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Lipidmetabolic reprogramming is one hallmark of cancer. Lipid metabolism is regulated by numerous enzymes, many
of which are targeted by several drugs on the market. We aimed to characterize the lipid alterations in oral squamous
cell carcinoma (OSCC) as a basis for understanding its lipid metabolism, thus identifying potential therapeutic targets.
We compared lipid species, classes, and glycerophospholipid (GPL) fatty acid species between paired tumor tissue and
healthy oral tongue mucosa samples from 10 OSCC patients using a QExactive mass spectrometer. After filtering the
1370 lipid species identified, we analyzed 349 species: 71 were significantly increased in OSCC. The GPL metabolism
pathway was most represented by the lipids differing in OSCC (P= .005). Cholesterol and the GPLs phosphatidylcho-
lines, phosphatidylethanolamines, and phosphatidylinositols weremost significantly increased in OSCC tissue (FC 1.8,
2.0, 2.1, and 2.3 and, P=.003, P=.005, P=.002, P=.007). In conclusion, we have demonstrated a shift in the lipid
metabolism in these OSCC samples by characterizing the detailed landscape. Predominantly, cholesterol and GPL me-
tabolism were altered, suggesting that interactions with sterol regulatory binding proteins may be involved. The FA
composition changes of the GPLs suggest increased de novo lipogenesis.
© 2020 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

With a worldwide annual incidence of around 275 000, oral squamous
cell carcinoma (OSCC) is the most common type of head and neck cancer
(HNC) [1]. Significant risk factors include smoking and alcohol. Despite ad-
vances in treatment strategies, the overall survival has only improved by
5% over the last two decades, with 5-year survival rates of around 60% [2].

Metabolic reprograming, of which lipid metabolism is a part, is a hall-
mark ofmany cancers; the ability of cancers to perform de novo lipid synthe-
sis was first recognized over 60 years ago [3]. Increased de novo synthesis
and uptake of lipids are early events in cancer development [4]. Lipids
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are involved in various malignant processes: glycerophospholipids (GPLs)
have been shown to regulate various functions such as adhesion, migration,
apoptosis, and signal transduction [5]; cholesterol is an integral part of lipid
rafts, and also plays a key role in cellular signal transduction, in pathways
governing carcinogenesis, drug resistance, and metastasis [6].

Due to the structural complexity of lipids, the ability to analyze them on a
large scale has been problematic. With the advent of soft electrospray ioniza-
tion techniques pioneered by Fenn in 1989 [7], the ability to identify and
quantify many structurally different lipid classes has been made possible [8].

Lipidomics is a rapidly growing field that aims to quantify and compre-
hensively identify lipid classes and individual lipid species [9]. Its ultimate
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goal is to uncover the changes in lipid metabolism in pathological condi-
tions, which should allow for discovery of prognostic or predictive bio-
markers and drug targets, to facilitate more personalized treatment
approaches. Drug targets would likely be the enzymes involved in lipid me-
tabolism; drugs exist already for many of these [10]. The first step in being
able to target lipid entities and pathways for theranostic purposes is to char-
acterize the lipidome. Thus far, the lipid species’ composition has been in-
vestigated in a variety of cancers using this approach [11–18], providing
insights into candidate biomarkers as well as increasing knowledge of the
function of these lipids.

In OSCC, the detailed composition of plasma lipid species has been de-
scribed [19]. At the tissue level, Raman spectroscopy has been used to
identify the topological distribution of molecules including lipids, carbohy-
drates, and proteins [20]; however, the use of a high-throughput, highly sen-
sitive mass spectrometry (MS) approach gives more information about the
lipid species involved. To the best of our knowledge, this more detailed quan-
titative assessment of lipidomic aberrations at the tissue level is yet to be
done. This will help improve understanding of the role of lipid metabolism
in OSCC pathophysiology, identifying the key lipid metabolic pathways.
This may in turn help to provide targets for prognostication and treatment.
Therefore, we aimed to use an MS-based lipidomic approach to characterize
how the lipidome differs in OSCC compared to healthy tissue.

