciparum infection with sporozoites,46

suggesting monocytes may contribute to B-cell
activation.47 In this study, monocyte transcriptional
profiling indicated a predominantly MHC class I
antigen presentation pathway signature,
suggesting monocytes may contribute to the
activation of CD8 T cells that have recently been
shown to kill Plasmodium-infected reticulocytes48

and parasitised erythroblasts in a murine malaria
model.49 Further, HLA-DR expression on monocytes
during infection was retained, consistent with our
previous studies where monocytes retain their
ability to upregulate HLA-DR expression in
response to TLR ligands or pRBC during subpatent
primary P. falciparum infection.50 In contrast,
during both experimental subpatent infection and
clinical malaria, HLA-DR expression is reduced on
classical CD1c+ DC,50,51 which are typically
considered superior antigen-presenting cells.52

Similarly, we have previously reported that clinical
malaria drives impaired DC function and increased
apoptosis.51 Thus, together data support a role of
monocytes as important antigen-presenting cells,
in contrast to DCs, for initiation of adaptive T- and
B-cell immune responses during malaria.

Plasmodium falciparum infection resulted in
changes in monocyte composition and phenotype
which was sustained for up to 1 month after a
first infection. These results suggest that
P. falciparum may drive ‘innate immune
training’,53 in which innate immune cells such as
monocytes undergo specific changes in their
chromatin profiles induced by pathogen
stimulation.53 Sustained changes seen here
include an increased proportion of classical
(CD14+CD16�) monocytes and reduced
proportions of non-classical (CD14�CD16+)
monocytes in the periphery until at least day 45
following infection. In homeostasis, monocytes
migrate from the bone marrow and can circulate
in the periphery for approximately 1 day.54

Subsequently, 90% of monocytes migrate to
tissues and become macrophages, while 10%
differentiate to intermediate monocytes. The
elevated proportion of classical monocytes in the
periphery following P. falciparum infection may
be a consequence of a sustained increase in bone
marrow production of monocytes. Consistent with
this, we show increased transcription and cell
surface expression of CCR2, which mediates
monocyte emigration from the bone marrow.26

Changes to the composition of monocytes
occurred simultaneously with multiple phenotypic
changes that were also maintained up to 45 days
following infection. These sustained changes are
consistent with monocyte training or
imprinting.53,55 Long-term effects on monocytes
post-infection have been shown in both Q-fever56

and human Toxoplasma gondii infection.57 These
long-term effects suggest these infections may
influence the transcriptional programme of
monocytes and potentially their myeloid
progenitors. In support of this notion, heightened
monocyte transcriptional responsiveness in Fulani
populations infected with P. falciparum was
suggested to be indicative of genomewide
chromatin remodelling.20 Future studies
investigating parasite-driven changes to the
epigenetic landscape of monocytes following
primary infection may be informative.

During clinical malaria, the monocyte
transcriptional profile had both similarities (e.g.
cell surface signalling and regulation of immune
response) and differences (e.g. type I IFN
signalling) to that seen during primary subpatent
infection. Phagocytosis pathway was one pathway
upregulated in both malaria cohorts and is a key
function of monocytes in protective immunity.58
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In primary infection, both transcriptional
pathways and cell surface expression of CD64/
FccRI and CD32/FccRII on monocytes changed
significantly and in clinical malaria CD64/FccRI
expression increased. These findings are in
contrast with a previous study of Kenyan children
with uncomplicated malaria, where monocyte
phagocytosis of pRBC was impaired during both
symptomatic infection and asymptomatic
infection.16 Differences between studies may be
explained by differences in malaria transmission
(perennial in lowland Papua; seasonal in Kenya),
age of study participants or technical differences.

In acute clinical malaria, we show children have
higher transcriptional activation of monocytes and
more DEGs than adults. Despite greater
transcriptional activation, the upstream regulators
predicted for adults and children were similarly
inflammatory, including IFN-c in children and IL-6
and TREM1 (triggering receptor expressed on
myeloid cells-1) in adults. TREM1 is associated
with amplifying the inflammatory response in
sepsis59 and cancer.60 Moreover, the overall
direction of transcriptional expression remained
similar between children and adults, which
suggests the magnitude of transcription could be
influenced by parasite load, which was higher in
children or that adults have an attenuated
response as a consequence of prior infection, age
and time to presentation, but otherwise similar
responses to infection.

