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A Transcriptome Analysis Reveals 
that Hepatic Glycolysis and 
Lipid Synthesis Are Negatively 
Associated with Feed Efficiency in 
DLY Pigs
Cineng Xu1,2, Xingwang Wang1,2, Zhanwei Zhuang1, Jie Wu1, Shenping Zhou1, Jianping Quan1, 
Rongrong Ding1, Yong Ye1, Longlong Peng1, Zhenfang Wu1, Enqin Zheng1 ✉ & Jie Yang   1 ✉

Feed efficiency (FE) is an important trait in the porcine industry. Therefore, understanding the molecular 
mechanisms of FE is vital for the improvement of this trait. In this study, 6 extreme high-FE and 6 
low-FE pigs were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic 
analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) in the 
liver tissues of the 12 individuals, and 507 DEGs were identified between high-FE pigs (HE- group) 
and low-FE pigs (LE- group). A gene ontology (GO) enrichment and pathway enrichment analysis 
were performed and revealed that glycolytic metabolism and lipid synthesis-related pathways 
were significantly enriched within DEGs; all of these DEGs were downregulated in the HE- group. 
Moreover, Weighted gene co-expression analysis (WGCNA) revealed that oxidative phosphorylation, 
thermogenesis, and energy metabolism-related pathways were negatively related to HE- group, which 
might result in lower energy consumption in higher efficiency pigs. These results implied that the higher 
FE in the HE- group may be attributed to a lower glycolytic, energy consumption and lipid synthesizing 
potential in the liver. Furthermore, our findings suggested that the inhibition of lipid synthesis and 
glucose metabolic activity in the liver may be strategies for improving the FE of DLY pigs.

Feed efficiency (FE) is an important economic trait in the porcine industry, as feed cost accounts for approxi-
mately 70% of the total production cost1. Therefore, improving FE can greatly promote the economic benefits 
of pig production. The main indicators for measuring FE are residual feed intake (RFI) or feed conversion ratio 
(FCR). RFI is defined as the difference between the animal’s actual feed intake and its predicted dry matter intake 
(DMI) based on production needs, to specifically capture the efficiency of feed use independent from production 
needs2. A lower RFI value indicates a more efficient pig. FCR is the ratio of feed intake to the average daily gain 
(ADG) during a specified period. Compared with FCR, RFI can more accurately reflect the differences of FE in 
pigs with different body weights and growth rate2. Therefore, RFI is preferred as the selection indicator. Because 
of the strong genetic correlation with RFI (R equals 0.76–0.99)3, FCR can be used as a reference indicator to verify 
the selection based on RFI, which can measure FE more intuitively.

To date, based on genome-wide association analysis (GWAS) of pigs, some SNPs and candidate genes that 
might affect FE have been identified. SNPs located on SSC7, SSC13, SSC14, and SSC17 and candidate genes, 
such as MBD5, GTF3C5, HMGA2, PITX2, and MAP3K14, were reported to be associated with FE in the previous 
studies4–7. However, GWAS studies are limited to finding chromosomal regions or preselected genes that affect 
FE8 and finding candidate genes and pathways that affect FE is difficult. Instead, RNA-seq technology can quan-
titatively measure gene expression in individuals to screen differentially expressed genes (DEGs)9,10. By analyzing 
the DEGs and related biological pathways, candidate genes and pathways that affect FE can be identified.

1College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China 
Agricultural University, Guangdong, P.R. China. 2These authors contributed equally: Cineng Xu and Xingwang Wang. 
✉e-mail: eqzheng@scau.edu.cn; jieyang2012@hotmail.com

OPEN

https://doi.org/10.1038/s41598-020-66988-6
http://orcid.org/0000-0002-7031-2160
mailto:eqzheng@scau.edu.cn
mailto:jieyang2012@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-66988-6&domain=pdf


2Scientific Reports |         (2020) 10:9874  | https://doi.org/10.1038/s41598-020-66988-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

RNA-seq has been used to research FE in animals, including pigs, cattle, and poultry, and muscle, liver, and 
adipose tissues have been used as research materials11–13. Recently, a growing number of transcriptome analysis 
has focused on the liver tissue of pigs to identify candidate genes and pathways associated with FE14–16. In mam-
mals, the liver plays a prominent and central role in regulating the metabolism and distribution of nutrients. On 
the one hand, macronutrients, such as carbohydrates, lipids, and proteins, are metabolized in the liver17,18. On 
the other hand, the liver can synthesize and store nutrients, as well as release nutrients into the blood19. Several 
studies have revealed that lipid metabolism, such as fatty acid synthesis, lipogenesis, and steroidogenesis, in the 
liver tissue was altered in FE-divergent pigs14,20,21. In addition, glucose metabolism and energy metabolism in the 
liver have been reported to be essential for the regulation of FE in pigs, and lower glycolytic potential and energy 
loss were found in high-FE pigs15.