Methods

Patient Samples

Samples were collected from 10 patients treated for primary OSCC of
the oral tongue at the Department of Otorhinolaryngology–Head and
Neck Surgery and Department of Oral and Maxillofacial Surgery at the Hel-
sinki University Hospital (Helsinki, Finland) between 2015 and 2017. They
had had no preoperative radio- or chemotherapy. Fresh tumor samples and
healthy epithelial tissue samples from the opposite side of the tongue were
collected from each patient in the operating room, immediately snap-frozen
using dry ice and ethanol, and then stored at −72°C.

Ethical approval was granted by the institutional Research Ethics Com-
mittee of Medical Sciences (Dnro: 64/13/03/02/2014). All patients pro-
vided informed written consent to participate in the study.

Lipid Extraction for MS Lipidomics

Frozen sampleswere homogenized in LC-MS–gradewater (LicChrosolv)
in homogenization bead tubes for six runs at 45 seconds at 6.5 m/s with 5-
minute incubation on ice in between runs, diluted to a concentration of 5
mg/ml (wet tissue weight per volume), and then stored at−72°C.

MS-based lipid analysis was performed by Lipotype GmbH (Dresden, Ger-
many), as described [21]. Lipidswere extracted using a two-step chloroform/
methanol procedure [22]. Samples were spiked with internal lipid standard
mixture containing cardiolipin 16:1/15:0/15:0/15:0 (CL), ceramide 18:1;2/
17:0 (Cer), diacylglycerol 17:0/17:0 (DAG), hexosylceramide 18:1;2/12:0
(HexCer), lysophosphatidate 17:0 (LPA), lysophosphatidylcholine 12:0
(LPC), lysophosphatidylethanolamine 17:1 (LPE), lysophosphatidylglycerol
17:1 (LPG), lysophosphatidylinositol 17:1 (LPI), lysophosphatidylserine
17:1 (LPS), phosphatidate 17:0/17:0 (PA), phosphatidylcholine 17:0/17:0
(PC), phosphatidylethanolamine 17:0/17:0 (PE), phosphatidylglycerol
17:0/17:0 (PG), phosphatidylinositol 16:0/16:0 (PI), phosphatidylserine
17:0/17:0 (PS), cholesterol ester 20:0 (CE), sphingomyelin 18:1;2/12:0;0
(SM), triacylglycerol 17:0/17:0/17:0 (TAG), and cholesterol D6. After extrac-
tion, the organic phase was transferred to an infusion plate and dried in a
speed vacuum concentrator. The first-step dry extract was resuspended in
7.5 mM ammonium acetate in chloroform/methanol/propanol (1:2:4, v:v),
and the second-step dry extract was resuspended in 33% ethanol solution
of methylamine in chloroform/methanol (0.003:5:1; v:v). All liquid handling
stepswere performedusingHamiltonRobotics STARlet robotic platformwith
the antidroplet control feature for organic solvents pipetting.
2

MS Data Acquisition

Samples were analyzed by direct infusion on a QExactive mass
spectrometer (Thermo Scientific) equipped with a TriVersa NanoMate
ion source (Advion Biosciences). Samples were analyzed in both posi-
tive and negative ion modes with a resolution of Rm/z=200=
280,000 for MS and Rm/z=200=17,500 for MS/MS experiments in
a single acquisition. MS/MS was triggered by an inclusion list
encompassing corresponding MS mass ranges scanned in 1-Da incre-
ments [23]. Both MS and MS/MS data were combined to monitor
CE, DAG, and TAG ions as ammonium adducts; PC and PC O- as acetate
adducts; and CL, PA, PE, PE O-, PG, PI, and PS as deprotonated anions.
MS only was used to monitor LPA, LPE, LPE O-, LPI, and LPS as
deprotonated anions; Cer, HexCer, SM, LPC, and LPC O- as acetate ad-
ducts; and cholesterol as ammonium adduct of an acetylated
derivative [24].

