Skip to main content
. 2020 Jun 16;6(3):369–377. doi: 10.1016/j.artd.2020.05.009

Table 7.

Power analysis: calculation for power of the study.

Parameters N NMK group (n = 63) MK group (n = 63) m1 − m2 (m1 − m2)2 ∗n 12 + σ22) (m1 − m2)2 ∗n}/(σ12 + σ22)] Square root [{(m1 − m2)2 ∗n}/(σ12 + σ22)] Zβ = square root [{(m1 − m2)2 ∗n}/(σ12 + σ22)] − Zα Power
KSCS 63 −43.60 ± 7 −45.60 ± 6.9 −2 252.00 96.61 2.61 1.62 −0.34 20.5%
KSFS 63 −35.14 ± 5.9 −38.12 ± 5.5 −2.98 559.47 65.06 8.60 2.93 0.97 39.3%
OXFORD 63 −15.39 ± 5.2 −18.13 ± 5 −2.74 472.98 52.04 9.09 3.01 1.05 56.2%
FJS 63 −28.69 ± 4.2 −33.22 ± 3.8 −4.53 1292.82 32.08 40.30 6.35 4.39 99.4%
ROM 63 −17.88 ± 5.2 −22.84 ± 4.7 −4.96 1549.90 49.13 31.55 5.62 3.66 97.6%
Kujala score 63 −13.0 ± 2.5 −24.40 ± 1.1 −11.4 8187.48 7.46 1097.52 33.13 31.17 100.0%

Sample size = n = (σ12 + σ22) (Zα + Zβ)2/(m1 − m2)2. Zβ = square root [{(m1 − m2)2 ∗n} / (σ12 + σ22)] − Zα.

Power of the study: The power has been calculated for all 6 parameters namely KSCS, KSFS, OXFORD, FJS, ROM, and Kujala score at 5 years. The mean with standard deviation of the change from baseline to 5 years of these parameters for the MK and NMK groups are given in the table. Based on these results, the implicit power of the study ranges from 20.5% to 100.0%. The confidence level is assumed to be 95%.