Many transcriptome studies focused on purebred pigs (including Yorkshire and Duroc) and crossbred pigs, 
such as Large White × (Landrace × Pietrain) and Maxgro × (Landrace × Large White) pigs, have made some 
progress in identifying candidate genes and pathways linked with FE14,20–22. However, none of the transcriptome 
studies have been conducted in the liver of commercial Duroc × (Landrace × Yorkshire) (DLY) pigs, while 
DLY pigs are by far the largest population in the porcine industry worldwide23. As a result, in this study, we 
used RNA-seq technology to profile the liver transcriptome of 6 extremely high-FE DLY pigs (HE- group) and 
6 extremely low-FE DLY pigs (LE- group) to identify candidate genes and pathways that significantly correlated 
with the FE of DLY pigs. Furthermore, the identified genes and pathways that affect FE can provide theoretical 
support for pig selection, to improve the feed efficiency and economic benefits in commercial pig production in 
the future.

Results
Phenotypic parameters in Pigs from the HE- and LE- groups.  Six extremely high-FE pigs had the 
phenotypic parameter of RFI = −0.18 ± 0.08 and FCR = 2.19 ± 0.08, while six extremely low-FE pigs had the phe-
notypic parameter of RFI = 0.14 ± 0.09 and FCR = 2.68 ± 0.05. The phenotypic details of the HE- and LE- groups 
are shown in Table S1. The FCR and RFI of the HE- group were significantly lower than those of the LE- group, 
which are displayed in the boxplot (Fig. 1A); thus, the HE- group was more efficient than the LE- group. A high 
linear positive correlation between FCR and RFI (Fig. 1B) was identified in our study, which was consistent with 
previous studies3.

Mapping statistics summary.  In this study, the mapping statistics summaries for each sample are listed 
in Table S2. On average, the sequencing generated 40719764 and 40985844 effective reads in the HE- and LE- 
groups, respectively. Among the effective reads, on average, 93.36% and 92.81% in the HE- and LE- groups, 
respectively, were uniquely mapped to the reference genome, and 3.62% and 3.69% were multiple mapped to the 
reference genome.

A total of 507 DEGs between the HE- and LE- groups.  In the current study, a total of 507 DEGs satis-
fied the criteria of |log2(Foldchange)| > 1 and q-value < 0.001. Among the 507 DEGs, 53 DEGs were upregulated 
and 454 DEGs were downregulated in the HE- group; the 5 most significantly upregulated named genes (includ-
ing NRN1, CXCL13, DLK1, PLB1, and LYPD6B) and 5 most significantly downregulated named genes (including 
ADAMTS19, TRPV6, NME8, ANHX, and LRRC71) are marked (Fig. 2). The details of all DEGs with their log2(-
Foldchange) and q-value are listed in Table S3.

Figure 1.  Feed efficiency (FE) phenotypic parameters in Duroc × (Landrace × Yorkshire) (DLY) pigs from 
high-FE pigs (HE- group) and low-FE pigs (LE- group). (A) Boxplot of the feed conversion ratio (FCR) and 
residual feed intake (RFI) in the two groups. (B) The correlation coefficient between FCR and RFI in the two 
groups.
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GO enrichment analysis of DEGs.  The biological process (BP), molecular function (MF), and cellular 
component (CC) GO terms of 507 DEGs were identified and the details of all identified GO terms are listed 
in Table S4. A total of 5 GO terms were significantly enriched (q-value <0.05), including 1 BP_GO term and 
4 MF_GO terms. All of the genes enriched in the 5 GO terms were downregulated in the HE- group (Table 1). 
None of the CC_GO terms was significantly enriched. The significantly enriched BP_GO term was carbohydrate 
phosphorylation, which is involved in glycolysis. The most significantly enriched MF_GO term was carbohydrate 
kinase activity. Carbohydrate kinase includes hexokinase, phosphofructokinase, and other kinases, which mainly 
catalyze glycolysis. Genes involved in the 2 terms were downregulated in the HE- group, indicating that glycolysis 
might decrease in the liver of the HE- group. The remaining 3 MF_GO terms were related to guanyl-nucleotide 
exchange factor activity, which exchanges GDP for GTP24, and the DEGs enriched in these terms were downreg-
ulated in the HE- group.

Pathway enrichment analysis of DEGs.  Our results showed that 25 significantly enriched pathways 
(q-value <0.05) were enriched in the Reactome or KEGG database, 24 pathways were enriched in the Reactome 
database, and one pathway was enriched in the KEGG database (Table S5). The top 10 significantly enriched 
pathways and the genes contained in each pathway are listed in Table 2. Among the 10 pathways, 6 pathways were 
related to carbohydrate metabolism, including metabolism of carbohydrates, glucose transport, glycolysis, hexose 
transport, glucose metabolism, and starch and sucrose metabolism; the other 4 pathways were correlated with 
lipid synthesis, including lipid and lipoprotein metabolism, SREBP activation gene expression, SREBP regulation 
of cholesterol biosynthesis and phase 1 - functionalization of compounds. Most of the genes involved in the 10 
pathways were downregulated in the HE- group. These results indicated that decreased lipid and glucose metab-
olism activity might occur in the liver of the HE- group.