Data Analysis and Postprocessing

Data were analyzed with in-house–developed lipid identification soft-
ware based on LipidXplorer [25,26]. Data postprocessing and normaliza-
tion were performed using an in-house–developed data management
system. Only lipid identifications with a signal-to-noise ratio >5 and a sig-
nal intensity five-fold higher than in corresponding blank samples were
considered for further data analysis.

As filtering steps, firstly, abundances of <1 pmol per sample per lipid
species identified were removed. Secondly, if no specific lipid or fatty
acid species was identified in >20% of samples in both groups, then that
species was excluded from comparative analysis between OSCC and
healthy tissue, although all values are included in the GPL fatty acidfigures.
For abundance of each lipid class, the abundances of all lipid species within
that class were summed. To calculate the abundance of each fatty acid
chain in the GPL classes, which have two fatty acid binding sites (see Figure
S1), the abundance of each species containing each fatty acid was summed
[i.e., to calculate the abundance of palmitate (C16:0) in PC, we calculated Σ
[1 ∗ PC(16:0/X:X)+ 2∗PC (16:0/16:0)]. Abundances of lysophospholipids
and ether lipids were incorporated into one group; for example, LPC, PC
and PC ether (PC O-) were combined. Table S1 provides an example
calculation.

OSCCwas comparedwith healthy tissue: lipid classes, species, and fatty
acid chains within each GPL class.

Statistical Analysis

To identify differentially expressed lipids, the paired t test was per-
formed using the t.test function in R. The significance level was set to P <
.05. Multiple testing [false discovery rate (FDR)] was done using the
Benjamini-Hochberg method, with the FDR set to <0.05. Power for each
lipid species and class was calculated using R.

The volcano plot was created using Microsoft Excel for Mac v16.16.2
(Microsoft, Redmond, WA), and elements were highlighted using Sketch
v25.2 (Sketch, the Netherlands).

Hierarchically clustered heatmaps, PCA, and box plots were cre-
ated using the statistical analysis module on metaboanalyst.ca. Data
normalization for the hierarchically clustered heatmap is as follows:
sample normalization by median, cube-root data transformation, and
data scaling by autoscaling. Results of normalization are in Figure
S2. Euclidean distance measure and Ward D clustering algorithm
were used.

Pathway Analysis

Pathway analysiswas performed on the differentially expressed individ-
ual lipids (P<.05) by using Lipid Pathway Enrichment Analysis, a web tool
for overrepresentation analysis of lipid signatures (https://lipea.biotec.tu-
dresden.de/home).

https://lipea.biotec.tu-dresden.de/home
https://lipea.biotec.tu-dresden.de/home
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Figure 1. Volcano plot of lipid species. The red horizontal line indicates the
significance limit (FDR of 0.05). Lipid species above this line are statistically
significant. The red vertical lines represent a fold change of >2 and <0.5 (OSCC/
healthy), i.e., those to the right of the rightmost vertical red line are twice as
abundant in OSCC, and those to the left of the leftmost vertical red line are twice
as abundant in the healthy tissue. The size of the circles indicates the average
abundance of the species in the most abundant group, and the colors of each
circle show which class the species belong to (see the Key).
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Results

Patient and Tumor Characteristics

Patient demographics are shown in Table S2. Themale:female ratiowas
2:3, and average patient age was 55 years (median 65.5, range 24-78).
Seven tumors were stage IVa, two were stage II, and one was stage I. All tu-
mors wereM0 at the time of tissue collection. One patient had had a kidney
cancer 8 years prior to OSCC diagnosis. Four patients had disease recur-
rence or progression after the initial treatment.
Lipid Classes and Species

Using an MS-based, data-independent acquisition approach to lipids,
1370 separate lipid species were quantified (Table S3). Of 23 lipid classes
(Figure S1 shows their structures), four were significantly different (Table
1, Table S4): three GPLs and cholesterol. The most abundant lipids were
cholesterol, phosphatidylcholine, and triacylglycerol. After filtering, 349
species were included in the t test (Table S4). Figure 1 shows a volcano
plot of the different species and their abundances, and Table 2 shows the
71 significantly different species. Boxplots for each lipid species and class
are shown in Figure S3 and S4, respectively. The majority of significant
lipid species were GPLs, the next largest group being sphingolipids.

