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Background. The purpose of this review is to depict current research and impact of artificial intelligence/machine learning (AI/ML)
algorithms on dialysis and kidney transplantation. Published studies were presented from two points of view: What medical aspects
were covered?What AI/ML algorithms have been used?Methods. We searched four electronic databases or studies that used AI/ML
in hemodialysis (HD), peritoneal dialysis (PD), and kidney transplantation (KT). Sixty-nine studies were split into three categories:
AI/ML and HD, PD, and KT, respectively. We identified 43 trials in the first group, 8 in the second, and 18 in the third. Then,
studies were classified according to the type of algorithm. Results. AI and HD trials covered: (a) dialysis service management, (b)
dialysis procedure, (c) anemia management, (d) hormonal/dietary issues, and (e) arteriovenous fistula assessment. PD studies
were divided into (a) peritoneal technique issues, (b) infections, and (c) cardiovascular event prediction. AI in transplantation
studies were allocated into (a) management systems (ML used as pretransplant organ-matching tools), (b) predicting graft
rejection, (c) tacrolimus therapy modulation, and (d) dietary issues. Conclusions. Although guidelines are reluctant to
recommend AI implementation in daily practice, there is plenty of evidence that AI/ML algorithms can predict better than
nephrologists: volumes, Kt/V, and hypotension or cardiovascular events during dialysis. Altogether, these trials report a robust
impact of AI/ML on quality of life and survival in G5D/T patients. In the coming years, one would probably witness the
emergence of AI/ML devices that facilitate the management of dialysis patients, thus increasing the quality of life and survival.

1. Introduction

Artificial intelligence (AI) solutions are currently present in
all medical and nonmedical fields. New algorithms have
evolved to handle complex medical situations where the
medical community has reached a plateau [1]. Medical regis-
tries received machine learning (ML) solutions for a better
prediction of events that beat human accuracy [2]. Since
AI/ML “…have the potential to adapt and optimize device

performance in real-time to continuously improve health care
for patients…,” the US Food and Drug Administration
released this year a regulatory framework for modifications
in the AI/ML-based software as a medical device [3].

The same board has approved in the last year at least 15
AI/deep learning platforms involved in the medical field
(e.g., for atrial fibrillation detection, CT brain bleed diagno-
sis, coronary calcium scoring, paramedic stroke diagnosis,
or breast density via mammography) [4].
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In the last 15 years, numerous issues and complica-
tions generated by the end-stage renal disease requiring
dialysis [5] (chronic kidney disease (CKD) stage G5D),
by the technique of dialysis itself or by kidney transplanta-
tion (CKD stage G5T) [6], received incipient inputs from
AI algorithms. However, the implementation of AI solu-
tions in the dialysis field is still at the beginning. None
of the successes reported above and approved by the
FDA could be found in renal replacement therapy. Given
the significant influence on healthcare in medical image
processing, smart robotics in surgery, or Apple’s watch
impact on atrial fibrillation detection, the nephrology com-
munity recently raised two questions: “Can this success be
exported to dialysis? Is it possible to design and develop
smart dialysis devices?” [1].

If we are to be realistic, most of the end-stage renal dis-
ease (ESRD) patients (those who cannot benefit from kidney
transplantation) are reliant on technology: currently, without
a dialysis machine (the so-called “artificial kidney”), it is
almost impossible to stay alive. It is evident that from the
desire to create safer and more physiological devices, the
nephrology community and the patients could benefit from
AI/ML solutions powering actual machines or other
improved versions. In other words, enhancing the function-
ality of the “artificial kidney” with “artificial intelligence”
could constitute the next significant step toward better man-
agement of G5D patients.

In this regard, in 2019 was published probably one of the
most suggestive and advanced examples: a multiple-endpoint
model was developed to predict session-specific Kt/V, fluid
volume removal, heart rate, and blood pressure based on
dialysis-patient characteristics, historic hemodynamic
responses, and dialysis-related prescriptions [7]. This
research opens the door to other AI studies in ESRD patients
in which an ML-powered machine would continuously and
autonomously change its parameters (temperature, dialysate
electrolyte compositions, duration, and ultrafiltration rates)
in order to avoid one of the most vexing situations in dialysis
(e.g., hypotension). Also, in this future framework, nephrol-
ogy would indeed be “personalized medicine,” since a dialysis
session would not be the same.

Our review’s purpose is to depict the current research
and impact of AI/ML algorithms on renal replacement
therapy (hemo-, peritoneal dialysis, and kidney transplanta-
tion). We intend to summarize all studies published on this
topic, presenting data from two points of view: (a) what
medical aspects were covered? (b) What AI/ML algorithms
have been used?.

2. Materials and Methods

Our review adheres as strictly as possible to the PRISMA
guidelines. The overall workflow is shown in Figure 1 and
described below.