Figure 2.  Differentially expressed genes (DEGs) between the HE- and LE- groups. A plot of DEGs with 
|log2(Foldchange)| > 1 and q-value < 0.001. Red dots represent significantly upregulated genes, and green 
dots represent significantly downregulated genes. The genes marked in the figure are the 5 most significantly 
upregulated and 5 most downregulated named genes. The x-axis and y-axis represent the −log10(qvalue) and 
log2(Foldchange), respectively.

GO_ID GO term q-value Gene Names

Biological process

GO:0046835 carbohydrate phosphorylation 4.99E-03 HK3, PFKFB4, PFKFB1, 
GCK

Molecular function

GO:0019200 carbohydrate kinase activity 1.01E-03 HK3, PFKFB4, PFKFB1, 
GCK

GO:0005088 Ras guanyl-nucleotide exchange factor 
activity 1.68E-03

ARHGEF37, ARHGEF39, 
ARHGEF16, ARHGEF25, 
DENND3

GO:0005089 Rho guanyl-nucleotide exchange factor 
activity 2.89E-03 ARHGEF39, ARHGEF16, 

ARHGEF37, ARHGEF25

GO:0005085 guanyl-nucleotide exchange factor activity 7.78E-03
ARHGEF37, ARHGEF39, 
ARHGEF16, ARHGEF25, 
DENND3

Table 1.  Significantly enriched GO terms. Enriched liver DEGs between the HE- and LE- groups according to 
gene ontology (GO) terms for biological processes, molecular function, and cellular component. Significantly 
enriched terms (q-value < 0.05) are listed with the GO_ID, term, q-value and gene name. The remaining terms 
are shown in Table S4.
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Protein-protein interaction (PPI) analysis.  According to Protein-protein interaction (PPI) analysis, a 
network of some of the named genes was visualized to explore the interaction of them with each other (Fig. 3). 
The network diagram was centered on the ACACB gene, which had the largest degree, and 32 DEGs were directly 
or indirectly related to it. Genes highlighted in green (GCK, HK3, ENO2, PFKFB1, and PFKFB4) are involved 
in glycolysis, and genes highlighted in red (ACACB, SCD, FASN, HSD17B1, and CYP21A2) are involved in lipid 

Pathway q-value Gene Names

Reactome

Metabolism of 
carbohydrates 5.52E-07

GCK, HK3, PFKFB1, PFKFB4, 
LOC100521789, RAE1, 
FGF21, LOC100739542, 
LOC100522672, CHST1

Glucose transport 4.82E-05 GCK, HK3, FGF21, RAE1, 
LOC100739542

Glycolysis 4.82E-05 GCK, HK3, PFKFB1, PFKFB4

Hexose transport 4.82E-05 GCK, HK3, FGF21, RAE1, 
LOC100739542

Glucose metabolism 0.001906 GCK, HK3, PFKFB1, PFKFB4

Metabolism of lipids 
and lipoproteins 0.0029006

ACACB, SCD, CYP21A2, 
CHKA, CYP7A1, HSD17B1, 
PLA2G4B, LSS, HMGCS2

Activation of gene 
expression by SREBP 0.0098664 ACACB, SCD, LSS

Regulation 
of cholesterol 
biosynthesis by SREBP

0.0099889 ACACB, SCD, LSS

Phase 1 - 
Functionalization of 
compounds

0.0124725 CYP21A2;AOC1;CYP7A1

KEGG pathway

Starch and sucrose 
metabolism 0.039301

GCK, HK3, UGT1A1, 
LOC100516628, 
LOC100521789, GBE1, 
LOC100522672

Table 2.  Top 10 significantly enriched pathways enriched in the Reactome and KEGG databases. Enriched 
DEGs according to the Reactome or Kyoto Encyclopedia of Genes and Genomes (KEGG) database are shown. 
Significantly enriched pathways (q-value < 0.05) are listed with the pathway, q-value and gene names. Twenty-
four pathways were significantly enriched in the Reactome database, while only 1 pathway was significantly 
enriched in the KEGG database. The top 10 significantly enriched pathways are listed. The remaining pathways 
are shown in Table S5.

Figure 3.  The key network of DEGs in the liver from HE- compared with LE- group. The network diagram 
centers on the ACACB gene, which has the largest degree of change, and the DEGs are directly or indirectly 
related to ACACB. Node shape represents the change in gene expression. The node fill color represents the 
functional classification of the gene.

https://doi.org/10.1038/s41598-020-66988-6


5Scientific Reports |         (2020) 10:9874  | https://doi.org/10.1038/s41598-020-66988-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

synthesis. All genes highlighted in green or red color were downregulated in the HE- group, indicating that glyc-
olysis and lipid synthesis might be reduced in the liver of the HE- group.