A hierarchically clustered heatmap did not separate healthy samples
from OSCC using lipid classes (Figure S5). However, at a species level,
3

healthy and OSCC tissue separated, except in patient 3 whose healthy sam-
ple was intermixed with the OSCC samples and in patient 4 whose OSCC
sample was intermixed with the healthy samples (Figure 2). Results of the
PCA for lipid species and classes can be seen in Figures S6 and S7. As can
be expected, they are very similar to each other. There is some variation
in the healthy samples, and healthy sample 2 is separated from the other
healthy samples due to its high TAG content. Taken together, principle
component 1 is influenced by the TAG levels, with all of the OSCC samples
having a similar low level and TAG-level variation occurring in the healthy
samples. Principle component 2 is most influenced by the classes PC and
then by cholesterol, with increasing levels inmost of the cancers. At the spe-
cies level, certain TAGs most influence principle component 1 (especially
TAG 52:2;0, TAG 53:2;0 and 50:2;0), and principle component 2 is most in-
fluenced by cholesterol and then by PC16:0;0_18:1;0 and PC PC16:0;0_
16:0;0. It is worth noting that there is pairwise separation between all of
the pairs at a class level, although OSCC 1 and healthy 1 are relatively sim-
ilar at the class level using two principle components and OSCC 10 and
healthy 10 are not separated well in the species-level PCAwith two compo-
nents. These further separate when including principle component 3.

Pathways

We identified pathways enriched with the altered lipid species (Table
S5) using all lipid species with a paired t test P value < .05. The pathway
containing the greatest number of altered lipid species was “GPL metabo-
lism” followed by the sphingolipid signaling pathway and retrograde
endocannabinoid signaling (Figure S8).

Fatty Acids

As GPLs were the majority of the significantly different species and the
most represented pathway, we looked at the fatty acids connected to the
GPLs to identify how their fatty acids changed with cancer. Figure 3
shows the composition of the fatty acids in all of the GPLs combined except
cardiolipin. Themajority of the fatty acidswere increased in theOSCC com-
pared with healthy tissue; those with the biggest increases were 16:0 (pal-
mitate) followed by 18:1. Using this methodology, we were unable to
determine the exact location of any double bonds within the fatty acids,
so we cannot be certain which isomer the fatty acid 18:1 is. Figure 4
shows the composition of fatty acids in the significantly different GPL clas-
ses: PC, PE, and PI. Other GPL classes’ fatty acid compositions are available
in Figure S9 and Table S6.

Discussion

Metabolic reprogramming including lipid metabolism alterations is
considered one of the hallmarks of cancer and has been implicated in met-
astatic behavior as well as, for instance, resistance to cetuximab in HNC
models [27,28]. Given this crucial role lipids play in different cancer behav-
iors, it is important to understand the overall tissue lipid alterations to begin
identifying theranostic targets: either the lipids themselves or enzymes in-
volved in their regulation.

We compared the lipidome of OSCC with healthy tissue from the same
patient, reducing the chances of interindividual lipidomic alterations
within the tissue that may result from other factors such as diet [27].
There was almost complete separation in the hierarchically clustered
heatmap of lipid species (Figure 2): one healthy sample clustered together
with the OSCC samples, although it was most similar to its OSCC counter-
part. One potential explanation for this could be the phenomenon of field
cancerization [29], especially since this patient later developed a fast grow-
ing neck metastasis after radiotherapy had finished. Additionally, one
OSCC sample clustered with the healthy samples. This was a stage IVa
tumor that was successfully treated so could perhaps reflect a tumor with
less aggressive features.
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From this unbiased approach of quantifying the lipidomic aberrations of
OSCC, we found that lipid levels were greater in the cancer tissue than
healthy tissue. We identified that the main differences lie in cholesterol
and the GPLs (Table 1).