2.1. Search Strategy. We searched the electronic databases of
PubMed, SCOPUS, Web of Science, and EBSCO from its ear-
liest date until August 2019 for studies using AI/ML algo-
rithms in dialysis and kidney transplantation. The terms

used for searching were “artificial intelligence”, “machine
learning”, “deep learning”, “data mining”, AND, “end-stage
renal disease”, “ESRD”, “advanced CKD”, “dialysis”, “hemodi-
alysis”, “peritoneal dialysis”, “renal replacement therapy”,
“kidney transplantation”, “stage G5D CKD”, “stage G5T
CKD”. The reference sections of relevant articles were also
searched manually for additional publications (Figure 1).
RCTs and observational studies, including prospective or ret-
rospective cohort studies, reviews, meta-analyses, and guide-
lines were included if referring to AI in G5D/T CKD.

Since the research field is not too broad, we decided to
include published conference proceedings. Two independent
reviewers selected studies by screening the title and abstract.
During the screening stage, 277 titles were excluded from the
354 papers previously deduplicated. Seventy-seven papers
were found. In another phase, from the full articles which
conformed to the selection criteria, essential data were
extracted independently, and the results sorted. Discrepan-
cies were resolved by discussion and consensus. Duplicates
were excluded both manually and through reference man-
ager software. Finally, 69 studies met the inclusion criteria
(see Supplemental Tables 1–3).

2.2. Clinical Approach (according to the Clinical Topics). The
sixty-nine included studies were split into three categories: AI
and hemodialysis (HD), AI and peritoneal dialysis (PD), and
AI and kidney transplantation (KT), respectively (Figure 2).
There were 43 trials on AI in HD, eight studies in PD, and
18 in KT.

Moreover, each one of the three main categories was fur-
ther divided into subsections (Table 1). Trials dealing with AI
and HD covered five issues: (a) dialysis center/healthcare
management, (b) dialysis technique and procedure, (c) ane-
mia management, (d) hormonal/dietary issues, and (e) arte-
riovenous fistula assessment. Regarding PD, the studies
were divided into three subsections: (a) peritoneal technique
issues, (b) infections, and (c) cardiovascular event prediction.
Finally, studies dealing with AI in KT were allocated into four
categories: (a) healthcare management systems, (b) predict-
ing graft rejection, (c) tacrolimus therapy modulation, and
(d) dietary issues.

Most of the studies (except for one randomized con-
trolled trial (RCT)) were observational. Only three trials were
published before 2000, whereas over 60% of the studies were
reported after 2010. Most HD studies involved personalized
anemia management and parameters of the dialysis session.
The accurate prediction of graft rejection or individualizing
immunosuppressive treatment posttransplant was the main
topics covered by the AI and KT trials.

2.3. Algorithm Approach (according to the AI/ML Algorithm
Used). All trials were also classified according to the type of
AI algorithm (Table 2). Core concepts, various AI algo-
rithms, and differences between them have been defined
and described elsewhere [8–11].

Sixty-four studies included ML algorithms: unspecified,
Naive Bayes models, support vector machine (SVM), and
reinforcement learning with Markov decision processes
(MDP). One study used k-nearest neighbor (k-NN), one
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study used multilayered perceptron (MLP), 30 studies used
unspecified neural network algorithms, and 11 studies were
based on tree-based modeling (TBM), random forest (RF),
or conditional inference trees. Four trials used data mining
algorithms, and five of them had fuzzy logic approaches.
One study included specific natural language processing
algorithms. Two studies have also included the Bayesian
belief network and dynamic time warping (DTW)
algorithms.

3. Discussions

Our endeavor is the first in-depth review of the literature
gathering all studies using AI in dialysis or kidney transplan-
tation. Two recent papers looked at AI in nephrology, but
both focused on AI core concepts, AI perspectives, and algo-
rithms [1, 8]. These articles explained in detail AI terminol-
ogy and most of the algorithms used, also describing some
significant clinical challenges, quoting only a few trials on
dialysis and KT. Generally speaking, perspectives about AI
oscillate between two extremes: either an extremely optimis-
tic approach (“algorithms are desperately needed to help” [4])
or a disarming nihilism (“Should we be scared of AI? Unfortu-
nately, as our AI capabilities expand, we will also see it being
used for dangerous or malicious purposes” [12]).

3.1. Hemodialysis and AI. The most important implication of
AI in HD is related to dialysis services. Generating auditing
systems powered by AI/ML algorithms seems to improve
major outcomes.

In a retrospective trial, 5800 dialysis sessions from 43
patients supervised for 19 months were assessed through
temporal data mining techniques to gain insight into the
causes of unsatisfactory clinical results [13]. Quality assess-
ment was based on the automatic measurement of 13 vari-
ables reflecting significant aspects of a dialysis session, such
as the efficiency of protein catabolism product removal or
total body water (TBW) reduction and hypotension episodes.
Based on the stratification of different causes of failed dialysis
in time, ML algorithm “learned” association and temporal
rules, reporting “risk profiles” for patients, containing typical
failure scenarios [13].