Weighted gene co-expression analysis (WGCNA) and enrichment pathways of modules cor-
related to feed efficiency traits.  WGCNA was conducted to identify gene co-expression modules that 
are correlated with the trait of interest (HE, LE, RFI, and FCR). A total of 18 co-expressed gene modules were 
identified and named by different colors (Fig. 4A). The list of genes in these modules was presented in Table S6. 
Among them, two-thirds (12/18) are negatively correlated and one-third (6/18) are positively correlated with 
HE- group. This may imply that high feed efficiency may be associated with a lower level of certain biological 
processes. Two of these modules were significantly positively associated with RFI and FCR, namely the MEcyan 
module (r = 0.72, p = 0.02; r = 0.74, p = 0.01) and the MEpurple module (r = 0.68, p = 0.03; r = 0.66, p = 0.04). 
The MEcyan module (r = −0.72, p = 0.02) and MEred module (r = −0.69, p = 0.03) were negatively correlated 
with HE- group, while positively correlated with LE- group. The MEcyan module clustered 46 genes, and 56 genes 
were clustered in MEpurple module, while 163 in MEred (Fig. 4B).

The functional enrichment analysis for the three modules significantly correlated with FE-related traits was 
conducted in KEGG and Reactome database and were presented in Table S7. The MEcyan and MEpurple mod-
ule identified 20 significantly enriched pathways in KEGG database, while 4 in Reactome database (p.adjust 
<0.05) (Table 3). However, there was no significantly enriched pathway in MEred. Moreover, none of the signif-
icantly enriched terms were identified in GO analysis in the MEcyan, MEpurple and MEred modules (Table S8). 
Oxidative phosphorylation and thermogenesis were the most significantly enriched pathways identified in KEGG 
database, which contained 12 genes and related to energy consumption and negatively correlated with HE- group 
(Table 3). Three of four significantly enriched pathways enriched in Reactome database were correlated with 
energy metabolism, including “The citric acid (TCA) cycle and respiratory electron transport”, “Respiratory elec-
tron transport”, and “Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat produc-
tion by uncoupling proteins” (Table 3).

Quantitative real-time PCR validation of six randomly selected DEGs.  The reliability of the DEGs 
identified by RNA-seq was validated by qPCR. Six DEGs (ACIN1, ACSS2, CCL21, HAMP, LSG1, and SAFB2) 
were randomly selected for qPCR. Moreover, all of 12 individuals from the HE- and LE- groups were selected 
for qPCR. A significant correlation (P-value < 0.05) between the gene expression data calculated by RNA-seq 
and the gene expression data calculated by qPCR was found in 5 selected DEGs (ACIN1, CCL21, HAMP, LSG1, 
and SAFB2) (Fig. 5). Although the P-value of ACSS2 was more than 0.05, it had a trend line similar to the other 
5 selected DEGs. These results revealed a significant correlation between the two measures and confirmed the 
reliability of the gene expression data identified by RNA-seq.

Figure 4.  Weighted gene co-expression analysis (WGCNA). (A) Correlations between hepatic genes co-
expression modules and feed efficiency traits of DLY pig. Modules represent the network of co-expressed genes 
and are named by different colors. Correlations are presented in the rectangles and the value in parentheses 
represent the p-value. (B) The number and percentage of genes in various modules.
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Discussion
In this study, the DEGs, at the mRNA level, in the liver of the HE- and LE- groups were identified. Furthermore, 
the relevant pathways and candidate genes affecting the different FEs between the two groups were explored, 
illuminating the metabolic pathways and molecular mechanisms associated with the divergence in FE. We found 
that decreased glycolytic, energy consumption and lipid synthesizing potential in the liver may be associated with 
improved feed efficiency in DLY pigs.

The PPI analysis revealed some candidate genes associated with glycolysis (including GCK, ENO2, HK3, 
PFKFB1, and PFKFB4). Combining the results of GO and pathway enrichment analysis, HK3, PFKFB1, GCK, and 
PFKFB4 were enriched in the most significantly enriched GO terms and pathways, all of which were downregu-
lated in the HE- group. The GCK gene is involved in glycolysis and encodes hexokinase 4 that catalyzes glucose 
transfer to glucose-6-phosphate25,26. The overexpression of GCK increased glucose uptake and promoted glucose 

Pathway q-value Gene Names

Reactome

The citric acid (TCA) cycle and respiratory 
electron transport 0.020278616 NDUFV3, ADHFE1, NDUFB7, 

NDUFA11, NDUFA2

Complex I biogenesis 0.020278616 NDUFV3, NDUFB7, NDUFA11, 
NDUFA2

Respiratory electron transport 0.020278616 NDUFV3, NDUFB7, NDUFA11, 
NDUFA2

Respiratory electron transport, ATP 
synthesis by chemiosmotic coupling, and 
heat production by uncoupling proteins.