Cholesterol levels were higher in the cancer tissue than healthy tissue.
Cholesterol accumulation in mitochondria can suppress apoptosis via inhi-
bition of apoptotic proteins’ release from the mitochondria [30]. Cellular
cholesterol levels are maintained in healthy cells by a tightly synchronized
balance between uptake, efflux, and de novo synthesis, which is deregulated
in many cancers [31]. Sterol regulatory element binding proteins (SREBPs)
and liver X receptors (LXRs) are important transcription factor classes in
cholesterol homeostasis [6,31]: when cholesterol levels fall, SREBPs are ac-
tivated, leading to the transcription of genes involved in cholesterol uptake
4

and biosynthesis. When cholesterol levels increase, LXRs are indirectly ac-
tivated, leading to upregulation of the efflux-related genes ABCA1 and
ABCG1 [6]. Interestingly, a small study showed upregulation of LXRs in
OSCC along with increased cholesterol efflux via ABCA1 receptors [32]. If
the levels of LXRs would be similarly raised in our cohort, then there
could not be an increase of efflux as would be expected. Possible explana-
tions could be increased uptake or synthesis of cholesterol that surpasses
the efflux capacity, or due to molecular intermediaries: various miRNAs
have been shown to target and inhibit ABCA1 and ABCG1 [6].

SREBPs, which upregulate cholesterol uptake and biosynthesis-related
proteins, can be activated in many ways: Ras-oncogene activation, mutated
p53, and PI3K/Akt/mTORC signaling [30,31]. Akt signaling is well known
to be disturbed in OSCC as a downstream product of Ras-oncogene activation
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[33]. Recently, it has been shown that mTORC levels are also increased in
OSCC tissues [34]. Traditional serum lipid profiling has shown that
hypocholesterolemia occurs in OSCC patients, suggesting that increased up-
take may occur in OSCC tissue [35]. Furthermore, many cancers have in-
creased cholesterol synthesis [31]; however, this has not been studied in
OSCC to our knowledge. Further research into the alterations of cholesterol
metabolism in OSCC will be important to identify potential therapeutic
targets.

Additionally, three GPLs classes’ abundances were significantly in-
creased (PE, PC, and PI) in the cancer, and “GPL metabolism” was the
lipid pathway including the greatest proportion of lipid alterations (Table
S5, Figure S8A).

PI is an important cellular component that is synthesized in the
endoplasmic reticulum. It is part of a complex network of eight
phosphatidylinositides that can be interconverted by different enzymes
[36] and which have important roles in cell signaling, transcription, RNA
editing, and regulation of membrane proteins, among others. They signal
through many axes, including via the PI3K/Akt/mTOR pathway, which in-
fluences among other things cell survival, metabolism, and growth and is
well established as an aberrant pathway in HNC [37].

We found that the PI levelswere twice as high in the cancer than healthy
epithelium, which is the case also in prostate cancer. In prostate cancer, the
acylation patterns were also different in different stages of disease, with
changes in acyl saturation [38]. P53 is the most common mutation in
HNCs, and this has also been shown to affect acylation patterns in PI, espe-
cially leading to an increase in PIs with 36 carbons in both acyl chains to-
gether [39]. The same pattern exists in our study, and several such 36-
5

carbon PIs were significantly upregulated in the cancer, for instance, PI
16:0_20:4 and PI 18:1_18:1 (Table S3).

The two most abundant GPLs that we identified were PC and PE. These
are mainly found in the cell membrane, with PE being also found in the mi-
tochondrial membrane. Interestingly, all cancers tested hitherto display ab-
normal PC and PE metabolism [40]. They are formed, among other ways,
via the Kennedy pathway [41] (Figure 3), which has potential for pharma-
cological targeting [4]. One enzyme in the Kennedy required for PC and PE
synthesis, choline kinase, has increased levels in various cancers and corre-
late with poor prognosis [42]. Its inhibition has also promising results in
terms of antimetastasis, induction of cell senescence, and tumor growth re-
duction in animal models; thus, it would be useful to see if this is also the
casewithOSCC [43]. Uptake from the serum could alternatively be amech-
anism here, as a previous serum lipidomics study byWang et al. [19] found
that GPLs, especially PC and PE, were decreased in the serum of OSCC pa-
tients compared to controls. The SR-B1 cholesterol transporter has been
shown to also uptake phospholipids PC, SM, and PE from HDL and LDL
[44]; this could be one mechanism for uptake. SM also trended towards
being upregulated in the OSCC tissue (FC=1.5) but was insignificant
when multiple testing correction was applied.