Due to neural networks (NNs), we are now able to
exclude the bias of the “dialysis center effect” on mortality
[14] (the residual difference in mortality probability that
exists between centers after adjustment for other risk factors).
In a study including 18,000 ESRD patients from UK Renal
Registry, an MLP (multilayered perceptron) was “trained”
and then “tested” for predicting mortality. The authors
proved with high accuracy that the renal center characteris-
tics show little association with mortality and created a pre-
dictive survival model with a high degree of accuracy [14].

Database search
(PubMed: 314/ SCOPUS: 55/ 

Clarivate WoS: 46/ EBSCO: 40)
n = 455

Deduplication
n = 455

Screening
(Title and abstract)

n = 354

Full-text review
(Screening and assessment)

n = 77

Data collection
(Included)
n = 69

Example search: [“ArtificialIntelligence” “Machine 
Learning” “Deep Learning” “Data Mining”] AND 

[“end-stage renal disease” “ESRD” “advanced CKD” 
“dialysis” “hemodialysis”, “peritoneal dialysis”, “renal 

replacement therapy”, “kidney transplantation”, 
“stage G5D CKD”, “stage G5T CKD”.]

Excluded at deduplication (n = 101)

Excluded at screening (n = 277)

189 duplicate
68 not manuscript

7 not clinical
13 notext

2 duplicate
2 not manuscript

1 not clinical
3 poor quality

Excluded at full-text review (n = 8)

Figure 1: PRISMA flowchart for including articles in our study.
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To have a real perception of what big data means, we
present a study encompassing dialysis patients from the
USRDS. A total of 1,126,495 records were included in a
combined dataset, forty-two variables being selected to be
used in the analysis based on their potential clinical signif-
icance. The authors described a feed-forward NN with two
inputs, one output, and a hidden layer containing four
neurons. A powerful tool was created to predict mortality
with high accuracy [15].

In daily practice, clinician nephrologists could also use
forecast models that can predict the quality of life (QoL)
changes (through an early warning system performing dialy-
sis data interpretation using classification tree and Naive
Bayes) [16] and cardiovascular outcomes (a lasso logistic
regression model and an RF model were developed and used
for predictive comparison of data from 4246 incident HD
patients) [17].

Probably the most attractive and tempting field is theHD
session. An actual dialysis machine cannot adapt/react when
various changes occur; only AI may lead to personalized
“precision medicine” [18]. Indeed, a recent AI model was able
to predict hypotension and anticipate patient’s reactions (in
terms of volumes, blood pressure, and heart rate variability)
[7]. Since the NN approach is more flexible and adapts easier
to complex prediction problems compared to standard
regression models, the authors included 60 variables (patient
characteristics, a historical record of physiological reactions,
outcomes of previous dialysis sessions, predialysis data, and
the prescribed dialysis dose for the index session). The data-
set used for modeling consisted of 766,000 records, each

representing a dialysis session recorded in the Spanish
NephroCare centers. NN proved to be a better predictor than
a standard recommendation from the guidelines regarding
the urea removal ratio, postdialysis BUN, or Kt/V [19]. ML
algorithms were used to predict low blood pressure [20],
blood volume [21, 22], or TBW [23].

Recent studies suggest that NN outperforms experi-
enced nephrologists. A combined retrospective and pro-
spective observational study was performed in two Swiss
dialysis units (80 HD patients, 480 monthly clinical and
biochemical variables). A NN was “trained” and “tested”
using the BrainMaker Professional software, predicting
intradialytic hypotension better than six trained nephrolo-
gists [20]. In other studies, 14 pediatric patients were
switched from nephrologists to AI. Results proved that
AI is a superior tool for predicting dry weight in HD
based on bioimpedance, blood volume monitoring, and
blood pressure values [24, 25].

Since anemia is a frequent comorbidity found in ESRD
and dialysis patients [26], key elements were targeted by AI
software [26]: erythropoietin-stimulating agents [27], hemo-
globin target [28], and iron treatment dosing [29].