0.042865302 NDUFV3, NDUFB7, NDUFA11, 
NDUFA2

KEGG pathway

Oxidative phosphorylation 1.33E-09

NDUFV3, NDUFA13, UQCR10, 
NDUFB7, LOC100525869, 
LOC100516480, COX5B, COX17, 
NDUFA11, COX7A1, NDUFA2, 
ATP6V0C

Thermogenesis 3.18E-07
NDUFV3, LOC100516527, NDUFA13, 
UQCR10, NDUFB7, LOC100525869, 
LOC100516480, COX5B, COX17, 
NDUFA11, COX7A1, NDUFA2

Parkinson disease 3.18E-07
NDUFV3, NDUFA13, UQCR10, 
NDUFB7, LOC100525869, 
LOC100516480, COX5B, NDUFA11, 
COX7A1, NDUFA2

Non-alcoholic fatty liver disease (NAFLD) 3.72E-07
NDUFV3, NDUFA13, UQCR10, 
NDUFB7, LOC100525869, 
LOC100516480, COX5B, NDUFA11, 
COX7A1, NDUFA2

Huntington disease 3.72E-07
NDUFV3, NDUFA13, UQCR10, 
NDUFB7, LOC100525869, 
LOC100516480, COX5B, NDUFA11, 
COX7A1, NDUFA2, POLR2J

Alzheimer disease 7.96E-07
NDUFV3, NDUFA13, UQCR10, 
NDUFB7, LOC100525869, 
LOC100516480, COX5B, NDUFA11, 
COX7A1, NDUFA2

Cardiac muscle contraction 0.001847933 UQCR10, LOC100525869, 
LOC100516480, COX5B, COX7A1

Retrograde endocannabinoid signaling 0.002439495 NDUFV3, NDUFA13, NDUFB7, GNB2, 
NDUFA11, NDUFA2

Pentose and glucuronate interconversions 0.002655063 GUSB, LOC100516628, UGT2B31

Porphyrin and chlorophyll metabolism 0.007363959 GUSB, LOC100516628, UGT2B31

Sulfur metabolism 0.011099108 SELENBP1, TST

Drug metabolism - cytochrome P450 0.018779781 ADH4, LOC100516628, UGT2B31

Metabolism of xenobiotics by cytochrome 
P450 0.019524461 ADH4, LOC100516628, UGT2B31

Retinol metabolism 0.025126094 ADH4, LOC100516628, UGT2B31

Fatty acid metabolism 0.025126094 FADS1, FADS2, CBR4

Ascorbate and aldarate metabolism 0.025126094 LOC100516628, UGT2B31

Drug metabolism - other enzymes 0.025213695 GUSB, LOC100516628, UGT2B31

Chemical carcinogenesis 0.026132735 ADH4, LOC100516628, UGT2B31

Aminoacyl-tRNA biosynthesis 0.030796382 VARS1, HARS1, MARS1

Ribosome 0.033382135 RPL26L1, MRPL14, RPS21, RPL31

Table 3.  A total of 20 significantly enriched pathways in KEGG database and 4 in Reactome database for 
MEcyan and MEpurple modules. Significantly enriched pathways (q-value < 0.05) are listed with the pathway, 
q-value and gene names.
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utilization in the liver27. Moreover, hepatic GCK mRNA expression was positively associated with the mRNA 
expression of lipogenic enzymes (ACACB and FASN) and de novo lipogenesis in the liver26. Thus, the hepatic gly-
colytic process probably stimulated hepatic lipid synthesis. The ENO2 gene increases glucose uptake in the liver 
and participates in hepatic glycolysis by converting 2-phosphoglycerate into phosphoenolpyruvate28. The HK3 
(hexokinase 3) gene, one of the four hexokinase family members, is a catalytic enzyme in glycolysis29. Similarly, 
the PFKFB1 and PFKFB4 genes encode key enzymes involved in glycolysis30,31. In a previous study, Reyer found 
three adjacent SNPs in SSC13, two of which were located beside and in the PFKFB4 gene in pigs, and these SNPs 
were significantly correlated with RFI32, suggesting that PFKFB4 might be a candidate gene affecting FE. Liver 
glycolysis is one of the most important metabolic pathways regulating FE and is decreased in high-FE beef cat-
tle33. Moreover, a study showed that genes involved in glycolysis were downregulated in high-FE pigs34.