One other interesting finding was the precipitous drop in TAG
abundance in the tumor tissue (Table 2, Figure 1). It can be seen in
the volcano plot (Figure 1) that there were several high-abundance
TAG species, almost all of which were more abundant in the healthy
tissue. However, not all healthy samples had such high levels, as can
be seen in the heatmap in Figure 2; hence, this difference did not
reach significance at the group level. TAGs are used as lipid storage
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within cells at a time of high nutrient availability. The large drop in
TAGs suggests that they are either extensively used for energy require-
ments in the OSCC tissue or that the DAGs from which they are formed
6

are instead being used as a substrate for PC and PE synthesis [45].
Based on our pilot results, larger studies should investigate the TAG
alterations in OSCC.



Table 1
Lipid Class Differences Between OSCC and Healthy Tissue

Names Healthy Mean Abundance OSCC Mean Abundance FC OSCC/Healthy P Value FDR

Phosphatidylethanolamine PE 519.6 1194.9 2.3 .002 0.038
Phosphatidylcholine PC 2680.5 5517.4 2.1 .005 0.039
Phosphatidylinositol PI 461.2 903.9 2 .007 0.042
Cholesterol Chol 2336.6 4198.3 1.8 .003 0.038
Ceramide Cer 44.4 232.2 5.2 .1 0.192
Phosphatidylcholine ether PC O- 147.4 314.5 2.1 .09 0.192
Lysophosphatidylinositol LPI 2.3 4.7 2 .066 0.192
Phosphatidylglycerol PG 11.1 22.4 2 .075 0.192
Lysophosphatidylethanolamine ether LPE O- 5.1 9.1 1.8 .228 0.327
Cholesterol ester CE 391.6 676.4 1.7 .076 0.192
Lysophosphatidylethanolamine LPE 11.3 18.2 1.6 .243 0.328
Phosphatidylethanolamine ether PE O- 775.8 1269.8 1.6 .092 0.192
Lysophosphatidylcholine LPC 44.4 71.8 1.6 .094 0.192
Sphingomyelin SM 469 725.8 1.5 .026 0.121
Phosphatidylserine PS 703.9 959.2 1.4 .189 0.29
Diacylglycerol DAG 220.7 299.2 1.4 .335 0.391
Hexosylceramide HexCer 33.2 34.7 1 .902 0.902
Lysophosphatidylserine LPS 3.7 2.9 0.8 .656 0.686
Cardiolipin CL 124.1 100.6 0.8 .329 0.391
Phosphatidic acid PA 67.5 50.3 0.7 .614 0.673
Lysophosphatidylcholine ether LPC O- 6.9 3.6 0.5 .114 0.202
Lysophosphatidic acid LPA 5.6 2 0.4 .34 0.391
Triacylglycerol TAG 5036 836.3 0.2 .174 0.286

Significantly different lipid classes are shown in bold. The “HealthyMean Abundance” and “OSCCMean Abundance” columns show the average absolute abundance of each
lipid class in the healthy and OSCC samples, respectively. Abundance in pmol/mg tissue.
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GPL Fatty Acid Composition

Themajority of cells acquire fatty acids via uptake from the blood stream.
De novo synthesis of fatty acids occurs primarily in the liver, adipose tissue,
and lactating breast. Many enzymes are involved, including fatty acid syn-
thase (FASN), which creates palmitate, the 16-carbon saturated fatty acid,
which can then be elongated and desaturated to form other fatty acids [42].