An impressive recent retrospective observational study
included HD patients from Portugal, Spain, and Italy from
2006 to 2010 in Fresenius Medical Care clinics. At every
treatment, darbepoetin alpha and iron dose administration
was recorded as well as parameters concerning HD treat-
ment. These data represent the input for “training” and “test-
ing” a feed-forward multilayered perceptron (MLP). This
approach puts together the potential of MLP to produce

Hemodialysis

Kidney
transplant

Peritoneal
dialysis

Artificial intelligence 

Dialysis services

Dialysis procedure

Anemia 
management

Hormonal & dietary

Arteriovenous
fistula

Rejection
prediction

DietaryTacrolimus post-
transplant

Transplant 
services

Cardiovascular event
prediction

Infections

PD technique

Figure 2: The involvement of AI in hemodialysis, peritoneal dialysis, and kidney transplant, respectively.
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accurate models given a representative dataset with better use
of the available information using a priori knowledge of RBC
lifespan and the effect produced by iron and ESA [28]. Other
studies also used NNs to individualize ESA dosage in HD
patients with outstanding results [30, 31]. Moreover, NN
implemented in clinical wards could appreciate erythropoie-
tin responsiveness [32–34].

Probably the most advanced system to manage anemia
in HD is the “Anemia Control Model” (ACM) [35]. Con-
ceived and validated previously [28], this model can pre-
dict future hemoglobin and recommend a precise ESA
dosage. It was deployed in 3 pilot clinics as part of routine
daily care of a large population of unselected patients.
Also, a direct comparison between standard anemia man-

agement by expert nephrologists following established best
clinical practices and ACM-supported anemia manage-
ment was performed. Six hundred fifty-three patients were
included in the control phase and 640 in the observation
phase. Compared to the “traditional” management, the
AI approach led to a significant decrease in hemoglobin
fluctuation and reductions in ESA use, with the potential
to reduce the cost of treatment [35].

AI algorithms also improve chronic kidney disease-
mineral and bone disorder (CKD-MBD) management in
HD. Some studies suggest that NN (based on limited clinical
data) can accurately forecast the target range of plasma iPTH
concentration [36]. An MLP was constructed with six vari-
ables (age, diabetes, hypertension, hemoglobin, albumin,

Table 2: Different types of AI algorithms used in G5D/T trials.

Type of AI/ML algorithm used No. Studies Ref.

Unspecified machine learning (ML) algorithms 15

Cadena 2010, Fuertinger 2013, Barbieri 2015,
Barbieri 2016, Brier 2016, Saadat 2017, Bhatia 2018,
Bucalo 2018, Usvyat 2018, Zhang 2017, John 2019,

Decruyenaere 2015, Karademirci 2015,
Tang 2017, Gallon 2018

[27, 28, 35, 80]
[16, 42, 82, 83]
[48, 49, 75, 84]
[53, 55, 85]

ML—Naive Bayes models 1 Rodrigues 2017 [50]

ML—support vector machine (SVM) 3
Martin-Guerrero 2003, Chao 2018,

Fernandez-Lozano 2018
[30, 43, 51]

ML—k-NN (k-nearest neighbor) 1 Fernandez-Lozano 2018 [51]

ML—reinforcement learning with
Markov decision processes (MDP)

1 Escandell-Montero 2014 [26]

Fuzzy

Fuzzy logic 5
Nordio 1994, Nordio 1995, Mancini 2007,

Gaweda 2008, Zhang 2005
[21, 22, 34, 79]

[44]

Coactive fuzzy 1 Chen 2007 [37]

Fuzzy Petri nets 1 Chen 2014 [41]

ML—natural language processing 1 Nigwekar 2014 [40]

Data mining 4 Bellazzi 2005, Brito 2019, Srinivas 2017, Jia 2018 [13, 47, 60, 86]

Bayesian belief network 1 Brown 2012 [59]

Dynamic time warping (DTW) 1 Fritsche 2002 [56]

ML—unspecified neural
network (NN) algorithm

30

Guh 1998, Akl 2001, Goldfarb-Rumyantzev 2003,
Martin Guerrero 2003, Gabutti 2004, Gabutti 2004,

Chiu 2005, Fernandez 2005, Gabutti 2006,
Tangri 2006, Wang 2006, Gaweda 2008, Bhan 2010,
Jacob 2010, Azar 2011, Barbieri 2016, Brier 2018,
Niel 2018, Barbieri 2019, Hueso 2019, Chen 2006,

Tangri 2011, Simic-Ogrizovic 1999

[31, 76–78]
[19, 20, 23, 88]
[14, 32, 33, 36]
[15, 29, 38, 81]
[7, 18, 87, 89]
[45, 46, 54, 65]

ML—multilayer perceptron
Stachowska 2006, Santori 2007,

Sharma 2008, Tang 2017
[25, 52, 55, 57]

(MLP) ML—recurrent NN

Niel 2018, Rashidi Khazaee 2018, Thishya 2018 [62, 64]

1 Martin-Guerrero 2003 [31]

1 Gallon 2018 [85]

ML—tree-based modeling (TBM)

Random forest (RF) 7
Titapiccolo 2013, Rodriguez 2016,

Fernandez-Lozano 2018,
Sharma 2008, Greco 2010, Tang 2017, Yoo 2017

[17, 39, 51, 52]
[55, 58, 61]