Carbohydrate phosphorylation is the first step in glycolysis, in which glucose is phosphorylated to 
glucose-6-phosphate (G6P) by hexokinase35. In the fed state, G6P is metabolized to generate pyruvate through 
glycolysis. Pyruvate is the main glycolytic product and links glycolysis to lipogenesis. Pyruvate can be com-
pletely oxidized in mitochondria to generate ATP through the citric acid cycle and oxidative phosphorylation25. 
Glycolysis produces ATP to provide energy for growth, which is an extremely inefficient way of producing energy. 
In the complete oxidation of pyruvate, approximately 40% of the energy produced is used to synthesize ATP, 
while the remaining energy (approximately 60%) is lost as heat energy36. Combining with the results of WGCNA, 
oxidative phosphorylation, thermogenesis, and energy metabolism-related pathways (including TCA cycle, res-
piratory electron transport, ATP synthesis, and heat production) were significantly enriched in MEcyan and 
MEpurple modules, and all of these biological processes occurred in mitochondria and are related to energy 
consumption25,37. The MEcyan and MEpurple modules were negatively related to HE- group, indicating that 
higher efficiency in HE- group might due to lower energy consumption in the liver. These results implied that 
decreased rates of hepatic glucose metabolism, oxidative phosphorylation, thermogenesis, and energy metabo-
lism might result in fewer energy losses in the HE- group. Hence, we hypothesized that the HE- group had more 
efficient energy utilization and a higher FE because the decreased glycolysis process and reduced energy losses. 
Correspondingly, previous analyses of FE revealed that the genes associated with the glycolytic pathway and mito-
chondrial activity were downregulated in the liver and muscle tissues of high-FE pigs. Less energy was lost due 
to the decreased glycolytic potential and mitochondrial activity in the liver, which might result in higher energy 
efficiency in HE- group19,34,38–40.

Furthermore, pyruvate can provide a carbon source for lipogenesis in the liver. The conversion of glucose to 
lipids in the liver results in an approximately 23% energy loss41, which is much higher than the amount of energy 
lost by protein deposition in the muscle42. Previous studies focusing on muscle tissue revealed that high-FE pigs 
accumulated more muscle mass compared with low-FE pigs42,43, which indicated that high-FE pigs needed to 

Figure 5.  Correlation analysis of RNA-seq and quantitative polymerase chain reaction (qPCR) of 6 randomly 
selected DEGs. Six randomly selected DEGs were analyzed by real-time qPCR. The x-axis represents the 
fragments per kilobase of transcript per million mapped reads (FPKM) of each gene calculated by RNA-seq 
analysis, and the y-axis represents the relative expression of each gene calculated by qPCR. The correlation 
coefficient was calculated between the two measures.
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consume more glucose in the muscle to generate ATP for protein deposition. In our study, the HE- group had 
lower glucose metabolic and lipid synthesizing potential in the liver, so we speculate that more glucose is con-
sumed in the muscle tissue to provide ATP for protein deposition in the HE- group. Protein synthesis has a higher 
energy efficiency than lipid synthesis; thus, the HE- group exhibited higher feed efficiency. Our findings are con-
sistent with previous studies and support the assumption that the HE- group had less heat production and greater 
energy utilization related to decreased glycolytic processes in the liver, which may have positive effects on FE in 
commercial DLY pigs.

The liver is the main organ that synthesizes fatty acids and other lipids. The precursor substances for the 
synthesis of fatty acids are mainly derived from glucose metabolism, especially glycolysis25. In our study, lipid 
synthesis-related pathways were significantly enriched in the pathway enrichment analysis (among the top 10 
significantly enriched pathways, 4 pathways were related to lipid synthesis), and genes involved in lipid synthesis, 
including ACACB, CYP21A2, CHKA, SCD, were downregulated in the HE- group. The ACACB gene is a known 
candidate gene for lipid metabolism and is related to the de novo synthesis of fatty acids and other lipids44. Both 
CYP21A2 and CHKA are involved in the synthesis of cholesterol, steroids and other lipids and are candidate genes 
that affect lipid synthesis in pigs45,46. Lipid synthesis in the liver was negatively related to the FE trait in pigs, which 
has been reported in previous studies47,48. Several studies found that genes involved in lipid metabolisms, such 
as fatty acid, steroid, and cholesterol biosynthesis, were downregulated in the liver of low-RFI (more efficient) 
pig16,49,50 and cattle51.

The PPI analysis indicated that the genes associated with lipid synthesis (including ACACB, SCD, FASN, 
HSD17B1, and CYP21A2) were candidate genes that affected the FE in commercial DLY pigs. The SCD gene, 
which encodes stearoyl CoA desaturase and promotes the synthesis of fatty acid in pigs52, is a candidate gene that 
correlates with FE14. Previous studies revealed that the SCD gene was downregulated in more efficient pigs52–54, 
and the high-FE pigs had a reduction of lipid synthesis and accumulation. The FASN gene is a fatty acid synthase 
that plays an important role in the de novo synthesis of fatty acids55 and was downregulated in high-FE pigs52–54. 
In the current study, the SCD and FASN genes were downregulated in the HE- group compared with the LE- 
group. Moreover, by analyzing the top 5 significantly upregulated DEGs, we found that DLK1 was related to 
lipid metabolism, and DLK1 was upregulated by a log2 (Foldchange) of 3.81 in the HE- group. Previous studies 
indicated that the overexpression of DLK1 would suppress lipid synthesis, and this gene was upregulated in more 
efficient pigs and cattle51,56. Consistent with previous studies, our results indicated that the increased FE in the 
HE- group might be associated with the reduction of lipid synthesis and accumulation in the liver.