We examined the compositions of fatty acids within the GPLs except for
CL, for which the fatty acid composition was undetermined (Figures 3A, 4,
S9; Table S6). Alas, we were unable to assess the fatty acid composition of
other lipid classes such as TAG and DAGs. In general, where there was a dif-
ference in abundance, most GPL fatty acid species were upregulated in the
cancer tissue. The chain lengths and saturations in different GPLs varied
even in the healthy tissue; however, the significance of this is unclear. In
PC, themost abundant GPL, almost all of the fatty acids that were identified
were increased in the cancer tissue. Palmitate (16:0) was the fatty acidmost
increased in cancer in the GPLs, namely, in PC and also in PE, which sug-
gests that there is an increase in FASN expression, as has previously been
found in OSCC [46]. Interestingly however, some classes had no significant
changes in the fatty acid composition, examples being PA and PG. All GPL
species that are newly synthesized via the Kennedy pathway undergo fatty
acid chain remodeling in a process known as the Lands cycle. This complex
cycle comprising many different enzymes involves the remodeling of GPL
species into other GPL species, as well as the fatty acid composition of the
GPLs [45], which will affect the properties of the cell membrane [47]. It
would be interesting to further investigate what effect on membrane prop-
erties is caused by these altered GPLs. Furthermore, many of the enzymes
involved in de novo fatty acid synthesis are also regulated by SREBPs [48].

C18:1 was the most abundant monounsaturated fatty acid and probably
represents oleic acid, although other isomers such as vaccenic acid and
elaidic acid are also known. This was also increased in PC and PE in the
OSCC tissue. Overall, the biggest changes were seen in the monounsatu-
rated and saturated fatty acids. The stearoyl CoA desaturases catalyze the
rate-limiting step of desaturating fatty acids. This is overexpressed in
some cancers, and in breast cancer, this overexpression correlates with re-
duced survival [49]. Moreover, the inhibition of stearoyl CoA desaturase
in cancer cells has been shown to induce the endoplasmic reticulum stress
pathway leading to cell death [50] and thus may be an interesting area to
pursue in OSCC.
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Limitations

Although these are exciting findings, there are several constraints
at present with data interpretation. Though there are databases avail-
able for lipidomic profile interpretation, detailed knowledge of the
functions of lipid species is still being unraveled. Additionally, al-
though we know how many double bonds were present in each lipid
species/fatty acid chain within a species, we were unable to identify
where each double bond was within the chain, thus limiting our inter-
pretation of which enzymes could have participated in their
desaturation. As we have not detected the lipidomic changes in spe-
cific organelles, we are unable to describe with certainty the topo-
graphical alterations within the cells. Another limitation of this
work is the small patient number. Due to this, we were unable to cor-
relate the results with smoking, alcohol use, or other clinicopatholog-
ical features and had no information on dietary habits of the
participants, which may have influenced the results. Nevertheless,
we had the benefit of being able to compare cancer and tissue from
the same patients in a pairwise manner, which should mitigate for
the effect of diet.
Conclusions

We found that cholesterol levels are upregulated in OSCC tissue,
suggesting deregulation of the usually tightly controlled cholesterol
homeostasis.

We identified that GPL metabolism is dysregulated, and specifically
PC and PE are the lipid classes most increased in OSCC tissue, suggesting
that the Kennedy pathway is upregulated. We ascertained the fatty acid
alterations in these GPLs, whereby mono- and unsaturated fatty acids
were most increased in cancer, especially in PCs. Palmitate was espe-
cially increased, which suggests increased de novo fatty acid synthesis
via FASN.

SREBPs are involved in both cholesterol metabolism as well as de novo
fatty acid synthesis and so may be a good starting place for future OSCC
lipid research.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100807.
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Table 2
Significantly Different Lipid Species