Decision trees 3
Goldfarb-Rumyantzev 2003,
Raghavan 2005, Yoo 2017

[61, 74, 78]

Conditional inference trees 1 Seeling 2012 [63]
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and calcium) collected retrospectively from an internal
validation group (n = 129). Plasma iPTH was the
dichotomous outcome variable, either target group
(150 ng/L ≤ iPTH ≤ 300 ng/L) or nontarget group
(iPTH < 150 ng/L or iPTH > 300 ng/L). After internal vali-
dation, the ANN was prospectively tested in an external val-
idation group (n = 32). This algorithm provided excellent
discrimination (AUROC = 0:83, p = 0:003) [36]. Usually,
frequent measurement is needed to avoid inadequate pre-
scription of phosphate binders and vitamin D. AI can
repeatedly perform the forecasting tasks and may be a
satisfactory substitute for laboratory tests [37]. NNs were
used to predict HD patients who need more frequent
vitamin D dosage, using only simple clinical parameters
[38]. However, analysis of the complex interactions
between mineral metabolism parameters in ESRD may
demand a more advanced data analysis system such as
random forest (RF) [39].

Another work based on natural language processing algo-
rithms applied to 11,451 USRDS patients described the real
incidence and mortality of calciphylaxis patients [40]. It
identified 649 incident calciphylaxis cases over the study
period, with mortality rates noted to be 2.5–3 times higher
than average mortality rates. This trial serves as a template
for investigating other rare diseases. However, the algorithm
in this paper has not been disclosed by the authors.

Patency of the arteriovenous access is the last aspect
involving AI in HD. Fuzzy Petri net (FPN) algorithms were
involved in quantifying the degree of AV fistula stenosis. A
small study from Taiwan (42 patients) used an electronic
stethoscope to estimate the characteristic frequency spectra
at the level of AV fistula. Observing three main characteristic
frequencies, it provides information to evaluate the degree of
AVS stenosis [41].

Moreover, the life of the AV fistula could be forecasted by
ML algorithms [42]. Six ML algorithms were compared to pre-
dict the patency of a fistula based on clinical and dialysis vari-
ables only. Of these, SVM with a linear kernel gives the highest
accuracy of 98%. The proposed system was envisioned after
considering the dataset of 200 patients, five dialysis sessions
for each patient (to avoid any operator error), and over 30
values reported by the machine. Such a system may improve
the patient’s QoL by foregoing the catheter and reducing the
medical costs of scans like ultrasound Doppler [42].

Finally, another study using small-sized sensors (as
opposed to conventional Doppler machines) used SVM for
assessing the health of arteriovenous fistula. The model
achieved high accuracy (89.11%) and a low type II error
(9.59%) [43].

3.1.1. Key Messages

(1) HowCan the Use of AI Improve Healthcare Delivery to HD?.

(i) Prevention

(a) AI methods capable of determining risk profiles
for unsatisfactory clinical results of HD sessions
were described

(b) Early detection allows for timely correction of
risk factors to attain good quality HD sessions
and favorable outcomes

(ii) Diagnosis

(a) Estimating the patency of AV fistula by AI
approaches may improve HD session outcomes
and the patient’s QoL

(b) AI solutions reduce medical costs by replacing
more expensive diagnostic procedures

(iii) Prescription

(a) AI can recommend medication dosage for
preventing HD-specific complications like
anemia and hemoglobin fluctuations, mineral
imbalance

(b) Algorithm involvement leads to fewer complica-
tions and reduces medication use, proving the
potential to reduce treatment expenses

(iv) Prediction

(a) AI was used for predicting mortality and sur-
vival in HD

(b) Specific algorithms predict changes in QoL, car-
diovascular outcomes, and intradialytic hemo-
dynamic events

(c) Survival and QoL predictive models can help
mitigate the impact on public health by better
directing the use of resources

(d) Predicting intradialytic events allows for flexible
adaptions of the HD process in real time by
avoiding hypotension, the variability of heart
rate and volumes, thus ensuring the success of
the HD session and overall cost efficiency of
interventions

(2) Challenges and Areas Which Require More Studies in AI
for HD.

(a) Real-time monitoring AI systems could achieve
personalized treatment with embedded automatic
adaptive responses in HD sessions

(b) Implementing potential interaction through feed-
back between AI/ML systems and physicians respon-
sible for HD would allow both parts to learn from
each other and provide better decisions for ESRD
patients

(c) The more AI systems will be deployed in HD patient
care, the larger the scale data will be available. This
should compel to the development of stringent regu-
lations concerning data privacy, maintenance, and
sharing for safer implementation in public healthcare
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3.2. Peritoneal Dialysis and AI.One of the first applications of
AI in PD was the selection of PD schemes. Fuzzy logic
algorithms were used in small studies with excellent com-
patibility with doctors’ opinions [44]. Since high peritoneal
membrane transport status is associated with higher mor-
bidity and mortality, determining peritoneal membrane
transport status can result in a better prognosis. An MLP
used predialysis data from a 5-year PD database of 111
uremic patients and demonstrated the usefulness of this
approach to stratify predialysis patients into high and
low transporter groups [45]. The evaluation of peritoneal
membrane transport status, if predictable before PD, will
help clinicians offer their uremic patients better therapeu-
tic options.