In summary, using transcriptional, functional
and phenotypic analyses, we reveal monocyte
function during primary subpatent infection as
dominated by an IFN molecular signature, with
increased proportion of activated classical
monocytes. Alongside this inflammatory
phenotype, monocytes increased IL-10 production
upon re-exposure to parasite-infected RBCs,
suggesting a role in controlling inflammation
upon multiple parasite exposure. Of note,
malaria-naive volunteers maintained phenotypic
changes to monocytes up to 1 month post-
infection. Further studies are needed to
understand whether these sustained changes are
maintained upon repeat infection in previously
malaria-naive volunteers. Differences in
transcriptional activation observed between adults
and children with clinical malaria warrant further
investigation to understand the biological basis
driving these differences and the impact on
immunity. Our data suggest that monocytes are
active and integral immune cells assisting parasite

elimination and controlling inflammation in
malaria.

METHODS

Experimental infection using induced blood-
stage malaria (IBSM)

Nineteen volunteers aged 18–31 years (median 23 [IQR 20–
26] years, 89% male) consented to participate in a phase Ib
clinical trial testing the efficacy of antimalarial drugs. All
studies were registered with US NIH ClinicalTrails.gov
(ACTRN12613000565741, ACTRN12613001040752,
NCT02281344 and NCT03542149). Blood-stage parasitaemia
was initiated by inoculation of 1800 or 2800 parasitised
RBCs (pRBC) as previously described.50 In brief, healthy
malaria-naive individuals underwent induced blood-stage
malaria inoculation with 1800 or 2800 viable P. falciparum
3D7-pRBCs, and peripheral parasitaemia was measured by
qPCR as described previously.61 Participants were treated
with antimalarial drugs at day 7 or day 8 of infection, when
parasitaemia reached median 10, 346 [IQR 4303–19, 681]
parasites per mL (Table 1). Blood samples from 19
volunteers (across four independent studies) were collected
prior to infection (day 0), at peak infection (day 7/8), post-
infection 15 and 45 days (end of study, EOS) after
inoculation (in analyses, these time points are grouped as 0,
7/8, 15 and 45). Blood samples were taken at the same time
each day before and during blood-stage infection. Flow
cytometry assays used fresh whole blood and were
processed within 2 h of collection (Figure 1a).

Clinical malaria cohorts

Peripheral blood mononuclear cells (PBMCs) were collected
from 15 adults aged 18–38 years (median 30 [IQR 20–
38] years; 66% male) and eight children aged 5–13, (median
11 [IQR 8–13] years; 38% male) with acute uncomplicated
P. falciparum malaria as part of artemisinin combination
therapy efficacy studies conducted in southern Papua,
Indonesia.62 At presentation to the clinic, the median
parasitaemia was 2275 [interquartile range IQR = 788–5712]
parasites per µL in adults and 7377 [IQR = 2965–13, 644]
parasites per µL in children. Gene expression, phenotype
and activation of monocytes were assessed in cryopreserved
PBMC samples collected prior to commencing treatment,
and again 28 days after antimalarial drug treatment and
parasite clearance (Figure 1a).

Ethics approval

IBSM was approved by the Human Research Ethics Committees
of QIMR Berghofer Medical Research, NT Department of
Health and Menzies School of Health Research. In the clinical
malaria cohorts, written informed consent was obtained from
participants, with the study approved by the Human Research
Ethics Committees of the National Institute of Health Research
and Development, Indonesian Ministry of Health (Jakarta,
Indonesia), the NT Department of Health and Menzies School
of Health Research.
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Monocyte isolation and RNA sequencing

RNA sequencing was performed on paired samples
collected prior to and at peak infection from five subjects
experimentally infected with P. falciparum pRBC and on
acute and convalescence samples from adults and children
with acute clinical malaria. IBSM and clinical samples were
selected based on the availability of PBMCs at paired time
points. Isolation and RNA sequencing for IBSM and clinical
samples were performed at separate times by different
operators. Monocytes were isolated from PBMCs using the
Pan Monocyte Isolation Kit (Miltenyi Biotec, Gladbach,
Germany). In brief, monocytes were enriched by indirect
magnetic labelling for the isolation of untouched
monocytes (all subsets), from human PBMCs. Non-
monocytes, such as T cells, NK cells, B cells, dendritic cells
and basophils, were indirectly magnetically labelled using
a cocktail of biotin-conjugated antibodies to anti-biotin
microbeads. Conjugated microbeads and untouched
monocytes were washed over MAC isolation columns.
Purity of isolated monocyte populations was checked using
flow cytometry IBSM (baseline; median 90% [IQR = 84–92],
peak infection; median 93% [IQR = 88–96]) and clinical
cohorts (acute infection 96% [IQR = 87–98], convalescence
94% [IQR = 86–95]). The distribution of subsets in isolated
monocytes was comparable to pre-sorted populations
(Supplementary figure 7). Isolated monocytes were
resuspended in RNAprotect (Qiagen, Hilden, Germany) and
stored immediately at �80 °C. RNA extraction and RNA
sequencing of five paired IBSM study participants, eight
paired children (clinical malaria) and ten paired adult
(clinical malaria) samples were conducted by Macrogen©