Average Abundance Fold Change

Species Healthy OSCC

PC 16:0;0_22:2;0 3.2 20.8 6.58
PC 16:0;0_16:0;0 1411.4 5020.7 3.56
PC 18:1;0_20:5;0 27.7 96.9 3.5
PC 18:2;0_20:2;0 35.7 121.7 3.41
PC 14:0;0_16:0;0 253.8 833 3.28
PC 18:0;0_20:5;0 27.8 90.2 3.25
PC 16:1;0_16:1;0 283.9 877.3 3.09
PC 18:1;0_20:2;0 42.2 130.3 3.08
PC 15:0;0_16:0;0 127.1 387.4 3.05
PC 16:0;0_20:2;0 83.5 254.4 3.05
PC 16:0;0_20:1;0 83.1 246.4 2.96
PC 18:2;0_20:3;0 29.1 83.7 2.87
PC 18:2;0_20:1;0 42.7 115.1 2.69
PC 14:0;0_18:0;0 77.5 207.8 2.68
PC 18:1;0_20:1;0 75.7 186.6 2.47
PC 16:0;0_16:1;0 947.1 2074.8 2.19
PC 16:1;0_20:3;0 20.2 43.1 2.13
PC 14:0;0_18:1;0 176 371.2 2.11
PC 18:1;0_19:1;0 21.1 43.1 2.05
PC 14:0;0_17:0;0 16.3 32.4 1.99
PC 16:0;0_18:1;0 5928.1 11577.4 1.95
PC 16:0;0_17:1;0 180.7 326.5 1.81
PC 16:0;0_19:1;0 27.2 49 1.8
PC 18:1;0_18:1;0 1607.2 2815.9 1.75
PC 15:0;0_18:1;0 221.1 374.4 1.69
PC O-17:0;0/15:0;0 19.6 52.8 2.69
PC O-16:0;0/16:1;0 38.5 78.1 2.03
PG 16:0;0_18:1;0 10.3 43.6 4.22
PI 18:1;0_22:4;0 7.6 43.5 5.71
PI 16:0;0_22:4;0 16.6 81.2 4.89
PI 18:1;0_20:4;0 137.4 379.8 2.76
PI 16:0;0_20:4;0 101.9 275.7 2.7
PI 18:0;0_22:6;0 37.7 90 2.39
PI 18:1;0_20:3;0 62.5 140.4 2.25
PI 16:0;0_20:3;0 21.8 48.2 2.21
PI 18:1;0_18:1;0 135.7 295.4 2.18
Cer 32:1;2 1.4 29.7 20.57
Cer 34:2;2 5.2 32.9 6.27
Cer 42:2;2 60.4 310.4 5.14
Cer 34:1;2 155.6 457.9 2.94
CE 20:3;0 5.3 137.3 25.83
Chol 23365.7 41983.4 1.8
DAG 16:0;0_20:3;0 5.6 24.6 4.42
DAG 18:1;0_20:3;0 5 19.9 3.97
DAG 16:0;0_20:4;0 27.9 76.6 2.75
DAG 18:0;0_20:3;0 34.9 67.6 1.94
HexCer 40:1;2 2.6 27.9 10.74
HexCer 42:2;2 12.8 64.7 5.07
HexCer 34:1;2 15.6 61.2 3.92
PE 16:0;0_16:0;0 6.3 35.1 5.6
PE 18:1;0_22:3;0 6.5 81.3 12.49
PE 18:1;0_20:2;0 4.5 34.8 7.7
PE 16:0;0_20:1;0 4.5 27.2 6.07
PE 20:1;0_20:4;0 4.2 25 6.01
PE 16:0;0_20:2;0 5.5 28.7 5.25
PE 18:1;0_22:4;0 40.3 141.8 3.52
PE 16:0;0_20:4;0 85.1 291.7 3.43
PE 16:0;0_22:4;0 68.2 223.4 3.27
PE 16:0;0_22:5;0 122.2 386.4 3.16
PE 18:1;0_20:1;0 21.9 69.3 3.16
PE 16:1;0_20:4;0 12.3 34.1 2.77
PE 18:1;0_20:3;0 72.2 187.3 2.6
PE 16:1;0_22:5;0 34.2 82 2.4
PE 16:0;0_20:3;0 27.7 63.5 2.29
PE 18:1;0_18:1;0 553.8 1221.9 2.21
PE 18:1;0_22:5;0 112.8 242.1 2.15
PE 18:1;0_18:2;0 313.4 645.9 2.06
PE 16:0;0_18:1;0 430.9 841.8 1.95
SM 44:2;2 41.6 117.4 2.82
SM 32:1;2 89.5 186.5 2.08
SM 40:2;2 64 133 2.08

Abundance is in pmol/mg. Fold change is OSCC/healthy.
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