Almost 40% of PD patients experience technique fail-
ure in the 1st year of therapy. Understanding which factors
are genuinely associated with this outcome is essential to
develop interventions that might mitigate it. Such data
were obtained from a high-quality registry—UK Renal
Registry [46]: between 1999 and 2004, 3269 patients were
included in the analysis. An MLP with 73-80-1 nodal
architectures was constructed and trained using the back-
propagation approach.

Due to the vast number of data acquired from continuous
ambulatory peritoneal dialysis (CAPD) patients (routine lab
tests on follow-up), data mining algorithms were proposed to
discover patterns from meaningless data (e.g., consecutive cre-
atinine values) [47]. This study is probably one of the best
examples of AI in medicine: identifying patterns in big data
series.

AI/ML algorithms would help predict impending com-
plications such as fluid overload, heart failure, or peritonitis,
allowing early detection and interventions (remote patient
management) to avoid hospitalizations [48].

Using a systematic approach to characterize responses
to microbiologically well-defined infection in acute perito-
nitis patients, ML techniques were able to generate specific
biomarker signatures associated with Gram-negative and
Gram-positive organisms and with culture-negative epi-
sodes of unclear etiology [49]. By combining biomarker
measurements during acute peritonitis and feature selec-
tion approaches based on SVM, NN, and RF, a study
(including 83 PD patients with peritonitis) demonstrated
the power of advanced mathematical models to analyze
complex biomedical datasets and highlight critical path-
ways involved in pathogen-specific inflammatory responses
at the site of infection.

Using data mining models in CAPD patients, patterns
were extracted to classify a patient with stroke risk,
according to their blood analysis [50]. In a recent study
analyzing a dataset from 850 cases, five different AI algo-
rithms (Naïve Bayes, Logistics Regression, MLP, Random
Tree, and k-NN) were used to predict the stroke risk of
a patient. The specificity and sensibility of RT and k-NN
were 95% in predicting stroke risk. Shortly, PD patients
will benefit from a high prediction (stroke, infection, car-
diovascular events [51], or even mortality risk) only from
information easy to obtain (demographical, biological, or
PD-related data).

3.2.1. Key Messages

(1) How Can the Use of AI Improve Healthcare Delivery to
PD?.

(i) Prevention

(a) AI was used to identify factors associated with
PD technique failure

(b) Developing interventions to mitigate risk factors
to prevent this outcome can be the result of the
critical contribution of AI in the PD process

(ii) Diagnosis

(a) AI algorithms found specific biomarker signa-
tures associated with different types of
infections

(b) This has significant implications in the early ini-
tiation of appropriate treatment and in avoiding
severe infectious complications of the vulnerable
ESRD patients

(c) AI contributed to expanding scientific knowl-
edge of the pathophysiological mechanisms by
highlighting critical pathways involved in
pathogen-specific inflammatory responses in
PD

(iii) Prescription

(a) By using AI, better therapeutic options can be
offered to uremic patients by stratifying predia-
lysis patients into high and low transporter
groups

(b) This will improve prognosis and reduce morbid-
ity and mortality in PD patients

(iv) Prediction

(a) AI can predict complications such as fluid over-
load, heart failure, or peritonitis

(b) Also, algorithms could identify patients with
stroke risk, thereby allowing early interventions
and reduce PD hospitalizations

(2) Challenges and Areas Which Require More Studies in AI
for PD.

(a) AI could be exploited to identify patients at risk
of developing peritonitis, a significant complica-
tion of PD, in order to reduce the infectious risk
and to overcome a substantial burden in the PD
process

(b) Conducting studies on home remote monitoring in
automated PD may improve patients’ outcomes and
adherence to the therapy
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(c) While dialysate regeneration using sorbent technol-
ogy makes it possible to build an automated wearable
artificial kidney PD device, studies of safety in this
area would be much needed, especially for patients
facing mobility problems

3.3. Kidney Transplantation and AI. Given the high number
of dialysis patients and the limited number of organ
donors, AI algorithms are involved in optimizing the
healthcare management system [52]. Through data mining
and NN algorithms, complex e-health systems are pro-
posed for a wiser allocation of organs and predicting
transplant outcomes [53].