(Seoul, Korea) using the Illumina TruSeq Stranded mRNA
LT Sample Kit and the HiSeq 2500 instrument.
Transcriptome data were analysed using a modified
version of an existing variant detection pipeline63

consisting of software STAR aligner,64 samtools,65 HTSeq66

and DESeq2.67 Reads were first aligned to human
reference genome GRCh37 using STAR with the gene
model set to gencode v19 annotation and quantmode set
to TranscriptomeSAM. The alignment files were sorted
with samtools and the resultant reads input to HTSeq to
generate raw read counts using the union overlap
resolution mode. Read counts were input to DESeq2 and a
paired analysis performed for all participants with acute
infection and baseline or convalescence data.

Whole-blood and PBMC monocyte analysis

Monocytes were characterised as lineage (CD3, CD56,
CD19)-negative, HLA-DR+ and by differential expression of
CD14 and CD16. In brief, 200 µL of whole blood or 1
million PBMCs were stained with surface antibodies, CD3
(HIT3a, SK7), CD14 (HCD14, M5E2), CD19 (HIB19, SJ25C1),
CD56 (HCD56), HLA-DR (L243), CD11c (B-Ly6, Bu15), CD16
(3G8), CD86 (2331, IT2.2), CD319 (SLAMF7, 162.1), CD40
(5C3), CD32 (FUN-2), CD64 (10.1), CCR2 (K036C2), CD206 (15-
2), CXCR4 (12G5) and CD163 (GHI/61), all antibodies were
purchased from BD Biosciences (San Jose, CA, USA) or
BioLegend (San Diego, CA, USA). For whole blood, RBCs
were lysed with FACS lysing solution (BD Biosciences) and
resuspended in 2% FCS/PBS to acquire.

Monocyte stimulation and intracellular
cytokine staining (ICS)

Monocyte cytokine production was assessed in 1 mL of
fresh whole blood unstimulated or stimulated with TLR
agonists; TLR1: Pam3CSK4 100 ng per mL/TLR2: HKLM 108

cells per mL, TLR4: Escherichia coli K12 LPS 200 ng mL�1 or
TLR7: imiquimod 2.5 µg mL�1 (Sigma-Aldrich, St Louis, MO,
USA), pRBC or unparasitised RBC (uRBC) prepared as
previously described50 at 5 9 106/mL. Protein transport
inhibitor (Brefeldin A, GolgiPlug, BD Biosciences) was added
after 2 h at 37 °C, 5% CO2. At 6 h, cells were stained to
identify monocytes: lineage [CD3 (HIT3a), CD19 (HIB19),
CD56 (HCD56)]� and CD14+ (M5E2), and RBCs were lysed
with FACS lysing solution (BD Biosciences), washed with 2%
FCS/PBS, cells permeabilised with 19 Perm/WashTM (BD
Biosciences) and stained with intracellular anti-TNF-a
(MAB11), IL-12/IL-23p40 (C11.5), IL-10 (JES3-9D7) or IgG1
isotype controls (BioLegend). To determine the stimulant-
specific response, spontaneous cytokine production was
subtracted from responses to pRBC, uRBC or TLR agonists.

FACS data were acquired using a FACSCantoTM II (BD
Biosciences), GalliosTM (Beckman Coulter, Brea, CA, USA) or
Fortessa 5 laser (BD Biosciences) and data analysed using
Kaluza® 1.3 (Beckman Coulter) or FlowJo version 10.6 (BD
Biosciences).

Statistics

Statistical analyses and graph generation performed using R
studio and GraphPad Prism. The Friedman multiple
comparisons test was used to compare longitudinal data in
the IBSM cohort. For post hoc statistics, a pairwise sign test
with the Bonferroni correction for multiple comparisons
was performed. For clinical cohorts, the Wilcoxon matched-
pairs signed-rank test was used as paired data. Tests were
two-tailed and considered significant if P-values < 0.05. For
pathway enrichment, the online tool STRING version 1168

was used to identify GO biological pathways, and for all
analysis, an interaction of high confidence was employed
(score ≥ 0.7). Ingenuity Pathway Analysis (IPA) (Qiagen,
Hilden, Germany) was used for canonical pathway
enrichment and predicted upstream regulator analysis using
DEGs with a false detection rate (FDR) < 0.05 unless stated
otherwise, with no fold-change cut-off.
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