Conclusion
In this study, we investigated the liver transcriptome of 6 extremely high feed efficiency pigs (HE- group) and 
6 extremely low feed efficiency pigs (LE- group). A total of 507 DEGs were found between the HE- and LE- 
groups. GO and pathway enrichment analyses revealed that the DEGs were mainly enriched in glycolysis and 
lipid synthesis. The vast majority of DEGs involved in glycolysis and lipid synthesis were downregulated in the 
HE- group, such as SCD, ACACB, FASN, GCK, and ENO2. The expression patterns of these genes suggest that the 
related pathways might influence feed efficiency in pigs. Moreover, the results of WGCNA indicated that oxidative 
phosphorylation, thermogenesis, and energy metabolism-related pathways were decreased in HE- group, which 
resulted in higher energy efficiency in it. Briefly, the results indicated that the HE- group may have decreased 
glycolytic, energy consumption and lipid synthesizing potential in the liver, thereby increasing energy efficiency. 
Our findings provide an understanding of the molecular mechanisms in the liver in regulating the feed efficiency 
of DLY pigs. The key pathway and candidate genes identified in this study are potentially useful for improving 
porcine feed efficiency.

Methods
Ethics statement.  The experimental procedures used in this study met the guidelines of the Animal Care 
and Use Committee of the South China Agricultural University (SCAU) (Guangzhou, People’s Republic of 
China), and every effort was taken to minimize animal suffering. All animal experiments in this study were 
approved by the Animal Care and Use Committee (ACUC) of the SCAU (approval number SCAU#0030).

Animals and tissues.  In this study, a total of 225 commercial Duroc × (Landrace × Yorkshire) sows, pro-
vided by Guangdong Wen’s Foodstuffs Group Co., Ltd., (Yun fu, China), were selected as the experimental ani-
mals. During the experiment, the pigs were housed in an environment-controlled shed, and feed and water were 
offered ad libitum. The phenotypic data of 225 sows were recorded by the Osborne FIRE pig performance test 
system (Osborne, KS, USA). The recording period was approximately 12 weeks, during which time the weight 
of the animals was measured from approximately 30 kg of body weight (BW) to 100 kg BW. Each individual had 
a unique electronic identification tag on its ear that could be captured by an automatic feeder. Each individual’s 
feeding time, feeding duration, feed consumption, and body weight were recorded at each visit to the feeder. The 
standard A-scan and contact B-scan ultrasonography were used to measure back fat (BF) of pigs in approximately 
100 kg BW. The FCR and RFI were calculated for each individual during the trial. The RFI calculation method 
was similar to that of Cai et al.57. The RFI was estimated by the linear regression of DFI on metabolic BW at 
mid-test (MWT), average daily gain from 30 to 100 kg (ADG), and BF. MWT was equal to [(BW at on-test + BW 
at off-test)/2] 0.75. Then, the RFI values of all individuals were ranked, and 6 pigs with extremely high-FE and 6 
pigs with extremely low-FE were selected and designated as the HE- group and LE- group, respectively. Finally, 
a correlation analysis was conducted to calculate the correlation between RFI and FCR to verify the selection of 
12 individuals.
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At the end of the experiment, all 12 individuals from the HE- and LE- groups were slaughtered, and liver tis-
sues (the middle portion of the left lateral lobe) were collected immediately. These samples were rapidly frozen in 
liquid nitrogen and stored at −80 °C.

RNA extraction and sequencing.  Total RNA was extracted from all 12 liver tissue samples using Total 
Kit II (OMEGA, USA) and the procedures and standards were performed according to the manual. The quan-
tification and quality of RNA were assessed by a NanoDrop2000 microspectrophotometer (Thermo Scientific, 
Wilmington, DE, USA). The concentration of the mRNA ranged from 624 to 1218 ng/μl, and the absorb-
ance (A260/280) of all samples was between 1.8 and 2.1. Besides, an Agilent 2100 Bioanalyzer device (Agilent 
Technologies, Santa Clara, CA, USA) was used to assess the integrity of the RNA. The RNA integrity value (RIN) 
of our samples ranged between 6.2–8.8. The cDNA library was constructed using a TruSeq RNA Library Prep Kit 
v2 (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions, where mRNA was purified and 
enriched from 1 μg of each of the total RNA samples and then fragmented. After quality control, the libraries were 
sequenced on an Illumina HiSeq 4000 platform.

Read alignment and differential expression analysis.  The raw reads of each sample were discrimi-
nated based on the indexing adaptors. The FastQC58 software was used to evaluate the quality of the reads. Then, 
the adapter sequences and low-quality reads (the reads that adapter contamination is greater than 5 bp, Q20 ratio 
does not reach 85% or containing N ratios greater than 5%) were filtered out, and the high-quality reads were 
available for downstream analysis. The STAR: ultrafast universal RNA-seq aligner STAR_2.3.059 was used to map 
the sequencing reads with the reference genome (Sus scrofa 11.1), and all the options were set as STAR default val-
ues. The HTSeq60 software was used to generate the read count tables for further differential expression analysis.