The most stirring contemporary issue regarding KT is the
power of AI to predict graft rejection. A study published 20
years ago reported that NNs could be utilized in the predic-
tion of chronic renal allograft rejection (the authors
described a retrospective analysis on 27 patients with chronic
rejection, eight simple variables manifesting a strong influ-
ence on rejection) [54]. Another cohort study of 500 patients
from 2005 to 2011 used ML algorithms (SVM, RF, and DT)
to predict “delayed graft function.” Linear SVM had the high-
est discriminative capacity (AUROC of 84.3%), outperform-
ing the other methods [55]. However, currently, no guideline
supports the use of AI in organ allocation or prediction of
rejection.

Despite ongoing efforts to develop other methods, serum
creatinine remains the most important parameter for asses-
sing renal graft function. A rise in creatinine corresponds to
deterioration in the KT function. The physician should rec-
ognize “significant” increases in serum creatinine. DTW
was used to identify abnormal patterns in a series of labora-
tory data, thus detecting earlier and reporting creatinine
courses associated with acute rejection [56]. Data extraction
was performed on 1,059,403 laboratory values, 43,638 creat-
inine measurements, 1143 patients, and 680 rejection epi-
sodes stored in the database. By integrating AI into the
electronic patient registration system, the real impact on
the care of transplant recipients could be evaluated
prospectively.

AnMLP trained with back-propagation was used in a ret-
rospective study on 257 pediatric patients who received KT
to identify delayed decrease of serum creatinine (a delay in
functional recovery of the transplanted kidney) using 20 sim-
ple input variables [57]. Other models (decision trees) were
reported to highlight subjects at risk of graft loss [58].

Using datasets from the USRDS database (48 clinical var-
iables from 5144 patients), other authors developed an ML
software (based on Bayesian belief network (BBN)) that func-
tioned as a pretransplant organ-matching tool. This model
could predict graft failure within the first year with a specific-
ity of 80% [59]. Other stand-alone software solutions (trained
on big data) incorporated pretransplant variables and pre-
dicted graft loss and mortality [60–62]. Since these AI tools
can be easily integrated into electronic health records, we
appreciate that all kidney transplants will be managed with
AI tools in the next years.

Few studies were found dealing (through AI algorithms)
with posttransplant immunosuppressive therapy.

The objective of a study was to identify adaptation rules
for tacrolimus therapy from a clinical dataset to predict drug
concentration [63]. Since tacrolimus has a narrow therapeu-
tic window and variability in clinical use, the challenge for
various ML models was to predict the tacrolimus stable dose
(TSD). In a large Chinese cohort comprising 1045 KT
patients, eight ML techniques were trained in the pharmaco-
genetic algorithm-based prediction of TSD. Clinical and
genetic factors significantly associated with TSD were identi-
fied. Hypertension, use of omeprazole, and CYP3A5 geno-
type were used to construct the multiple linear regression
(MLR) [55].

A prospective study involving 129 KT patients confirms
that the combination of multiple ABCB1 polymorphisms
with CYP3A5 genotype through a NN calculates more pre-
cisely the initial tacrolimus dose improving therapy and pre-
venting tacrolimus toxicity [64].

Finally, the only RCT reported in our review was a study
evaluating the benefits of different types of diets after trans-
plant [65]. NN seems to be the most suitable method for
investigations with many variables, interconnected nonli-
nearly, allowing for a more general approach to biological
problems. 37 KT patients were randomized either to a low-
fat standard or a Mediterranean diet (MD). For the MD
group, the NNs had two hidden layers with 223 and 2 neu-
rons. In the control group, the networks had two hidden
layers as well, with 148 and 2 neurons, respectively. The con-
clusion was that MD would be ideal for posttransplant
patients, without affecting the lipid profile.

3.3.1. Key Messages

(1) How Can the Use of AI Improve Healthcare Delivery to
KT?.

(i) Diagnosis

(a) AI was able to detect and report early creatinine
courses associated with acute KT rejection by
identifying abnormal patterns in a series of labo-
ratory data, thus allowing for rapid intervention
and improved aftermath in KT patients

(ii) Prescription

(a) Various MLmodels accurately predict the tacro-
limus stable dose succeeding to improve post-
transplant immunosuppressive therapy and
prevent tacrolimus toxicity

(b) Proper management of immunosuppression can
have a significant impact on averting graft loss

(c) ML can evaluate the benefits of different types of
diets after transplant that can lead to a positive
impact on QoL in KT

(iii) Prediction

(a) AI is used to predict graft rejection, “delayed
graft function,” and mortality
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(b) AI algorithm—pretransplant organ-matching
tool

(c) This allows for the wiser allocation of organs and
overall optimization of the healthcare manage-
ment system in KT

(2) Challenges and Areas Which Require More Studies in AI
for KT.

(a) Preventive AI tools could certainly be employed in
identifying modifiable risk factors for graft rejection
and graft loss, offering patients better chances for
successful KT

(b) Guidelines need to be developed for supporting the
use of AI in organ allocation or prediction of
rejection

(c) Prospective evaluation of the real AI impact on the
care of transplant recipients can be easily accom-
plished by integrating AI into electronic patient reg-
istration systems

(d) We appreciate that in the next years, all kidney trans-
plant procedures will be managed through AI tools

3.4. Internet of Things (IoT) and Wearables in
Dialysis/Transplantation Management. The emergence of
the modern IoT concept yielded the idea of connecting every-
thing to the Internet and generating data through sensors’
signals regarding external information and changes in the
environment, thus moving AI to the edge in healthcare.

IoT wearable systems are capable of real-time remote
monitoring and analyzing HD and PD patients’ physiological
parameters by integrating sensors to detect a pulse, tempera-
ture [66], blood pressure [67], blood leakage [68, 69], electro-
cardiographic measurements, hyperkalemia, or fluid
overload [70].

Medical wearables have been proposed to help and sup-
port KT patients in aftercare by monitoring vital signs, heart
rate, temperature, blood pressure, physical activity, and risk
calculations [71].

IoT medical devices have a tremendous impact on
healthcare monitoring and treatment outcomes. They collect
a substantial amount of data that can be employed in training
new ML models for providing better patient care. Neverthe-
less, large-scale data can make them vulnerable to security
breaches; thus, privacy and security issues need to be rigor-
ously addressed.

4. Limitations and Future Directions

Probably the most important limitation of the AI/ML
approach is that there is a need for robust validation in
real-world studies. We are aware that AI enthusiasm exceeds
AI software abilities, mainly due to a lack of clinical valida-
tion and daily care implementation.

Since ML algorithms have the strengths to learn and
improve from experience without being explicitly pro-

grammed for a specific task, AI is often perceived as a “black
box” that hides the precise way in which it concludes/results
[72]. Due to the “hidden layers” of a NN, likely, the algorithm
itself cannot adequately describe the decision-making pro-
cess, none being like the previous one. Currently, there is a
real debate whether it is acceptable to use nontransparent
algorithms in a clinical setting (the so-called “deconvolution”
of algorithms being required by the European Union’s Gen-
eral Data Protection Regulation) [4].

There are more questions about how an ML algorithm
discovers patterns and learns from a dataset on predicting
dialysis volumes than on how AI is used in self-driving cars.
In a recent editorial, we are underlining a novel paradigm
used to optimize the diagnostic and treatment of ESRD,
inviting clinicians and researchers to envision and expect
more from AI.

However, the reluctance of the medical community in
implementing AI in clinical practice derives from the reliance
on RCTs—the cornerstone of Evidence-Based Medicine
(EBM). It seems that the transition from the “EBM para-
digm” to the “deep medicine” concept is confusing, burden-
some, and meets new and unexpected obstacles. Another
disadvantage of NNs is that inputs and outputs of the net-
work are often surrogates for clinical/paraclinical situations.
Surrogates should be particularly relevant to maximizing
the correlation between the prediction of the network and
the clinical situation. This correlation may not always be
optimal [8].

The privacy of personal information and the security of
data are an important matter. It is difficult to provide security
guarantees regarding the risk of hacking and manipulating
content, events that could limit the progress of AI in medi-
cine. More than that, due to private corporations’ coopera-
tion and investment in AI medical projects, there is a
serious risk (and fear) that doctors will be constrained to
work on AI machines that they do not understand or trust,
manipulating the medical data subsequently stored on pri-
vate servers. This has led one of the largest private-sector
investors to claim that AI is far more dangerous than nukes.

Finally, when programmers approach a problem related
to HD or transplantation, there is still debate over the supe-
riority of one algorithm over another. The tendency is to
demonstrate the superiority of deep learning algorithms
through ML, but the soundness of this approach requires
long periods of “training” and large databases.

There is a chance that the entire dialysis process will be
monitored and predicted by AI solutions. Future dialysis
complications will be foreseen through simple clinical/para-
clinical variables. Mining knowledge from big data registries
will allow building intelligent systems (the so-called Clinical
Decision Support Systems), which will help physicians in
classifying risks, diagnosing CKD 5D/T complications, and
assessing prognosis [73].

5. Conclusions

Although the guidelines are reluctant to recommend the
implementation of AI in daily clinical practice, there is evi-
dence that AI/ML algorithms can predict better than
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nephrologists: volumes, Kt/V, and risk of hypotension and
cardiovascular events during dialysis. There are integrated
anemia management AI systems, through personalized dos-
ing of ESA, iron, and hemoglobin modulation. Recent studies
employ ML algorithms as pretransplant organ-matching
tools, thus minimizing graft failure and accurately predicting
mortality. Altogether, these trials report a significant impact
of AI on quality of life and survival in G5D/T patients. In
the coming years, we will probably witness the emergence
of AI/ML devices that will improve the management of dial-
ysis patients.
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