Differential expression analysis was performed between the HE- and LE- groups by using the Gfold (V1.1.2)61 
software and the methods described by Audic and Claverie62. The Gfold (V1.1.2) software was used to count the 
expression level of the reads and convert them into FPKM (Fragment Per Kilobase of exon model Per Million 
mapped reads). The expression fold change between the two groups was calculated by the methods described by 
Audic and Claverie, and the Benjamini-Hochberg (BH) method was performed to calculate q-value for multiple 
testing. All genes were filtered by the criteria of |log2(Foldchange)| > 1 and q-value < 0.001. Genes with log2(-
Foldchange) > 1 and q-value < 0.001 were defined as upregulated DEGs, while the gene with log2(Foldchange) < 
−1 and q-value < 0.001 were defined as downregulated DEGs.

GO and pathway enrichment analysis of DEGs.  To explore the major metabolic pathways and cell sign-
aling pathways related to FE, Gene Ontology (GO) and pathway enrichment analysis were carried out by KOBAS 
3.0 (http://kobas.cbi.pku.edu.cn/anno_iden.php)63, and both the Reactome and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database were used for pathway enrichment analysis. The BH method was applied to adjust the 
P-value for multiple testing. The GO terms or pathways meeting the screening criteria (with q-value <0.05) were 
the significantly enriched terms or pathways.

Protein-protein interaction network construction.  A protein-protein interaction (PPI) analysis of 
DEGs was implemented in the Search Tool for the Retrieval of Interacting Genes (STRING) database. The inten-
sity of interaction among the input genes was evaluated and the hub gene was determined according to the degree 
of relationship to other genes. Then, the interaction network diagram of these genes was plotted by the Cytoscape 
(3.6) software64.

Weighted gene co-expression analysis (WGCNA).  Gene co-expression network analysis was per-
formed using the R package WGCNA65. Detailed steps are as follows. (1) Data input and cleaning: The gene 
expression matrix (genes that expression with variance variation accounting for top 30%) and the phenotypic 
matrix (including HE, LE, RFI, and FCR) for 12 individuals were used for subsequent analysis. In the phenotypic 
matrix, the RFI and FCR values in the matrix came from the RFI and FCR original values of each of 12 individu-
als. Six individuals belonging to high-FE group were marked as 1 and the remaining 6 as 0 for the “HE” values of 
the phenotypic matrix. Similarly, six individuals belonging to low-FE group were marked as 1 and the remaining 
6 as 0 for the “LE” values of the phenotypic matrix. Gene and individual quality control were performed with the 
default settings of the R package WGCNA. (2) Best soft-Threshold Confirmation: Using the pickSoftThreshold 
function of the R package WGCNA to analyze the expression matrix obtained in the first step, the most appro-
priate soft threshold value was 7. (3) Network construction and module detection: Using the blockwiseModules 
function to analyze the expression matrix obtained in the first step for module detection with power = 7 and 
mergeCutHeight = 0.2, the gene set was divided into 18 modules. (4) Relating modules to phenotypic traits and 
identifying important genes: Correlation analysis and significance test were performed on the phenotypic matrix 
obtained in the first step and the modules obtained in the third step. Modules with statistically significant (p-value 
<0.05) correlations were selected for downstream analysis. (5) Functional annotation of significant module genes: 
gene pathway analysis and gene function annotation were analyzed using R package clusterProfiler66 with default 
parameters. Biological terms were considered significant if the adjusted p-value was less than 0.05.

Real-time quantitative PCR.  To validate the results of the differential expression analysis from the 
RNA-seq data, the relative expression levels of 6 randomly selected DEGs were detected by real-time quantitative 
polymerase chain reaction (qPCR) technology. A total of 6 HE- and 6 LE- pigs were selected for qPCR. RNA sam-
ples were prepared by the methods mentioned above. Reverse transcription was performed by the PrimeScriptTM 
RT reagent kit (Takara, Japan). Then, all qPCR reactions were performed in a QuantStudioTM 7 flex device 
(Invitrogen Life Technologies, Carlsbad, CA, USA) following the manufacturer’s instructions and three biolog-
ical replicates were used in the experiment. The parameters used in the qPCR reaction were: denatured at 95 °C 
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for 5 min; performed 40 PCR cycles (95 °C, 10 s; 60 °C, 15 s; 72 °C, 20 s); dissolution curve (95 °C, 15 s, 55 °C, 15 s, 
95 °C, 15 s). Thereafter, the comparative Ct method67 was performed to quantify the gene expression of 6 selected 
genes in 12 individuals. The primer sequences of these genes were designed by the Oligo 7.0 software, and the 
details of the primers are displayed in Table S9.

Data availability
The raw reads have been submitted to the NCBI Sequence Read Archive database (SRA) under BioProject 
accession number of PRJNA578377 and SRA accession number SRR10315359 - SRR10315370.
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